program loc_rasorb implicit none BEGIN_DOC ! This program performs a localization of the active orbitals ! of a CASSCF wavefunction, reading the orbitals from a RASORB ! file of molcas. ! id1=max is the number of MO in a given symmetry. END_DOC integer id1,i_atom,shift,shift_h parameter (id1=300) character*1 jobz,uplo character*64 file1,file2 character*72 string(id1,8),cdum double precision :: cmo(id1,id1,1),cmoref(id1,id1,1),newcmo(id1,id1,1) double precision ::s(id1,id1,1),dum,ddum(id1,id1),ovl(id1,id1) double precision :: w(id1),work(3*id1),t(id1,id1),wi(id1,id1) integer n,i,j,k,l,nmo(8),isym,nsym,idum,nrot(8),irot(id1,8) integer ipiv(id1),info,lwork logical *1 z54 print*,'passed the first copy' z54=.false. !Read the name of the RasOrb file print*,'Entering in the loc program' ! read(5,*) z54 print*,'before = ' accu_norm = 0.d0 do i =1,mo_tot_num accu_norm += dabs(mo_overlap(i,i)) enddo print*,'accu_norm = ',accu_norm nsym = 1 nmo(1) = mo_tot_num print*,'nmo(1) = ',nmo(1) cmo = 0.d0 do isym=1,nsym do i=1,nmo(isym) do j = 1, ao_num cmo(j,i,isym) = mo_coef(j,i) enddo enddo enddo print*,'passed the first copy' do isym=1,nsym do j=1,mo_tot_num do i=1,ao_num newcmo(i,j,isym)=cmo(i,j,isym) enddo enddo enddo print*,'passed the copy' nrot(1) = 64 ! number of orbitals to be localized integer :: index_rot(1000,1) cmoref = 0.d0 irot = 0 ! H2 molecule for the mixed localization do i=1,64 irot(i,1) = i+2 enddo do i=1,17 cmoref(i+1,i,1)=1.d0 enddo cmoref(19,19-1,1)=1.d0 cmoref(20,19-1,1)=-1.d0 cmoref(19,20-1,1)=-1.d0 cmoref(20,20-1,1)=-1.d0 cmoref(21,20-1,1)=2.d0 cmoref(22,21-1,1)=1.d0 cmoref(23,22-1,1)=1.d0 cmoref(24,23-1,1)=1.d0 cmoref(25,24-1,1)=1.d0 cmoref(26,24-1,1)=-1.d0 cmoref(25,25-1,1)=-1.d0 cmoref(26,25-1,1)=-1.d0 cmoref(27,25-1,1)=2.d0 cmoref(28,26-1,1)=1.d0 cmoref(29,27-1,1)=1.d0 cmoref(30,28-1,1)=1.d0 cmoref(31,29-1,1)=1.d0 cmoref(32,29-1,1)=-1.d0 cmoref(31,30-1,1)=-1.d0 cmoref(32,30-1,1)=-1.d0 cmoref(33,30-1,1)=2.d0 cmoref(34,31-1,1)=1.d0 cmoref(35,32-1,1)=1.d0 cmoref(36,33-1,1)=1.d0 do i=33,49 cmoref(i+5,i,1)= 1.d0 enddo cmoref(55,52-2,1)=1.d0 cmoref(56,52-2,1)=-1.d0 cmoref(55,53-2,1)=-1.d0 cmoref(56,53-2,1)=-1.d0 cmoref(57,53-2,1)=2.d0 cmoref(58,54-2,1)=1.d0 cmoref(59,55-2,1)=1.d0 cmoref(60,56-2,1)=1.d0 cmoref(61,57-2,1)=1.d0 cmoref(62,57-2,1)=-1.d0 cmoref(61,58-2,1)=-1.d0 cmoref(62,58-2,1)=-1.d0 cmoref(63,58-2,1)=2.d0 cmoref(64,59-2,1)=1.d0 cmoref(65,60-2,1)=1.d0 cmoref(66,61-2,1)=1.d0 cmoref(67,62-2,1)=1.d0 cmoref(68,62-2,1)=-1.d0 cmoref(67,63-2,1)=-1.d0 cmoref(68,63-2,1)=-1.d0 cmoref(69,63-2,1)=2.d0 cmoref(70,64-2,1)=1.d0 cmoref(71,65-2,1)=1.d0 cmoref(72,66-2,1)=1.d0 ! H2 molecule ! do i=1,66 ! irot(i,1) = i ! enddo ! ! do i=1,18 ! cmoref(i,i,1)=1.d0 ! enddo ! cmoref(19,19,1)=1.d0 ! cmoref(20,19,1)=-1.d0 ! cmoref(19,20,1)=-1.d0 ! cmoref(20,20,1)=-1.d0 ! cmoref(21,20,1)=2.d0 ! cmoref(22,21,1)=1.d0 ! cmoref(23,22,1)=1.d0 ! cmoref(24,23,1)=1.d0 ! ! ! cmoref(25,24,1)=1.d0 ! cmoref(26,24,1)=-1.d0 ! cmoref(25,25,1)=-1.d0 ! cmoref(26,25,1)=-1.d0 ! cmoref(27,25,1)=2.d0 ! cmoref(28,26,1)=1.d0 ! cmoref(29,27,1)=1.d0 ! cmoref(30,28,1)=1.d0 ! ! cmoref(31,29,1)=1.d0 ! cmoref(32,29,1)=-1.d0 ! cmoref(31,30,1)=-1.d0 ! cmoref(32,30,1)=-1.d0 ! cmoref(33,30,1)=2.d0 ! cmoref(34,31,1)=1.d0 ! cmoref(35,32,1)=1.d0 ! cmoref(36,33,1)=1.d0 ! ! do i=34,51 ! cmoref(i+3,i,1)= 1.d0 ! enddo ! ! cmoref(55,52,1)=1.d0 ! cmoref(56,52,1)=-1.d0 ! cmoref(55,53,1)=-1.d0 ! cmoref(56,53,1)=-1.d0 ! cmoref(57,53,1)=2.d0 ! cmoref(58,54,1)=1.d0 ! cmoref(59,55,1)=1.d0 ! cmoref(60,56,1)=1.d0 ! ! cmoref(61,57,1)=1.d0 ! cmoref(62,57,1)=-1.d0 ! cmoref(61,58,1)=-1.d0 ! cmoref(62,58,1)=-1.d0 ! cmoref(63,58,1)=2.d0 ! cmoref(64,59,1)=1.d0 ! cmoref(65,60,1)=1.d0 ! cmoref(66,61,1)=1.d0 ! ! cmoref(67,62,1)=1.d0 ! cmoref(68,62,1)=-1.d0 ! cmoref(67,63,1)=-1.d0 ! cmoref(68,63,1)=-1.d0 ! cmoref(69,63,1)=2.d0 ! cmoref(70,64,1)=1.d0 ! cmoref(71,65,1)=1.d0 ! cmoref(72,66,1)=1.d0 ! H atom ! do i=1,33 ! irot(i,1) = i ! enddo ! ! do i=1,18 ! cmoref(i,i,1)=1.d0 ! enddo ! cmoref(19,19,1)=1.d0 ! cmoref(20,19,1)=-1.d0 ! cmoref(19,20,1)=-1.d0 ! cmoref(20,20,1)=-1.d0 ! cmoref(21,20,1)=2.d0 ! cmoref(22,21,1)=1.d0 ! cmoref(23,22,1)=1.d0 ! cmoref(24,23,1)=1.d0 ! cmoref(25,24,1)=1.d0 ! cmoref(26,24,1)=-1.d0 ! cmoref(25,25,1)=-1.d0 ! cmoref(26,25,1)=-1.d0 ! cmoref(27,25,1)=2.d0 ! cmoref(28,26,1)=1.d0 ! cmoref(29,27,1)=1.d0 ! cmoref(30,28,1)=1.d0 ! ! cmoref(31,29,1)=1.d0 ! cmoref(32,29,1)=-1.d0 ! cmoref(31,30,1)=-1.d0 ! cmoref(32,30,1)=-1.d0 ! cmoref(33,30,1)=2.d0 ! cmoref(34,31,1)=1.d0 ! cmoref(35,32,1)=1.d0 ! cmoref(36,33,1)=1.d0 ! Definition of the index of the MO to be rotated ! irot(2,1) = 21 ! the first mo to be rotated is the 21 th MO ! irot(3,1) = 22 ! etc.... ! irot(4,1) = 23 ! ! irot(5,1) = 24 ! ! irot(6,1) = 25 ! !N2 ! irot(1,1) = 5 ! irot(2,1) = 6 ! irot(3,1) = 7 ! irot(4,1) = 8 ! irot(5,1) = 9 ! irot(6,1) = 10 ! ! cmoref(5,1,1) = 1.d0 ! ! cmoref(6,2,1) = 1.d0 ! ! cmoref(7,3,1) = 1.d0 ! ! cmoref(40,4,1) = 1.d0 ! ! cmoref(41,5,1) = 1.d0 ! ! cmoref(42,6,1) = 1.d0 ! !END N2 !HEXATRIENE ! irot(1,1) = 20 ! irot(2,1) = 21 ! irot(3,1) = 22 ! irot(4,1) = 23 ! irot(5,1) = 24 ! irot(6,1) = 25 ! ! cmoref(7,1,1) = 1.d0 ! ! cmoref(26,1,1) = 1.d0 ! ! cmoref(45,2,1) = 1.d0 ! ! cmoref(64,2,1) = 1.d0 ! ! cmoref(83,3,1) = 1.d0 ! ! cmoref(102,3,1) = 1.d0 ! ! cmoref(7,4,1) = 1.d0 ! ! cmoref(26,4,1) = -1.d0 ! ! cmoref(45,5,1) = 1.d0 ! ! cmoref(64,5,1) = -1.d0 ! ! cmoref(83,6,1) = 1.d0 ! ! cmoref(102,6,1) = -1.d0 ! !END HEXATRIENE !!!!H2 H2 CAS ! irot(1,1) = 1 ! irot(2,1) = 2 ! ! cmoref(1,1,1) = 1.d0 ! cmoref(37,2,1) = 1.d0 !END H2 !!!! LOCALIZATION ON THE BASIS FUNCTIONS ! do i = 1, nrot(1) ! irot(i,1) = i ! cmoref(i,i,1) = 1.d0 ! enddo !END BASISLOC ! do i = 1, nrot(1) ! irot(i,1) = 4+i ! enddo do i = 1, nrot(1) print*,'irot(i,1) = ',irot(i,1) enddo ! pause ! you define the guess vectors that you want ! the new MO to be close to ! cmore(i,j,1) = < AO_i | guess_vector_MO(j) > ! i goes from 1 to ao_num ! j goes from 1 to nrot(1) ! Here you must go to the GAMESS output file ! where the AOs are listed and explicited ! From the basis of this knowledge you can build your ! own guess vectors for the MOs ! The new MOs are provided in output ! in the same order than the guess MOs ! do i = 1, nrot(1) ! j = 5+(i-1)*15 ! cmoref(j,i,1) = 0.2d0 ! cmoref(j+3,i,1) = 0.12d0 ! print*,'j = ',j ! enddo ! pause print*,'passed the definition of the referent vectors ' do i = 1, ao_num do j =1, ao_num s(i,j,1) = ao_overlap(i,j) enddo enddo !Now big loop over symmetry do isym=1,nsym if (nrot(isym).eq.0) cycle write (6,*) write (6,*) write (6,*) write (6,*) 'WORKING ON SYMMETRY',isym write (6,*) !Compute the overlap matrix ! do i=1,nmo(isym) do j=1,nrot(isym) do i=1,ao_num ddum(i,j)=0.d0 do k=1,ao_num ddum(i,j)=ddum(i,j)+s(i,k,isym)*cmo(k,irot(j,isym),isym) enddo enddo enddo do i=1,nrot(isym) do j=1,nrot(isym) ovl(i,j)=0.d0 do k=1,ao_num ! do k=1,mo_tot_num ovl(i,j)=ovl(i,j)+cmoref(k,i,isym)*ddum(k,j) enddo enddo enddo call maxovl(nrot(isym),nrot(isym),ovl,t,wi) do i=1,nrot(isym) do j=1,ao_num ! write (6,*) 'isym,',isym,nrot(isym),nmo(isym) newcmo(j,irot(i,isym),isym)=0.d0 do k=1,nrot(isym) newcmo(j,irot(i,isym),isym)=newcmo(j,irot(i,isym),isym) + cmo(j,irot(k,isym),isym)*t(k,i) enddo enddo enddo ! if(dabs(newcmo(3,19,1) - mo_coef(3,19)) .gt.1.d-10 )then ! print*,'Something wrong bitch !!' ! print*,'newcmo(3,19,1) = ',newcmo(3,19,1) ! print*,'mo_coef(3,19) = ',mo_coef(3,19) ! stop ! endif enddo !big loop over symmetry 10 format (4E19.12) ! Now we copyt the newcmo into the mo_coef mo_coef = 0.d0 do isym=1,nsym do i=1,nmo(isym) do j = 1, ao_num mo_coef(j,i) = newcmo(j,i,isym) enddo enddo enddo ! pause ! we say that it hase been touched, and valid and that everything that ! depends on mo_coef must not be reprovided double precision :: accu_norm touch mo_coef print*,'after = ' accu_norm = 0.d0 do i =1,mo_tot_num accu_norm += dabs(mo_overlap(i,i)) enddo print*,'accu_norm = ',accu_norm ! We call the routine that saves mo_coef in the ezfio format call save_mos stop end