use bitmasks BEGIN_PROVIDER [ integer(bit_kind), psi_ref_sorted_bit, (N_int,2,psi_det_size) ] &BEGIN_PROVIDER [ double precision, psi_ref_coef_sorted_bit, (psi_det_size,N_states) ] implicit none BEGIN_DOC ! Reference determinants sorted to accelerate the search of a random determinant in the wave ! function. END_DOC call sort_dets_by_det_search_key(N_det_ref, psi_ref, psi_ref_coef, & psi_ref_sorted_bit, psi_ref_coef_sorted_bit) END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_non_ref, (N_int,2,psi_det_size) ] &BEGIN_PROVIDER [ double precision, psi_non_ref_coef, (psi_det_size,n_states) ] &BEGIN_PROVIDER [ integer, idx_non_ref, (psi_det_size) ] &BEGIN_PROVIDER [ integer, N_det_non_ref ] implicit none BEGIN_DOC ! Set of determinants which are not part of the reference, defined from the application ! of the reference bitmask on the determinants. ! idx_non_ref gives the indice of the determinant in psi_det. END_DOC integer :: i_non_ref,j,k integer :: degree logical :: in_ref i_non_ref =0 do k=1,N_det in_ref = .False. do j=1,N_det_ref call get_excitation_degree(psi_ref(1,1,j), psi_det(1,1,k), degree, N_int) if (degree == 0) then in_ref = .True. exit endif enddo if (.not.in_ref) then double precision :: hij i_non_ref += 1 do j=1,N_int psi_non_ref(j,1,i_non_ref) = psi_det(j,1,k) psi_non_ref(j,2,i_non_ref) = psi_det(j,2,k) enddo do j=1,N_states psi_non_ref_coef(i_non_ref,j) = psi_coef(k,j) enddo idx_non_ref(i_non_ref) = k endif enddo N_det_non_ref = i_non_ref END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_non_ref_sorted_bit, (N_int,2,psi_det_size) ] &BEGIN_PROVIDER [ double precision, psi_non_ref_coef_sorted_bit, (psi_det_size,N_states) ] implicit none BEGIN_DOC ! Reference determinants sorted to accelerate the search of a random determinant in the wave ! function. END_DOC call sort_dets_by_det_search_key(N_det_ref, psi_non_ref, psi_non_ref_coef, & psi_non_ref_sorted_bit, psi_non_ref_coef_sorted_bit) END_PROVIDER BEGIN_PROVIDER [double precision, H_matrix_ref, (N_det_ref,N_det_ref)] implicit none integer :: i,j double precision :: hij do i = 1, N_det_ref do j = 1, N_det_ref call i_H_j(psi_ref(1,1,i),psi_ref(1,1,j),N_int,hij) H_matrix_ref(i,j) = hij enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, psi_coef_ref_diagonalized, (N_det_ref,N_states)] &BEGIN_PROVIDER [double precision, psi_ref_energy_diagonalized, (N_states)] implicit none integer :: i,j double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_ref,1),N_det_ref)) allocate (eigenvalues(N_det_ref)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_ref,size(H_matrix_ref,1),N_det_ref) do i = 1, N_states psi_ref_energy_diagonalized(i) = eigenvalues(i) do j = 1, N_det_ref psi_coef_ref_diagonalized(j,i) = eigenvectors(j,i) enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, psi_ref_energy, (N_states)] implicit none integer :: i,j,k double precision :: hij,norm,u_dot_v psi_ref_energy = 0.d0 do k = 1, N_states norm = 0.d0 do i = 1, N_det_ref norm += psi_ref_coef(i,k) * psi_ref_coef(i,k) do j = 1, N_det_ref psi_ref_energy(k) += psi_ref_coef(i,k) * psi_ref_coef(j,k) * H_matrix_ref(i,j) enddo enddo psi_ref_energy(k) = psi_ref_energy(k) /norm enddo END_PROVIDER