BEGIN_PROVIDER [ double precision, ao_overlap,(ao_num_align,ao_num) ] &BEGIN_PROVIDER [ double precision, ao_overlap_x,(ao_num_align,ao_num) ] &BEGIN_PROVIDER [ double precision, ao_overlap_y,(ao_num_align,ao_num) ] &BEGIN_PROVIDER [ double precision, ao_overlap_z,(ao_num_align,ao_num) ] implicit none BEGIN_DOC ! Overlap between atomic basis functions: ! :math:`\int \chi_i(r) \chi_j(r) dr)` END_DOC integer :: i,j,n,l double precision :: f integer :: dim1 double precision :: overlap, overlap_x, overlap_y, overlap_z double precision :: alpha, beta, c double precision :: A_center(3), B_center(3) integer :: power_A(3), power_B(3) dim1=100 !$OMP PARALLEL DO SCHEDULE(GUIDED) & !$OMP DEFAULT(NONE) & !$OMP PRIVATE(A_center,B_center,power_A,power_B,& !$OMP overlap_x,overlap_y, overlap_z, overlap, & !$OMP alpha, beta,i,j,c) & !$OMP SHARED(nucl_coord,ao_power,ao_prim_num, & !$OMP ao_overlap_x,ao_overlap_y,ao_overlap_z,ao_overlap,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, & !$OMP ao_expo_ordered_transp,dim1) do j=1,ao_num A_center(1) = nucl_coord( ao_nucl(j), 1 ) A_center(2) = nucl_coord( ao_nucl(j), 2 ) A_center(3) = nucl_coord( ao_nucl(j), 3 ) power_A(1) = ao_power( j, 1 ) power_A(2) = ao_power( j, 2 ) power_A(3) = ao_power( j, 3 ) !DEC$ VECTOR ALIGNED !DEC$ VECTOR ALWAYS do i= 1,ao_num ao_overlap(i,j)= 0.d0 ao_overlap_x(i,j)= 0.d0 ao_overlap_y(i,j)= 0.d0 ao_overlap_z(i,j)= 0.d0 B_center(1) = nucl_coord( ao_nucl(i), 1 ) B_center(2) = nucl_coord( ao_nucl(i), 2 ) B_center(3) = nucl_coord( ao_nucl(i), 3 ) power_B(1) = ao_power( i, 1 ) power_B(2) = ao_power( i, 2 ) power_B(3) = ao_power( i, 3 ) do n = 1,ao_prim_num(j) alpha = ao_expo_ordered_transp(n,j) !DEC$ VECTOR ALIGNED do l = 1, ao_prim_num(i) beta = ao_expo_ordered_transp(l,i) call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1) c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i) ao_overlap(i,j) += c * overlap ao_overlap_x(i,j) += c * overlap_x ao_overlap_y(i,j) += c * overlap_y ao_overlap_z(i,j) += c * overlap_z enddo enddo enddo enddo !$OMP END PARALLEL DO END_PROVIDER BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num_align,ao_num) ] implicit none BEGIN_DOC ! Overlap between absolute value of atomic basis functions: ! :math:`\int |\chi_i(r)| |\chi_j(r)| dr)` END_DOC integer :: i,j,n,l double precision :: f integer :: dim1 double precision :: overlap, overlap_x, overlap_y, overlap_z double precision :: alpha, beta double precision :: A_center(3), B_center(3) integer :: power_A(3), power_B(3) double precision :: lower_exp_val, dx dim1=100 lower_exp_val = 40.d0 !$OMP PARALLEL DO SCHEDULE(GUIDED) & !$OMP DEFAULT(NONE) & !$OMP PRIVATE(A_center,B_center,power_A,power_B,& !$OMP overlap_x,overlap_y, overlap_z, overlap, & !$OMP alpha, beta,i,j,dx) & !$OMP SHARED(nucl_coord,ao_power,ao_prim_num, & !$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, & !$OMP ao_expo_ordered_transp,dim1,lower_exp_val) do j=1,ao_num A_center(1) = nucl_coord( ao_nucl(j), 1 ) A_center(2) = nucl_coord( ao_nucl(j), 2 ) A_center(3) = nucl_coord( ao_nucl(j), 3 ) power_A(1) = ao_power( j, 1 ) power_A(2) = ao_power( j, 2 ) power_A(3) = ao_power( j, 3 ) !DEC$ VECTOR ALIGNED !DEC$ VECTOR ALWAYS do i= 1,ao_num ao_overlap_abs(i,j)= 0.d0 B_center(1) = nucl_coord( ao_nucl(i), 1 ) B_center(2) = nucl_coord( ao_nucl(i), 2 ) B_center(3) = nucl_coord( ao_nucl(i), 3 ) power_B(1) = ao_power( i, 1 ) power_B(2) = ao_power( i, 2 ) power_B(3) = ao_power( i, 3 ) do n = 1,ao_prim_num(j) alpha = ao_expo_ordered_transp(n,j) !DEC$ VECTOR ALIGNED do l = 1, ao_prim_num(i) beta = ao_expo_ordered_transp(l,i) call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1) call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1) call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1) ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z enddo enddo enddo enddo !$OMP END PARALLEL DO END_PROVIDER