use bitmasks BEGIN_PROVIDER [ integer, mrmode ] mrmode = 0 END_PROVIDER BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states, N_det_non_ref) ] &BEGIN_PROVIDER [ integer, lambda_mrcc_pt2, (0:psi_det_size) ] &BEGIN_PROVIDER [ integer, lambda_mrcc_kept, (0:psi_det_size) ] implicit none BEGIN_DOC ! cm/ or perturbative 1/Delta_E(m) END_DOC integer :: i,k double precision :: ihpsi_current(N_states) integer :: i_pert_count double precision :: hii, lambda_pert integer :: N_lambda_mrcc_pt2, N_lambda_mrcc_pt3 i_pert_count = 0 lambda_mrcc = 0.d0 N_lambda_mrcc_pt2 = 0 N_lambda_mrcc_pt3 = 0 lambda_mrcc_pt2(0) = 0 lambda_mrcc_kept(0) = 0 do i=1,N_det_non_ref call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,& size(psi_ref_coef,1), N_states,ihpsi_current) call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii) do k=1,N_states if (ihpsi_current(k) == 0.d0) then ihpsi_current(k) = 1.d-32 endif ! lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k) lambda_mrcc(k,i) = min(-1.d-32,psi_non_ref_coef(i,k)/ihpsi_current(k) ) lambda_pert = 1.d0 / (psi_ref_energy_diagonalized(k)-hii) if (lambda_pert / lambda_mrcc(k,i) < 0.5d0) then ! Ignore lamdba i_pert_count += 1 lambda_mrcc(k,i) = 0.d0 if (lambda_mrcc_pt2(N_lambda_mrcc_pt2) /= i) then N_lambda_mrcc_pt2 += 1 lambda_mrcc_pt2(N_lambda_mrcc_pt2) = i endif else ! Keep lamdba if (lambda_mrcc_kept(N_lambda_mrcc_pt3) /= i) then N_lambda_mrcc_pt3 += 1 lambda_mrcc_kept(N_lambda_mrcc_pt3) = i endif endif enddo enddo lambda_mrcc_pt2(0) = N_lambda_mrcc_pt2 lambda_mrcc_kept(0) = N_lambda_mrcc_pt3 print*,'N_det_non_ref = ',N_det_non_ref print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1) print*,'lambda max = ',maxval(dabs(lambda_mrcc)) print*,'Number of ignored determinants = ',i_pert_count END_PROVIDER BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ] implicit none BEGIN_DOC ! < ref | H | Non-ref > matrix END_DOC integer :: i_I, k_sd do i_I=1,N_det_ref do k_sd=1,N_det_non_ref call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,k_sd),N_int,hij_mrcc(k_sd,i_I)) enddo enddo END_PROVIDER ! BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ] !&BEGIN_PROVIDER [ double precision, delta_ii, (N_states,N_det_ref) ] ! implicit none ! BEGIN_DOC ! ! Dressing matrix in N_det basis ! END_DOC ! integer :: i,j,m ! delta_ij = 0.d0 ! delta_ii = 0.d0 ! call H_apply_mrcc(delta_ij,delta_ii,N_states,N_det_non_ref,N_det_ref) ! !END_PROVIDER BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ] implicit none BEGIN_DOC ! Dressed H with Delta_ij END_DOC integer :: i, j,istate,ii,jj do istate = 1,N_states do j=1,N_det do i=1,N_det h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j) enddo enddo do ii = 1, N_det_ref i =idx_ref(ii) h_matrix_dressed(i,i,istate) += delta_ii(istate,ii) do jj = 1, N_det_non_ref j =idx_non_ref(jj) h_matrix_dressed(i,j,istate) += delta_ij(istate,jj,ii) h_matrix_dressed(j,i,istate) += delta_ij(istate,jj,ii) enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the dressed CI matrix END_DOC double precision :: ovrlp,u_dot_v integer :: i_good_state integer, allocatable :: index_good_state_array(:) logical, allocatable :: good_state_array(:) double precision, allocatable :: s2_values_tmp(:) integer :: i_other_state double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) integer :: i_state double precision :: e_0 integer :: i,j,k double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: e_array(:) integer, allocatable :: iorder(:) integer :: mrcc_state do j=1,min(N_states,N_det) do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then allocate (eigenvectors(size(CI_eigenvectors_dressed,1),size(CI_eigenvectors_dressed,2)), & eigenvalues(size(CI_electronic_energy_dressed,1))) do j=1,min(N_states,N_det) do i=1,N_det eigenvectors(i,j) = psi_coef(i,j) enddo enddo do mrcc_state=1,N_states do j=mrcc_state,min(N_states,N_det) do i=1,N_det eigenvectors(i,j) = psi_coef(i,j) enddo enddo call davidson_diag_mrcc_HS2(psi_det,eigenvectors,& size(eigenvectors,1), & eigenvalues,N_det,N_states,N_states_diag,N_int, & output_determinants,mrcc_state) CI_eigenvectors_dressed(1:N_det,mrcc_state) = eigenvectors(1:N_det,mrcc_state) CI_electronic_energy_dressed(mrcc_state) = eigenvalues(mrcc_state) enddo do k=N_states+1,N_states_diag CI_eigenvectors_dressed(1:N_det,k) = eigenvectors(1:N_det,k) CI_electronic_energy_dressed(k) = eigenvalues(k) enddo call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,& N_states_diag,size(CI_eigenvectors_dressed,1)) ! double precision :: u_dot_u ! double precision, allocatable :: h(:,:,:), s(:,:) ! allocate (h(N_states,N_states,N_states), s(N_states,N_states)) ! do i=1,N_states ! do j=1,N_states ! s(i,j) = u_dot_v(CI_eigenvectors_dressed(1,i),CI_eigenvectors_dressed(1,j),N_det) ! print *, 'S(',i,',',j,')', s(i,j) ! enddo ! enddo ! ! do i=1,N_states ! h(i,i) = CI_electronic_energy_dressed(i) ! do j=i+1,N_states ! h(j,i) = (CI_electronic_energy_dressed(j)-CI_electronic_energy_dressed(i)) * s(i,j) ! h(i,j) = -h(j,i) ! print *, 'h(',i,',',i,')', h(i,j) ! enddo ! print *, 'h(',i,',',i,')', h(i,i) ! enddo ! call lapack_diag(eigenvalues,eigenvectors, h,size(h,1),N_states) ! do i=1,N_states ! CI_electronic_energy_dressed(i) = eigenvalues(i) ! do j=1,N_states ! h(i,j) = eigenvectors(i,j) ! enddo ! enddo ! do k=1,N_states ! eigenvectors(1:N_det,k) = 0.d0 ! do i=1,N_states ! eigenvectors(1:N_det,k) += CI_eigenvectors_dressed(1:N_det,k) * h(k,i) ! enddo ! enddo ! deallocate(h,s) ! ! call multi_state(CI_electronic_energy_dressed,CI_eigenvectors_dressed,size(CI_eigenvectors_dressed,1)) deallocate (eigenvectors,eigenvalues) else if (diag_algorithm == "Lapack") then allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_dressed,size(H_matrix_dressed,1),N_det) CI_electronic_energy_dressed(:) = 0.d0 if (s2_eig) then i_state = 0 allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) good_state_array = .False. call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& N_det,size(eigenvectors,1)) do j=1,N_det ! Select at least n_states states with S^2 values closed to "expected_s2" if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then i_state += 1 index_good_state_array(i_state) = j good_state_array(j) = .True. endif if (i_state==N_states) then exit endif enddo if (i_state /= 0) then ! Fill the first "i_state" states that have a correct S^2 value do j = 1, i_state do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j)) enddo CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j)) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) enddo i_other_state = 0 do j = 1, N_det if(good_state_array(j))cycle i_other_state +=1 if(i_state+i_other_state.gt.n_states_diag)then exit endif do i=1,N_det CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) enddo else print*,'' print*,'!!!!!!!! WARNING !!!!!!!!!' print*,' Within the ',N_det,'determinants selected' print*,' and the ',N_states_diag,'states requested' print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' as the CI_eigenvectors_dressed' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,'' do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(j) = eigenvalues(j) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j) enddo endif deallocate(index_good_state_array,good_state_array) deallocate(s2_eigvalues) else call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,& min(N_det,N_states_diag),size(eigenvectors,1)) ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(j) = eigenvalues(j) enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the dressed CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_determinants) do j=1,min(N_det,N_states) write(st,'(I4)') j CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion call write_double(output_determinants,CI_energy_dressed(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st)) enddo END_PROVIDER subroutine diagonalize_CI_dressed(lambda) implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC double precision, intent(in) :: lambda integer :: i,j do j=1,N_states do i=1,N_det psi_coef(i,j) = lambda * CI_eigenvectors_dressed(i,j) + (1.d0 - lambda) * psi_coef(i,j) enddo call normalize(psi_coef(1,j), N_det) enddo SOFT_TOUCH psi_coef end logical function is_generable(det1, det2, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind) :: det1(Nint, 2), det2(Nint, 2) integer :: degree, f, exc(0:2, 2, 2), t integer*2 :: h1, h2, p1, p2, s1, s2 integer, external :: searchExc logical, external :: excEq double precision :: phase integer*2 :: tmp_array(4) is_generable = .false. call get_excitation(det1, det2, exc, degree, phase, Nint) if(degree == -1) return if(degree == 0) then is_generable = .true. return end if if(degree > 2) stop "?22??" call decode_exc_int2(exc,degree,h1,p1,h2,p2,s1,s2) if(degree == 1) then h2 = h1 p2 = p1 s2 = s1 h1 = 0 p1 = 0 s1 = 0 end if if(h1 + (s1-1)*mo_tot_num < h2 + (s2-1)*mo_tot_num) then tmp_array = (/s1, h1, s2, h2/) else tmp_array = (/s2, h2, s1, h1/) end if f = searchExc(hh_exists(1,1), tmp_array, hh_shortcut(0)) if(p1 + (s1-1)*mo_tot_num < p2 + (s2-1)*mo_tot_num) then tmp_array = (/s1, p1, s2, p2/) else tmp_array = (/s2, p2, s1, p1/) end if if (f /= -1) then f = searchExc(pp_exists(1,hh_shortcut(f)), tmp_array, hh_shortcut(f+1)-hh_shortcut(f)) endif is_generable = (f /= -1) end function integer function searchDet(dets, det, n, Nint) implicit none use bitmasks integer(bit_kind),intent(in) :: dets(Nint,2,n), det(Nint,2) integer, intent(in) :: nint, n integer :: l, h, c integer, external :: detCmp logical, external :: detEq l = 1 h = n do while(.true.) searchDet = (l+h)/2 c = detCmp(dets(1,1,searchDet), det(1,1), Nint) if(c == 0) then return else if(c == 1) then h = searchDet-1 else l = searchDet+1 end if if(l > h) then searchDet = -1 return end if end do end function integer function unsortedSearchDet(dets, det, n, Nint) implicit none use bitmasks integer(bit_kind),intent(in) :: dets(Nint,2,n), det(Nint,2) integer, intent(in) :: nint, n integer :: l, h, c integer, external :: detCmp logical, external :: detEq do l=1, n if(detEq(det, dets(1,1,l), N_int)) then unsortedSearchDet = l return end if end do unsortedSearchDet = -1 end function integer function searchExc(excs, exc, n) implicit none use bitmasks integer, intent(in) :: n integer*2,intent(in) :: excs(4,n), exc(4) integer :: l, h, c integer, external :: excCmp logical, external :: excEq l = 1 h = n do searchExc = (l+h)/2 c = excCmp(excs(1,searchExc), exc(1)) if(c == 0) return if(c == 1) then h = searchExc-1 else l = searchExc+1 end if if(l > h) then searchExc = -1 return end if end do end function subroutine sort_det(key, idx, N_key, Nint) implicit none integer, intent(in) :: Nint, N_key integer(8),intent(inout) :: key(Nint,2,N_key) integer,intent(inout) :: idx(N_key) integer(8) :: tmp(Nint, 2) integer :: tmpidx,i,ni do i=1,N_key idx(i) = i end do do i=N_key/2,1,-1 call tamiser(key, idx, i, N_key, Nint, N_key) end do do i=N_key,2,-1 do ni=1,Nint tmp(ni,1) = key(ni,1,i) tmp(ni,2) = key(ni,2,i) key(ni,1,i) = key(ni,1,1) key(ni,2,i) = key(ni,2,1) key(ni,1,1) = tmp(ni,1) key(ni,2,1) = tmp(ni,2) enddo tmpidx = idx(i) idx(i) = idx(1) idx(1) = tmpidx call tamiser(key, idx, 1, i-1, Nint, N_key) end do end subroutine subroutine sort_exc(key, N_key) implicit none integer, intent(in) :: N_key integer*2,intent(inout) :: key(4,N_key) integer*2 :: tmp(4) integer :: i,ni do i=N_key/2,1,-1 call tamise_exc(key, i, N_key, N_key) end do do i=N_key,2,-1 do ni=1,4 tmp(ni) = key(ni,i) key(ni,i) = key(ni,1) key(ni,1) = tmp(ni) enddo call tamise_exc(key, 1, i-1, N_key) end do end subroutine logical function exc_inf(exc1, exc2) implicit none integer*2,intent(in) :: exc1(4), exc2(4) integer :: i exc_inf = .false. do i=1,4 if(exc1(i) < exc2(i)) then exc_inf = .true. return else if(exc1(i) > exc2(i)) then return end if end do end function subroutine tamise_exc(key, no, n, N_key) use bitmasks implicit none BEGIN_DOC ! Uncodumented : TODO END_DOC integer,intent(in) :: no, n, N_key integer*2,intent(inout) :: key(4, N_key) integer :: k,j integer*2 :: tmp(4) logical :: exc_inf integer :: ni k = no j = 2*k do while(j <= n) if(j < n) then if (exc_inf(key(1,j), key(1,j+1))) then j = j+1 endif endif if(exc_inf(key(1,k), key(1,j))) then do ni=1,4 tmp(ni) = key(ni,k) key(ni,k) = key(ni,j) key(ni,j) = tmp(ni) enddo k = j j = k+k else return endif enddo end subroutine subroutine dec_exc(exc, h1, h2, p1, p2) implicit none integer :: exc(0:2,2,2), s1, s2, degree integer*2, intent(out) :: h1, h2, p1, p2 degree = exc(0,1,1) + exc(0,1,2) h1 = 0 h2 = 0 p1 = 0 p2 = 0 if(degree == 0) return call decode_exc_int2(exc, degree, h1, p1, h2, p2, s1, s2) h1 += mo_tot_num * (s1-1) p1 += mo_tot_num * (s1-1) if(degree == 2) then h2 += mo_tot_num * (s2-1) p2 += mo_tot_num * (s2-1) if(h1 > h2) then s1 = h1 h1 = h2 h2 = s1 end if if(p1 > p2) then s1 = p1 p1 = p2 p2 = s1 end if else h2 = h1 p2 = p1 p1 = 0 h1 = 0 end if end subroutine BEGIN_PROVIDER [ integer, N_hh_exists ] &BEGIN_PROVIDER [ integer, N_pp_exists ] &BEGIN_PROVIDER [ integer, N_ex_exists ] implicit none integer :: exc(0:2, 2, 2), degree, n, on, s, l, i integer*2 :: h1, h2, p1, p2 double precision :: phase logical,allocatable :: hh(:,:) , pp(:,:) allocate(hh(0:mo_tot_num*2, 0:mo_tot_num*2)) allocate(pp(0:mo_tot_num*2, 0:mo_tot_num*2)) hh = .false. pp = .false. N_hh_exists = 0 N_pp_exists = 0 N_ex_exists = 0 n = 0 !TODO Openmp do i=1, N_det_ref do l=1, N_det_non_ref call get_excitation(psi_ref(1,1,i), psi_non_ref(1,1,l), exc, degree, phase, N_int) if(degree == -1) cycle call dec_exc(exc, h1, h2, p1, p2) N_ex_exists += 1 if(.not. hh(h1,h2)) N_hh_exists = N_hh_exists + 1 if(.not. pp(p1,p2)) N_pp_exists = N_pp_exists + 1 hh(h1,h2) = .true. pp(p1,p2) = .true. end do end do N_pp_exists = min(N_ex_exists, N_pp_exists * N_hh_exists) END_PROVIDER BEGIN_PROVIDER [ integer(bit_kind), psi_non_ref_sorted, (N_int, 2, N_det_non_ref) ] &BEGIN_PROVIDER [ integer, psi_non_ref_sorted_idx, (N_det_non_ref) ] implicit none psi_non_ref_sorted = psi_non_ref call sort_det(psi_non_ref_sorted, psi_non_ref_sorted_idx, N_det_non_ref, N_int) END_PROVIDER BEGIN_PROVIDER [ double precision, dIj_unique, (hh_nex, N_states) ] &BEGIN_PROVIDER [ double precision, rho_mrcc, (N_det_non_ref, N_states) ] implicit none logical :: ok integer :: i, j, k, s, II, pp, ppp, hh, ind, wk, a_col, at_row integer, external :: searchDet, unsortedSearchDet integer(bit_kind) :: myDet(N_int, 2), myMask(N_int, 2) integer :: N, INFO, r1, r2 double precision , allocatable :: AtB(:), x(:), x_new(:), A_val_mwen(:,:), t(:) double precision :: norm, cx, res integer, allocatable :: lref(:), A_ind_mwen(:) double precision :: phase double precision, allocatable :: rho_mrcc_init(:) integer :: a_coll, at_roww print *, "TI", hh_nex, N_det_non_ref allocate(rho_mrcc_init(N_det_non_ref)) allocate(x_new(hh_nex)) allocate(x(hh_nex), AtB(hh_nex)) do s=1,N_states AtB(:) = 0.d0 !$OMP PARALLEL default(none) shared(k, psi_non_ref_coef, active_excitation_to_determinants_idx,& !$OMP active_excitation_to_determinants_val, N_det_ref, hh_nex, N_det_non_ref) & !$OMP private(at_row, a_col, i, j, r1, r2, wk, A_ind_mwen, A_val_mwen, a_coll, at_roww)& !$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtB, mrcc_AtA_val, mrcc_AtA_ind, s, n_exc_active, active_pp_idx) !$OMP DO schedule(dynamic, 100) do at_roww = 1, n_exc_active ! hh_nex at_row = active_pp_idx(at_roww) do i=1,active_excitation_to_determinants_idx(0,at_roww) AtB(at_row) = AtB(at_row) + psi_non_ref_coef(active_excitation_to_determinants_idx(i, at_roww), s) * active_excitation_to_determinants_val(s,i, at_roww) end do end do !$OMP END DO !$OMP END PARALLEL X(:) = 0d0 do a_coll = 1, n_exc_active a_col = active_pp_idx(a_coll) X(a_col) = AtB(a_col) end do rho_mrcc_init = 0d0 allocate(lref(N_det_ref)) do hh = 1, hh_shortcut(0) do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1 if(is_active_exc(pp)) cycle lref = 0 AtB(pp) = 0.d0 do II=1,N_det_ref call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int) if(.not. ok) cycle call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int) if(.not. ok) cycle ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int) if(ind == -1) cycle ind = psi_non_ref_sorted_idx(ind) call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int) AtB(pp) += psi_non_ref_coef(ind, s) * psi_ref_coef(II, s) * phase lref(II) = ind if(phase < 0.d0) lref(II) = -ind end do X(pp) = AtB(pp) do II=1,N_det_ref if(lref(II) > 0) then rho_mrcc_init(lref(II)) = psi_ref_coef(II,s) * X(pp) else if(lref(II) < 0) then rho_mrcc_init(-lref(II)) = -psi_ref_coef(II,s) * X(pp) end if end do end do end do deallocate(lref) do i=1,N_det_non_ref rho_mrcc(i,s) = rho_mrcc_init(i) enddo x_new = x double precision :: factor, resold factor = 1.d0 resold = huge(1.d0) do k=0,10*hh_nex res = 0.d0 !$OMP PARALLEL default(shared) private(cx, i, a_col, a_coll) reduction(+:res) !$OMP DO do a_coll = 1, n_exc_active a_col = active_pp_idx(a_coll) cx = 0.d0 do i=mrcc_col_shortcut(a_coll), mrcc_col_shortcut(a_coll) + mrcc_N_col(a_coll) - 1 cx = cx + x(mrcc_AtA_ind(i)) * mrcc_AtA_val(s,i) end do x_new(a_col) = AtB(a_col) + cx * factor res = res + (X_new(a_col) - X(a_col))*(X_new(a_col) - X(a_col)) X(a_col) = X_new(a_col) end do !$OMP END DO !$OMP END PARALLEL if (res > resold) then factor = factor * 0.5d0 endif resold = res if(iand(k, 4095) == 0) then print *, "res ", k, res end if if(res < 1d-10) exit end do dIj_unique(1:size(X), s) = X(1:size(X)) ! double precision, external :: ddot ! if (ddot (size(X), dIj_unique, 1, X, 1) < 0.d0) then ! dIj_unique(1:size(X),s) = -X(1:size(X)) ! endif enddo ! Adjust phase of dIj_unique ! double precision :: snorm ! X = 0.d0 ! snorm = 0.d0 ! do s=1,N_states ! norm = 0.d0 ! do i=1,N_det_non_ref ! norm = norm + psi_non_ref_coef(i,s)*psi_non_ref_coef(i,s) ! enddo ! norm = dsqrt(norm) ! X(1:size(X)) = X(1:size(X)) + dIj_unique(1:size(X),s) * norm ! snorm += norm ! enddo ! X = X/snorm do s=1,N_states do a_coll=1,n_exc_active a_col = active_pp_idx(a_coll) do j=1,N_det_non_ref i = active_excitation_to_determinants_idx(j,a_coll) if (i==0) exit rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * dIj_unique(a_col,s) ! rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * X(a_col) enddo end do norm = 0.d0 do i=1,N_det_non_ref norm = norm + rho_mrcc(i,s)*rho_mrcc(i,s) enddo ! Norm now contains the norm of A.X do i=1,N_det_ref norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s) enddo ! Norm now contains the norm of Psi + A.X print *, "norm : ", sqrt(norm) enddo do s=1,N_states norm = 0.d0 double precision :: f do i=1,N_det_non_ref if (rho_mrcc(i,s) == 0.d0) then rho_mrcc(i,s) = 1.d-32 endif if (lambda_type == 2) then f = 1.d0 else ! f is such that f.\tilde{c_i} = c_i f = psi_non_ref_coef(i,s) / rho_mrcc(i,s) ! Avoid numerical instabilities f = min(f,2.d0) f = max(f,-2.d0) endif norm = norm + f*f *rho_mrcc(i,s)*rho_mrcc(i,s) rho_mrcc(i,s) = f enddo ! norm now contains the norm of |T.Psi_0> ! rho_mrcc now contains the f factors f = 1.d0/norm ! f now contains 1/ norm = 1.d0 do i=1,N_det_ref norm = norm - psi_ref_coef(i,s)*psi_ref_coef(i,s) enddo ! norm now contains f = dsqrt(f*norm) ! f normalises T.Psi_0 such that (1+T)|Psi> is normalized norm = norm*f print *, 'norm of |T Psi_0> = ', dsqrt(norm) if (dsqrt(norm) > 1.d0) then stop 'Error : Norm of the SD larger than the norm of the reference.' endif do i=1,N_det_ref norm = norm + psi_ref_coef(i,s)*psi_ref_coef(i,s) enddo do i=1,N_det_non_ref rho_mrcc(i,s) = rho_mrcc(i,s) * f enddo ! rho_mrcc now contains the product of the scaling factors and the ! normalization constant end do END_PROVIDER BEGIN_PROVIDER [ double precision, dij, (N_det_ref, N_det_non_ref, N_states) ] integer :: s,i,j double precision, external :: get_dij_index print *, "computing amplitudes..." do s=1, N_states do i=1, N_det_non_ref do j=1, N_det_ref !DIR$ FORCEINLINE dij(j, i, s) = get_dij_index(j, i, s, N_int) end do end do end do print *, "done computing amplitudes" END_PROVIDER double precision function get_dij_index(II, i, s, Nint) integer, intent(in) :: II, i, s, Nint double precision, external :: get_dij double precision :: HIi, phase if(lambda_type == 0) then call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int) get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase get_dij_index = get_dij_index * rho_mrcc(i,s) else if(lambda_type == 1) then call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,i), Nint, HIi) get_dij_index = HIi * lambda_mrcc(s, i) else if(lambda_type == 2) then call get_phase(psi_ref(1,1,II), psi_non_ref(1,1,i), phase, N_int) get_dij_index = get_dij(psi_ref(1,1,II), psi_non_ref(1,1,i), s, Nint) * phase get_dij_index = get_dij_index * rho_mrcc(i,s) end if end function double precision function get_dij(det1, det2, s, Nint) use bitmasks implicit none integer, intent(in) :: s, Nint integer(bit_kind) :: det1(Nint, 2), det2(Nint, 2) integer :: degree, f, exc(0:2, 2, 2), t integer*2 :: h1, h2, p1, p2, s1, s2 integer, external :: searchExc logical, external :: excEq double precision :: phase integer*2 :: tmp_array(4) get_dij = 0d0 call get_excitation(det1, det2, exc, degree, phase, Nint) if(degree == -1) return if(degree == 0) then stop "get_dij" end if call decode_exc_int2(exc,degree,h1,p1,h2,p2,s1,s2) if(degree == 1) then h2 = h1 p2 = p1 s2 = s1 h1 = 0 p1 = 0 s1 = 0 end if if(h1 + (s1-1)*mo_tot_num < h2 + (s2-1)*mo_tot_num) then tmp_array = (/s1, h1, s2, h2/) else tmp_array = (/s2, h2, s1, h1/) end if f = searchExc(hh_exists(1,1), tmp_array, hh_shortcut(0)) if(f == -1) return if(p1 + (s1-1)*mo_tot_num < p2 + (s2-1)*mo_tot_num) then tmp_array = (/s1, p1, s2, p2/) else tmp_array = (/s2, p2, s1, p1/) end if t = searchExc(pp_exists(1,hh_shortcut(f)), tmp_array, hh_shortcut(f+1)-hh_shortcut(f)) if(t /= -1) then get_dij = dIj_unique(t - 1 + hh_shortcut(f), s) end if end function BEGIN_PROVIDER [ integer*2, hh_exists, (4, N_hh_exists) ] &BEGIN_PROVIDER [ integer*2, pp_exists, (4, N_pp_exists) ] &BEGIN_PROVIDER [ integer, hh_shortcut, (0:N_hh_exists + 1) ] &BEGIN_PROVIDER [ integer, hh_nex ] implicit none BEGIN_DOC ! ! hh_exists : ! ! pp_exists : ! ! hh_shortcut : ! ! hh_nex : Total number of excitation operators ! END_DOC integer*2,allocatable :: num(:,:) integer :: exc(0:2, 2, 2), degree, n, on, s, l, i integer*2 :: h1, h2, p1, p2 double precision :: phase logical, external :: excEq allocate(num(4, N_ex_exists+1)) hh_shortcut = 0 hh_exists = 0 pp_exists = 0 num = 0 n = 0 do i=1, N_det_ref do l=1, N_det_non_ref call get_excitation(psi_ref(1,1,i), psi_non_ref(1,1,l), exc, degree, phase, N_int) if(degree == -1) cycle call dec_exc(exc, h1, h2, p1, p2) n += 1 num(:, n) = (/h1, h2, p1, p2/) end do end do call sort_exc(num, n) hh_shortcut(0) = 1 hh_shortcut(1) = 1 hh_exists(:,1) = (/1_2, num(1,1), 1_2, num(2,1)/) pp_exists(:,1) = (/1_2, num(3,1), 1_2, num(4,1)/) s = 1 do i=2,n if(.not. excEq(num(1,i), num(1,s))) then s += 1 num(:, s) = num(:, i) pp_exists(:,s) = (/1_2, num(3,s), 1_2, num(4,s)/) if(hh_exists(2, hh_shortcut(0)) /= num(1,s) .or. & hh_exists(4, hh_shortcut(0)) /= num(2,s)) then hh_shortcut(0) += 1 hh_shortcut(hh_shortcut(0)) = s hh_exists(:,hh_shortcut(0)) = (/1_2, num(1,s), 1_2, num(2,s)/) end if end if end do hh_shortcut(hh_shortcut(0)+1) = s+1 do s=2,4,2 do i=1,hh_shortcut(0) if(hh_exists(s, i) == 0) then hh_exists(s-1, i) = 0 else if(hh_exists(s, i) > mo_tot_num) then hh_exists(s, i) -= mo_tot_num hh_exists(s-1, i) = 2 end if end do do i=1,hh_shortcut(hh_shortcut(0)+1)-1 if(pp_exists(s, i) == 0) then pp_exists(s-1, i) = 0 else if(pp_exists(s, i) > mo_tot_num) then pp_exists(s, i) -= mo_tot_num pp_exists(s-1, i) = 2 end if end do end do hh_nex = hh_shortcut(hh_shortcut(0)+1)-1 END_PROVIDER logical function excEq(exc1, exc2) implicit none integer*2, intent(in) :: exc1(4), exc2(4) integer :: i excEq = .false. do i=1, 4 if(exc1(i) /= exc2(i)) return end do excEq = .true. end function integer function excCmp(exc1, exc2) implicit none integer*2, intent(in) :: exc1(4), exc2(4) integer :: i excCmp = 0 do i=1, 4 if(exc1(i) > exc2(i)) then excCmp = 1 return else if(exc1(i) < exc2(i)) then excCmp = -1 return end if end do end function subroutine apply_hole_local(det, exc, res, ok, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer*2, intent(in) :: exc(4) integer*2 :: s1, s2, h1, h2 integer(bit_kind),intent(in) :: det(Nint, 2) integer(bit_kind),intent(out) :: res(Nint, 2) logical, intent(out) :: ok integer :: ii, pos ok = .false. s1 = exc(1) h1 = exc(2) s2 = exc(3) h2 = exc(4) res = det if(h1 /= 0) then ii = (h1-1)/bit_kind_size + 1 pos = iand(h1-1,bit_kind_size-1) ! mod 64 if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) then return endif res(ii, s1) = ibclr(res(ii, s1), pos) end if ii = (h2-1)/bit_kind_size + 1 pos = iand(h2-1,bit_kind_size-1) ! mod 64 if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) then return endif res(ii, s2) = ibclr(res(ii, s2), pos) ok = .true. end subroutine subroutine apply_particle_local(det, exc, res, ok, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer*2, intent(in) :: exc(4) integer*2 :: s1, s2, p1, p2 integer(bit_kind),intent(in) :: det(Nint, 2) integer(bit_kind),intent(out) :: res(Nint, 2) logical, intent(out) :: ok integer :: ii, pos ok = .false. s1 = exc(1) p1 = exc(2) s2 = exc(3) p2 = exc(4) res = det if(p1 /= 0) then ii = (p1-1)/bit_kind_size + 1 pos = iand(p1-1,bit_kind_size-1) if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) then return endif res(ii, s1) = ibset(res(ii, s1), pos) end if ii = (p2-1)/bit_kind_size + 1 pos = iand(p2-1,bit_kind_size-1) if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) then return endif res(ii, s2) = ibset(res(ii, s2), pos) ok = .true. end subroutine