use bitmasks subroutine get_mask_phase(det1, pm, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det1(Nint,2) integer(bit_kind), intent(out) :: pm(Nint,2) integer(bit_kind) :: tmp integer :: ispin, i do ispin=1,2 tmp = 0_8 do i=1,Nint pm(i,ispin) = ieor(det1(i,ispin), ishft(det1(i,ispin), 1)) pm(i,ispin) = ieor(pm(i,ispin), ishft(pm(i,ispin), 2)) pm(i,ispin) = ieor(pm(i,ispin), ishft(pm(i,ispin), 4)) pm(i,ispin) = ieor(pm(i,ispin), ishft(pm(i,ispin), 8)) pm(i,ispin) = ieor(pm(i,ispin), ishft(pm(i,ispin), 16)) pm(i,ispin) = ieor(pm(i,ispin), ishft(pm(i,ispin), 32)) pm(i,ispin) = ieor(pm(i,ispin), tmp) if(iand(popcnt(det1(i,ispin)), 1) == 1) tmp = not(tmp) end do end do end subroutine subroutine select_connected(i_generator,E0,pt2,b,subset,csubset) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, subset, csubset type(selection_buffer), intent(inout) :: b double precision, intent(inout) :: pt2(N_states) integer :: k,l double precision, intent(in) :: E0(N_states) integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, allocatable :: fock_diag_tmp(:,:) allocate(fock_diag_tmp(2,mo_tot_num+1)) call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int) do l=1,N_generators_bitmask do k=1,N_int hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator)) hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator)) particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) ) particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) ) enddo call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b,subset,csubset) enddo deallocate(fock_diag_tmp) end subroutine double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: phasemask(Nint,2) integer, intent(in) :: s1, s2, h1, h2, p1, p2 logical :: change integer :: np double precision, save :: res(0:1) = (/1d0, -1d0/) integer :: h1_int, h2_int integer :: p1_int, p2_int integer :: h1_bit, h2_bit integer :: p1_bit, p2_bit h1_int = ishft(h1-1,-bit_kind_shift)+1 h1_bit = h1 - ishft(h1_int-1,bit_kind_shift)-1 h2_int = ishft(h2-1,-bit_kind_shift)+1 h2_bit = h2 - ishft(h2_int-1,bit_kind_shift)-1 p1_int = ishft(p1-1,-bit_kind_shift)+1 p1_bit = p1 - ishft(p1_int-1,bit_kind_shift)-1 p2_int = ishft(p2-1,-bit_kind_shift)+1 p2_bit = p2 - ishft(p2_int-1,bit_kind_shift)-1 ! Put the phasemask bits at position 0, and add them all h1_bit = int(ishft(phasemask(h1_int,s1),-h1_bit)) p1_bit = int(ishft(phasemask(p1_int,s1),-p1_bit)) h2_bit = int(ishft(phasemask(h2_int,s2),-h2_bit)) p2_bit = int(ishft(phasemask(p2_int,s2),-p2_bit)) np = h1_bit + p1_bit + h2_bit + p2_bit if(p1 < h1) np = np + 1 if(p2 < h2) np = np + 1 if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1 get_phase_bi = res(iand(np,1)) end subroutine get_m2(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i, j, k, h1, h2, p1, p2, sfix, hfix, pfix, hmob, pmob, puti double precision :: hij double precision, external :: get_phase_bi, mo_bielec_integral integer, parameter :: turn3_2(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer, parameter :: turn2(2) = (/2,1/) if(h(0,sp) == 2) then h1 = h(1, sp) h2 = h(2, sp) do i=1,3 puti = p(i, sp) if(bannedOrb(puti)) cycle p1 = p(turn3_2(1,i), sp) p2 = p(turn3_2(2,i), sp) hij = mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2, p1, h1, h2) hij = hij * get_phase_bi(phasemask, sp, sp, h1, p1, h2, p2, N_int) do k=1,N_states vect(k,puti) = vect(k,puti) + hij * coefs(k) enddo end do else if(h(0,sp) == 1) then sfix = turn2(sp) hfix = h(1,sfix) pfix = p(1,sfix) hmob = h(1,sp) do j=1,2 puti = p(j, sp) if(bannedOrb(puti)) cycle pmob = p(turn2(j), sp) hij = mo_bielec_integral(pmob, pfix, hmob, hfix) hij = hij * get_phase_bi(phasemask, sp, sfix, hmob, pmob, hfix, pfix, N_int) do k=1,N_states vect(k,puti) = vect(k,puti) + hij * coefs(k) enddo end do else puti = p(1,sp) if(.not. bannedOrb(puti)) then sfix = turn2(sp) p1 = p(1,sfix) p2 = p(2,sfix) h1 = h(1,sfix) h2 = h(2,sfix) hij = (mo_bielec_integral(p1,p2,h1,h2) - mo_bielec_integral(p2,p1,h1,h2)) hij = hij * get_phase_bi(phasemask, sfix, sfix, h1, p1, h2, p2, N_int) do k=1,N_states vect(k,puti) = vect(k,puti) + hij * coefs(k) enddo end if end if end subroutine get_m1(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i, hole, p1, p2, sh, k logical :: ok logical, allocatable :: lbanned(:) integer(bit_kind) :: det(N_int, 2) double precision :: hij double precision, external :: get_phase_bi, mo_bielec_integral allocate (lbanned(mo_tot_num)) lbanned = bannedOrb sh = 1 if(h(0,2) == 1) sh = 2 hole = h(1, sh) lbanned(p(1,sp)) = .true. if(p(0,sp) == 2) lbanned(p(2,sp)) = .true. !print *, "SPm1", sp, sh p1 = p(1, sp) if(sp == sh) then p2 = p(2, sp) lbanned(p2) = .true. double precision :: hij_cache(mo_tot_num,2) call get_mo_bielec_integrals(hole,p1,p2,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(hole,p2,p1,mo_tot_num,hij_cache(1,2),mo_integrals_map) do i=1,hole-1 if(lbanned(i)) cycle hij = hij_cache(i,1)-hij_cache(i,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, sp, sp, i, p1, hole, p2, N_int) do k=1,N_states vect(k,i) = vect(k,i) + hij * coefs(k) enddo endif end do do i=hole+1,mo_tot_num if(lbanned(i)) cycle hij = hij_cache(i,2)-hij_cache(i,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, sp, sp, hole, p1, i, p2, N_int) do k=1,N_states vect(k,i) = vect(k,i) + hij * coefs(k) enddo endif end do call apply_particle(mask, sp, p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) do k=1,N_states vect(k,p2) = vect(k,p2) + hij * coefs(k) enddo else p2 = p(1, sh) call get_mo_bielec_integrals(hole,p1,p2,mo_tot_num,hij_cache(1,1),mo_integrals_map) do i=1,mo_tot_num if(lbanned(i)) cycle hij = hij_cache(i,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, sp, sh, i, p1, hole, p2, N_int) do k=1,N_states vect(k,i) = vect(k,i) + hij * coefs(k) enddo endif end do end if deallocate(lbanned) call apply_particle(mask, sp, p1, det, ok, N_int) call i_h_j(gen, det, N_int, hij) do k=1,N_states vect(k,p1) = vect(k,p1) + hij * coefs(k) enddo end subroutine get_m0(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i,k logical :: ok logical, allocatable :: lbanned(:) integer(bit_kind) :: det(N_int, 2) double precision :: hij allocate(lbanned(mo_tot_num)) lbanned = bannedOrb lbanned(p(1,sp)) = .true. do i=1,mo_tot_num if(lbanned(i)) cycle call apply_particle(mask, sp, i, det, ok, N_int) call i_h_j(gen, det, N_int, hij) do k=1,N_states vect(k,i) = vect(k,i) + hij * coefs(k) enddo end do deallocate(lbanned) end subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf,subset,csubset) use bitmasks use selection_types implicit none BEGIN_DOC ! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted END_DOC integer, intent(in) :: i_generator, subset, csubset integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2) logical :: fullMatch, ok integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2) integer,allocatable :: preinteresting(:), prefullinteresting(:), interesting(:), fullinteresting(:) integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) logical, allocatable :: banned(:,:,:), bannedOrb(:,:) double precision, allocatable :: mat(:,:,:) logical :: monoAdo, monoBdo integer :: maskInd integer(bit_kind), allocatable:: preinteresting_det(:,:,:) allocate (preinteresting_det(N_int,2,N_det)) monoAdo = .true. monoBdo = .true. do k=1,N_int hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1)) hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2)) particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1)) particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2)) enddo integer :: N_holes(2), N_particles(2) integer :: hole_list(N_int*bit_kind_size,2) integer :: particle_list(N_int*bit_kind_size,2) call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) integer :: l_a, nmax, idx integer, allocatable :: indices(:), exc_degree(:), iorder(:) allocate (indices(N_det), & exc_degree(max(N_det_alpha_unique,N_det_beta_unique))) PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_bilinear_matrix_transp_order k=1 do i=1,N_det_alpha_unique call get_excitation_degree_spin(psi_det_alpha_unique(1,i), & psi_det_generators(1,1,i_generator), exc_degree(i), N_int) enddo do j=1,N_det_beta_unique call get_excitation_degree_spin(psi_det_beta_unique(1,j), & psi_det_generators(1,2,i_generator), nt, N_int) if (nt > 2) cycle do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1 i = psi_bilinear_matrix_rows(l_a) if (nt + exc_degree(i) <= 4) then idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a)) if (psi_average_norm_contrib_sorted(idx) < 1.d-12) cycle indices(k) = idx k=k+1 endif enddo enddo do i=1,N_det_beta_unique call get_excitation_degree_spin(psi_det_beta_unique(1,i), & psi_det_generators(1,2,i_generator), exc_degree(i), N_int) enddo do j=1,N_det_alpha_unique call get_excitation_degree_spin(psi_det_alpha_unique(1,j), & psi_det_generators(1,1,i_generator), nt, N_int) if (nt > 1) cycle do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1 i = psi_bilinear_matrix_transp_columns(l_a) if (exc_degree(i) < 3) cycle if (nt + exc_degree(i) <= 4) then idx = psi_det_sorted_order( & psi_bilinear_matrix_order( & psi_bilinear_matrix_transp_order(l_a))) if (psi_average_norm_contrib_sorted(idx) < 1.d-12) cycle indices(k) = idx k=k+1 endif enddo enddo deallocate(exc_degree) nmax=k-1 allocate(iorder(nmax)) do i=1,nmax iorder(i) = i enddo call isort(indices,iorder,nmax) deallocate(iorder) allocate(preinteresting(0:N_det), prefullinteresting(0:N_det), & interesting(0:N_det), fullinteresting(0:N_det)) preinteresting(0) = 0 prefullinteresting(0) = 0 do i=1,N_int negMask(i,1) = not(psi_det_generators(i,1,i_generator)) negMask(i,2) = not(psi_det_generators(i,2,i_generator)) end do do k=1,nmax i = indices(k) mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) do j=2,N_int mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i)) nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt <= 4) then if(i <= N_det_selectors) then preinteresting(0) = preinteresting(0) + 1 preinteresting(preinteresting(0)) = i do j=1,N_int preinteresting_det(j,1,preinteresting(0)) = psi_det_sorted(j,1,i) preinteresting_det(j,2,preinteresting(0)) = psi_det_sorted(j,2,i) enddo else if(nt <= 2) then prefullinteresting(0) = prefullinteresting(0) + 1 prefullinteresting(prefullinteresting(0)) = i end if end if end do deallocate(indices) allocate(minilist(N_int, 2, N_det_selectors), fullminilist(N_int, 2, N_det)) allocate(banned(mo_tot_num, mo_tot_num,2), bannedOrb(mo_tot_num, 2)) allocate (mat(N_states, mo_tot_num, mo_tot_num)) maskInd = -1 integer :: nb_count, maskInd_save logical :: monoBdo_save logical :: found do s1=1,2 do i1=N_holes(s1),1,-1 ! Generate low excitations first found = .False. monoBdo_save = monoBdo maskInd_save = maskInd do s2=s1,2 ib = 1 if(s1 == s2) ib = i1+1 do i2=N_holes(s2),ib,-1 maskInd = maskInd + 1 if(mod(maskInd, csubset) == (subset-1)) then found = .True. end if enddo if(s1 /= s2) monoBdo = .false. enddo if (.not.found) cycle monoBdo = monoBdo_save maskInd = maskInd_save h1 = hole_list(i1,s1) call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int) negMask = not(pmask) interesting(0) = 0 fullinteresting(0) = 0 do ii=1,preinteresting(0) select case (N_int) case (1) mobMask(1,1) = iand(negMask(1,1), preinteresting_det(1,1,ii)) mobMask(1,2) = iand(negMask(1,2), preinteresting_det(1,2,ii)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) case (2) mobMask(1:2,1) = iand(negMask(1:2,1), preinteresting_det(1:2,1,ii)) mobMask(1:2,2) = iand(negMask(1:2,2), preinteresting_det(1:2,2,ii)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + & popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2)) case (3) mobMask(1:3,1) = iand(negMask(1:3,1), preinteresting_det(1:3,1,ii)) mobMask(1:3,2) = iand(negMask(1:3,2), preinteresting_det(1:3,2,ii)) nt = 0 do j=3,1,-1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do case (4) mobMask(1:4,1) = iand(negMask(1:4,1), preinteresting_det(1:4,1,ii)) mobMask(1:4,2) = iand(negMask(1:4,2), preinteresting_det(1:4,2,ii)) nt = 0 do j=4,1,-1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do case default mobMask(1:N_int,1) = iand(negMask(1:N_int,1), preinteresting_det(1:N_int,1,ii)) mobMask(1:N_int,2) = iand(negMask(1:N_int,2), preinteresting_det(1:N_int,2,ii)) nt = 0 do j=N_int,1,-1 if (mobMask(j,1) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 1)) if (nt > 4) exit endif if (mobMask(j,2) /= 0_bit_kind) then nt = nt+ popcnt(mobMask(j, 2)) if (nt > 4) exit endif end do end select if(nt <= 4) then i = preinteresting(ii) interesting(0) = interesting(0) + 1 interesting(interesting(0)) = i minilist(1,1,interesting(0)) = preinteresting_det(1,1,ii) minilist(1,2,interesting(0)) = preinteresting_det(1,2,ii) do j=2,N_int minilist(j,1,interesting(0)) = preinteresting_det(j,1,ii) minilist(j,2,interesting(0)) = preinteresting_det(j,2,ii) enddo if(nt <= 2) then fullinteresting(0) = fullinteresting(0) + 1 fullinteresting(fullinteresting(0)) = i fullminilist(1,1,fullinteresting(0)) = preinteresting_det(1,1,ii) fullminilist(1,2,fullinteresting(0)) = preinteresting_det(1,2,ii) do j=2,N_int fullminilist(j,1,fullinteresting(0)) = preinteresting_det(j,1,ii) fullminilist(j,2,fullinteresting(0)) = preinteresting_det(j,2,ii) enddo end if end if end do do ii=1,prefullinteresting(0) i = prefullinteresting(ii) nt = 0 mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) if (nt > 2) cycle do j=N_int,2,-1 mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i)) nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) if (nt > 2) exit end do if(nt <= 2) then fullinteresting(0) = fullinteresting(0) + 1 fullinteresting(fullinteresting(0)) = i fullminilist(1,1,fullinteresting(0)) = psi_det_sorted(1,1,i) fullminilist(1,2,fullinteresting(0)) = psi_det_sorted(1,2,i) do j=2,N_int fullminilist(j,1,fullinteresting(0)) = psi_det_sorted(j,1,i) fullminilist(j,2,fullinteresting(0)) = psi_det_sorted(j,2,i) enddo end if end do do s2=s1,2 sp = s1 if(s1 /= s2) sp = 3 ib = 1 if(s1 == s2) ib = i1+1 monoAdo = .true. do i2=N_holes(s2),ib,-1 ! Generate low excitations first h2 = hole_list(i2,s2) call apply_hole(pmask, s2,h2, mask, ok, N_int) banned = .false. do j=1,mo_tot_num bannedOrb(j, 1) = .true. bannedOrb(j, 2) = .true. enddo do s3=1,2 do i=1,N_particles(s3) bannedOrb(particle_list(i,s3), s3) = .false. enddo enddo if(s1 /= s2) then if(monoBdo) then bannedOrb(h1,s1) = .false. end if if(monoAdo) then bannedOrb(h2,s2) = .false. monoAdo = .false. end if end if maskInd = maskInd + 1 if(mod(maskInd, csubset) == (subset-1)) then call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting) if(fullMatch) cycle call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting) call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf) end if enddo if(s1 /= s2) monoBdo = .false. enddo enddo enddo deallocate(preinteresting, prefullinteresting, interesting, fullinteresting) deallocate(minilist, fullminilist, banned, bannedOrb,mat) end subroutine subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, sp, h1, h2 double precision, intent(in) :: mat(N_states, mo_tot_num, mo_tot_num) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf logical :: ok integer :: s1, s2, p1, p2, ib, j, istate integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp double precision, external :: diag_H_mat_elem_fock logical, external :: detEq if(sp == 3) then s1 = 1 s2 = 2 else s1 = sp s2 = sp end if call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int) do p1=1,mo_tot_num if(bannedOrb(p1, s1)) cycle ib = 1 if(sp /= 3) ib = p1+1 do p2=ib,mo_tot_num if(bannedOrb(p2, s2)) cycle if(banned(p1,p2)) cycle if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int) sum_e_pert = 0d0 do istate=1,N_states delta_E = E0(istate) - Hii val = mat(istate, p1, p2) + mat(istate, p1, p2) tmp = dsqrt(delta_E * delta_E + val * val) if (delta_E < 0.d0) then tmp = -tmp endif e_pert = 0.5d0 * (tmp - delta_E) pt2(istate) = pt2(istate) + e_pert sum_e_pert = sum_e_pert + e_pert * state_average_weight(istate) end do if(sum_e_pert <= buf%mini) then call add_to_selection_buffer(buf, det, sum_e_pert) end if end do end do end subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting) use bitmasks implicit none integer, intent(in) :: sp, i_gen, N_sel integer, intent(in) :: interesting(0:N_sel) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel) logical, intent(inout) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num, 2) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2) integer(bit_kind) :: phasemask(N_int,2) ! logical :: bandon ! ! bandon = .false. PROVIDE psi_selectors_coef_transp mat = 0d0 do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do do i=1, N_sel ! interesting(0) !i = interesting(ii) if (interesting(i) < 0) then stop 'prefetch interesting(i)' endif mobMask(1,1) = iand(negMask(1,1), det(1,1,i)) mobMask(1,2) = iand(negMask(1,2), det(1,2,i)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) if(nt > 4) cycle do j=2,N_int mobMask(j,1) = iand(negMask(j,1), det(j,1,i)) mobMask(j,2) = iand(negMask(j,2), det(j,2,i)) nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt > 4) cycle if (interesting(i) == i_gen) then if(sp == 3) then do k=1,mo_tot_num do j=1,mo_tot_num banned(j,k,2) = banned(k,j,1) enddo enddo else do k=1,mo_tot_num do l=k+1,mo_tot_num banned(l,k,1) = banned(k,l,1) end do end do end if end if call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) if (interesting(i) >= i_gen) then perMask(1,1) = iand(mask(1,1), not(det(1,1,i))) perMask(1,2) = iand(mask(1,2), not(det(1,2,i))) do j=2,N_int perMask(j,1) = iand(mask(j,1), not(det(j,1,i))) perMask(j,2) = iand(mask(j,2), not(det(j,2,i))) end do call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int) call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int) call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int) if(nt == 4) then call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) else if(nt == 3) then call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) else call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) end if else if(nt == 4) call past_d2(banned, p, sp) if(nt == 3) call past_d1(bannedOrb, p) end if end do end subroutine get_d2(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer, intent(in) :: h(0:2,2), p(0:4,2), sp double precision, external :: get_phase_bi, mo_bielec_integral integer :: i, j, k, tip, ma, mi, puti, putj integer :: h1, h2, p1, p2, i1, i2 double precision :: hij, phase integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/)) integer, parameter :: turn2(2) = (/2, 1/) integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer :: bant bant = 1 tip = p(0,1) * p(0,2) ma = sp if(p(0,1) > p(0,2)) ma = 1 if(p(0,1) < p(0,2)) ma = 2 mi = mod(ma, 2) + 1 if(sp == 3) then if(ma == 2) bant = 2 if(tip == 3) then puti = p(1, mi) if(bannedOrb(puti, mi)) return do i = 1, 3 putj = p(i, ma) if(banned(putj,puti,bant)) cycle i1 = turn3(1,i) i2 = turn3(2,i) p1 = p(i1, ma) p2 = p(i2, ma) h1 = h(1, ma) h2 = h(2, ma) hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int) if(ma == 1) then do k=1,N_states mat(k, putj, puti) = mat(k, putj, puti) +coefs(k) * hij enddo else do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij enddo end if end do else h1 = h(1,1) h2 = h(1,2) do j = 1,2 putj = p(j, 2) if(bannedOrb(putj, 2)) cycle p2 = p(turn2(j), 2) do i = 1,2 puti = p(i, 1) if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle p1 = p(turn2(i), 1) hij = mo_bielec_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int) do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij enddo end do end do end if else if(tip == 0) then h1 = h(1, ma) h2 = h(2, ma) do i=1,3 puti = p(i, ma) if(bannedOrb(puti,ma)) cycle do j=i+1,4 putj = p(j, ma) if(bannedOrb(putj,ma)) cycle if(banned(puti,putj,1)) cycle i1 = turn2d(1, i, j) i2 = turn2d(2, i, j) p1 = p(i1, ma) p2 = p(i2, ma) hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int) do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij enddo end do end do else if(tip == 3) then h1 = h(1, mi) h2 = h(1, ma) p1 = p(1, mi) do i=1,3 puti = p(turn3(1,i), ma) if(bannedOrb(puti,ma)) cycle putj = p(turn3(2,i), ma) if(bannedOrb(putj,ma)) cycle if(banned(puti,putj,1)) cycle p2 = p(i, ma) hij = mo_bielec_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int) do k=1,N_states mat(k, min(puti, putj), max(puti, putj)) = mat(k, min(puti, putj), max(puti, putj)) + coefs(k) * hij enddo end do else ! tip == 4 puti = p(1, sp) putj = p(2, sp) if(.not. banned(puti,putj,1)) then p1 = p(1, mi) p2 = p(2, mi) h1 = h(1, mi) h2 = h(2, mi) hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int) do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij enddo end if end if end if end subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) integer(bit_kind) :: det(N_int, 2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer, intent(in) :: h(0:2,2), p(0:4,2), sp double precision :: hij, tmp_row(N_states, mo_tot_num), tmp_row2(N_states, mo_tot_num) double precision, external :: get_phase_bi, mo_bielec_integral logical :: ok logical, allocatable :: lbanned(:,:) integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j integer :: hfix, pfix, h1, h2, p1, p2, ib, k integer, parameter :: turn2(2) = (/2,1/) integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer :: bant double precision, allocatable :: hij_cache(:,:) PROVIDE mo_integrals_map N_int allocate (lbanned(mo_tot_num, 2)) allocate (hij_cache(mo_tot_num,2)) lbanned = bannedOrb do i=1, p(0,1) lbanned(p(i,1), 1) = .true. end do do i=1, p(0,2) lbanned(p(i,2), 2) = .true. end do ma = 1 if(p(0,2) >= 2) ma = 2 mi = turn2(ma) bant = 1 if(sp == 3) then !move MA if(ma == 2) bant = 2 puti = p(1,mi) hfix = h(1,ma) p1 = p(1,ma) p2 = p(2,ma) if(.not. bannedOrb(puti, mi)) then call get_mo_bielec_integrals(hfix,p1,p2,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(hfix,p2,p1,mo_tot_num,hij_cache(1,2),mo_integrals_map) tmp_row = 0d0 do putj=1, hfix-1 if(lbanned(putj, ma)) cycle if(banned(putj, puti,bant)) cycle hij = hij_cache(putj,1) - hij_cache(putj,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int) do k=1,N_states tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k) enddo endif end do do putj=hfix+1, mo_tot_num if(lbanned(putj, ma)) cycle if(banned(putj, puti,bant)) cycle hij = hij_cache(putj,2) - hij_cache(putj,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int) tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states) endif end do if(ma == 1) then mat(1:N_states,1:mo_tot_num,puti) = mat(1:N_states,1:mo_tot_num,puti) + tmp_row(1:N_states,1:mo_tot_num) else mat(1:N_states,puti,1:mo_tot_num) = mat(1:N_states,puti,1:mo_tot_num) + tmp_row(1:N_states,1:mo_tot_num) end if end if !MOVE MI pfix = p(1,mi) tmp_row = 0d0 tmp_row2 = 0d0 call get_mo_bielec_integrals(hfix,pfix,p1,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(hfix,pfix,p2,mo_tot_num,hij_cache(1,2),mo_integrals_map) do puti=1,mo_tot_num if(lbanned(puti,mi)) cycle !p1 fixed putj = p1 if(.not. banned(putj,puti,bant)) then hij = hij_cache(puti,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int) do k=1,N_states tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k) ! HOTSPOT enddo endif end if putj = p2 if(.not. banned(putj,puti,bant)) then hij = hij_cache(puti,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int) do k=1,N_states tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k) enddo endif end if end do if(mi == 1) then mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:) mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:) else mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:) mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:) end if else ! sp /= 3 if(p(0,ma) == 3) then do i=1,3 hfix = h(1,ma) puti = p(i, ma) p1 = p(turn3(1,i), ma) p2 = p(turn3(2,i), ma) call get_mo_bielec_integrals(hfix,p1,p2,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(hfix,p2,p1,mo_tot_num,hij_cache(1,2),mo_integrals_map) tmp_row = 0d0 do putj=1,hfix-1 if(lbanned(putj,ma)) cycle if(banned(putj,puti,1)) cycle hij = hij_cache(putj,1) - hij_cache(putj,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int) tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:) endif end do do putj=hfix+1,mo_tot_num if(lbanned(putj,ma)) cycle if(banned(putj,puti,1)) cycle hij = hij_cache(putj,2) - hij_cache(putj,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int) tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:) endif end do mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1) mat(:, puti, puti:) = mat(:, puti,puti:) + tmp_row(:,puti:) end do else hfix = h(1,mi) pfix = p(1,mi) p1 = p(1,ma) p2 = p(2,ma) tmp_row = 0d0 tmp_row2 = 0d0 call get_mo_bielec_integrals(hfix,p1,pfix,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(hfix,p2,pfix,mo_tot_num,hij_cache(1,2),mo_integrals_map) do puti=1,mo_tot_num if(lbanned(puti,ma)) cycle putj = p2 if(.not. banned(puti,putj,1)) then hij = hij_cache(puti,1) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int) do k=1,N_states tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k) enddo endif end if putj = p1 if(.not. banned(puti,putj,1)) then hij = hij_cache(puti,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int) do k=1,N_states tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k) enddo endif end if end do mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1) mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:) mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1) mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:) end if end if deallocate(lbanned,hij_cache) !! MONO if(sp == 3) then s1 = 1 s2 = 2 else s1 = sp s2 = sp end if do i1=1,p(0,s1) ib = 1 if(s1 == s2) ib = i1+1 p1 = p(i1,s1) if(bannedOrb(p1, s1)) cycle do i2=ib,p(0,s2) p2 = p(i2,s2) if(bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij end do end do end subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(bit_kind), intent(in) :: phasemask(N_int,2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) integer(bit_kind) :: det(N_int, 2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer, intent(in) :: h(0:2,2), p(0:4,2), sp integer :: i, j, k, s, h1, h2, p1, p2, puti, putj double precision :: hij, phase double precision, external :: get_phase_bi, mo_bielec_integral logical :: ok integer :: bant double precision, allocatable :: hij_cache(:,:) allocate (hij_cache(mo_tot_num,2)) bant = 1 if(sp == 3) then ! AB h1 = p(1,1) h2 = p(1,2) do p2=1, mo_tot_num if(bannedOrb(p2,2)) cycle call get_mo_bielec_integrals(p2,h1,h2,mo_tot_num,hij_cache(1,1),mo_integrals_map) do p1=1, mo_tot_num if(bannedOrb(p1, 1)) cycle if(banned(p1, p2, bant)) cycle ! rentable? if(p1 == h1 .or. p2 == h2) then call apply_particles(mask, 1,p1,2,p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) else phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int) hij = hij_cache(p1,1) * phase end if do k=1,N_states mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT enddo end do end do else ! AA BB p1 = p(1,sp) p2 = p(2,sp) do puti=1, mo_tot_num if(bannedOrb(puti, sp)) cycle call get_mo_bielec_integrals(puti,p2,p1,mo_tot_num,hij_cache(1,1),mo_integrals_map) call get_mo_bielec_integrals(puti,p1,p2,mo_tot_num,hij_cache(1,2),mo_integrals_map) do putj=puti+1, mo_tot_num if(bannedOrb(putj, sp)) cycle if(banned(puti, putj, bant)) cycle ! rentable? if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int) call i_h_j(gen, det, N_int, hij) if (hij /= 0.d0) then do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij enddo endif else hij = hij_cache(putj,1) - hij_cache(putj,2) if (hij /= 0.d0) then hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int) do k=1,N_states mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij enddo endif end if end do end do end if deallocate(hij_cache) end subroutine past_d1(bannedOrb, p) use bitmasks implicit none logical, intent(inout) :: bannedOrb(mo_tot_num, 2) integer, intent(in) :: p(0:4, 2) integer :: i,s do s = 1, 2 do i = 1, p(0, s) bannedOrb(p(i, s), s) = .true. end do end do end subroutine past_d2(banned, p, sp) use bitmasks implicit none logical, intent(inout) :: banned(mo_tot_num, mo_tot_num) integer, intent(in) :: p(0:4, 2), sp integer :: i,j if(sp == 3) then do i=1,p(0,1) do j=1,p(0,2) banned(p(i,1), p(j,2)) = .true. end do end do else do i=1,p(0, sp) do j=1,i-1 banned(p(j,sp), p(i,sp)) = .true. banned(p(i,sp), p(j,sp)) = .true. end do end do end if end subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting) use bitmasks implicit none integer, intent(in) :: i_gen, N integer, intent(in) :: interesting(0:N) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N) logical, intent(inout) :: banned(mo_tot_num, mo_tot_num) logical, intent(out) :: fullMatch integer :: i, j, na, nb, list(3) integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2) fullMatch = .false. do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do genl : do i=1, N do j=1, N_int if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl end do if(interesting(i) < i_gen) then fullMatch = .true. return end if do j=1, N_int myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1)) myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2)) end do call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int) call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int) banned(list(1), list(2)) = .true. end do genl end subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint) use bitmasks implicit none BEGIN_DOC ! Gives the inidices(+1) of the bits set to 1 in the bit string END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: string(Nint) integer, intent(out) :: list(Nint*bit_kind_size) integer, intent(out) :: n_elements integer :: i, ishift integer(bit_kind) :: l n_elements = 0 ishift = 2 do i=1,Nint l = string(i) do while (l /= 0_bit_kind) n_elements = n_elements+1 list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l) l = iand(l,l-1_bit_kind) enddo ishift = ishift + bit_kind_size enddo end