BEGIN_PROVIDER [integer, n_points_angular_grid] implicit none n_points_angular_grid = 50 END_PROVIDER BEGIN_PROVIDER [integer, n_points_radial_grid] implicit none n_points_radial_grid = 10000 END_PROVIDER BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_angular_grid,3) ] &BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_angular_grid)] implicit none BEGIN_DOC ! weights and grid points for the integration on the angular variables on ! the unit sphere centered on (0,0,0) ! According to the LEBEDEV scheme END_DOC call cal_quad(n_points_angular_grid, angular_quadrature_points,weights_angular_points) include 'constants.include.F' integer :: i double precision :: accu double precision :: degre_rad !degre_rad = 180.d0/pi !accu = 0.d0 !do i = 1, n_points_integration_angular_lebedev ! accu += weights_angular_integration_lebedev(i) ! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 2.d0 * pi ! angular_quadrature_points(i,1) = dcos ( degre_rad * theta_angular_integration_lebedev(i)) & ! * dsin ( degre_rad * phi_angular_integration_lebedev(i)) ! angular_quadrature_points(i,2) = dsin ( degre_rad * theta_angular_integration_lebedev(i)) & ! * dsin ( degre_rad * phi_angular_integration_lebedev(i)) ! angular_quadrature_points(i,3) = dcos ( degre_rad * phi_angular_integration_lebedev(i)) !enddo !print*,'ANGULAR' !print*,'' !print*,'accu = ',accu !ASSERT( dabs(accu - 1.D0) < 1.d-10) END_PROVIDER BEGIN_PROVIDER [integer , m_knowles] implicit none BEGIN_DOC ! value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996) END_DOC m_knowles = 3 END_PROVIDER BEGIN_PROVIDER [double precision, grid_points_radial, (n_points_radial_grid)] &BEGIN_PROVIDER [double precision, dr_radial_integral] implicit none BEGIN_DOC ! points in [0,1] to map the radial integral [0,\infty] END_DOC dr_radial_integral = 1.d0/dble(n_points_radial_grid-1) integer :: i do i = 1, n_points_radial_grid-1 grid_points_radial(i) = (i-1) * dr_radial_integral enddo END_PROVIDER BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid,n_points_radial_grid,nucl_num)] BEGIN_DOC ! points for integration over space END_DOC implicit none integer :: i,j,k double precision :: dr,x_ref,y_ref,z_ref double precision :: knowles_function do i = 1, nucl_num x_ref = nucl_coord(i,1) y_ref = nucl_coord(i,2) z_ref = nucl_coord(i,3) do j = 1, n_points_radial_grid-1 double precision :: x,r x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1] r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration do k = 1, n_points_angular_grid ! explicit values of the grid points centered around each atom grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ] BEGIN_DOC ! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988) ! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension ! and the points are labelled by the other dimensions END_DOC implicit none integer :: i,j,k,l,m double precision :: r(3) double precision :: accu,cell_function_becke double precision :: tmp_array(nucl_num) ! run over all points in space do j = 1, nucl_num ! that are referred to each atom do k = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom do l = 1, n_points_angular_grid ! for each angular point attached to the "jth" atom r(1) = grid_points_per_atom(1,l,k,j) r(2) = grid_points_per_atom(2,l,k,j) r(3) = grid_points_per_atom(3,l,k,j) accu = 0.d0 do i = 1, nucl_num ! For each of these points in space, ou need to evaluate the P_n(r) ! function defined for each atom "i" by equation (13) and (21) with k == 3 tmp_array(i) = cell_function_becke(r,i) ! P_n(r) ! Then you compute the summ the P_n(r) function for each of the "r" points accu += tmp_array(i) enddo accu = 1.d0/accu weight_functions_at_grid_points(l,k,j) = tmp_array(j) * accu ! print*,weight_functions_at_grid_points(l,k,j) enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ] &BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ] implicit none integer :: i,j,k,l,m double precision :: contrib double precision :: r(3) double precision :: aos_array(ao_num),mos_array(mo_tot_num) do j = 1, nucl_num do k = 1, n_points_radial_grid -1 do l = 1, n_points_angular_grid one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0 one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0 r(1) = grid_points_per_atom(1,l,k,j) r(2) = grid_points_per_atom(2,l,k,j) r(3) = grid_points_per_atom(3,l,k,j) ! call give_all_aos_at_r(r,aos_array) ! do i = 1, ao_num ! do m = 1, ao_num ! contrib = aos_array(i) * aos_array(m) ! one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_ao_alpha(i,m) * contrib ! one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_ao_beta(i,m) * contrib ! enddo ! enddo call give_all_mos_at_r(r,mos_array) do i = 1, mo_tot_num do m = 1, mo_tot_num contrib = mos_array(i) * mos_array(m) one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha(i,m) * contrib one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta(i,m) * contrib enddo enddo enddo enddo enddo END_PROVIDER