BEGIN_PROVIDER [ double precision, sym_box, (3,2) ] implicit none BEGIN_DOC ! Opposite points of the box containing the molecule END_DOC integer :: i,xyz sym_box(:,:) = 0.d0 do xyz=1,3 do i=1,nucl_num sym_box(xyz,1) = min(sym_box(xyz,1), nucl_coord_sym(i,xyz)) sym_box(xyz,2) = max(sym_box(xyz,2), nucl_coord_sym(i,xyz)) enddo enddo sym_box(:,1) = sym_box(:,1) - 2.d0 sym_box(:,2) = sym_box(:,2) + 2.d0 END_PROVIDER subroutine generate_sym_coord(n_sym_points,result) implicit none integer, intent(in) :: n_sym_points double precision, intent(out) :: result(3,n_sym_points) BEGIN_DOC ! xyz coordinates of points to check the symmetry, drawn uniformly in the molecular box. END_DOC integer :: i, iop double precision, external :: halton_ranf do i=1,n_sym_points,n_irrep result(1,i) = sym_box(1,1) + halton_ranf(1) * (sym_box(1,2)-sym_box(1,1)) result(2,i) = sym_box(1,1) + halton_ranf(2) * (sym_box(2,2)-sym_box(2,1)) result(3,i) = sym_box(1,1) + halton_ranf(3) * (sym_box(3,2)-sym_box(3,1)) do iop=2,n_irrep if (iop-1+i > n_sym_points) exit call dgemm('N','N',3,1,3,1.d0,sym_transformation_matrices(1,1,iop), & size(sym_transformation_matrices,1),& result(1,i),size(result,1),0.d0,result(1,i+iop-1),size(result,1)) enddo enddo end subroutine compute_sym_ao_values(sym_points, n_sym_points, result) implicit none BEGIN_DOC ! Values of the AO symmetry functions END_DOC integer, intent(in) :: n_sym_points double precision, intent(in) :: sym_points(3,n_sym_points) double precision, intent(out) :: result(n_sym_points, ao_num) integer :: i, j double precision :: point(3) double precision :: x, y, z double precision :: x2, y2, z2 integer :: k result (:,:) = 0.d0 do j=1,ao_num do i=1,n_sym_points call point_to_input_orientation(sym_points(:,i), point) x = point(1) - nucl_coord_transp(1,ao_nucl(j)) y = point(2) - nucl_coord_transp(2,ao_nucl(j)) z = point(3) - nucl_coord_transp(3,ao_nucl(j)) x2 = x*x + y*y + z*z result(i,j) = 0.d0 do k=1,ao_prim_num(j) result(i,j) += ao_coef_normalized_ordered_transp(k,j)*exp(-ao_expo_ordered_transp(k,j)*x2) enddo x = x**ao_power(j,1) y = y**ao_power(j,2) z = z**ao_power(j,3) result(i,j) = x*y*z*result(i,j) enddo enddo end subroutine compute_sym_mo_values(sym_points, n_sym_points, result) implicit none BEGIN_DOC ! Values of the MO symmetry functions END_DOC integer, intent(in) :: n_sym_points double precision, intent(in) :: sym_points(3,n_sym_points) double precision, intent(out) :: result(n_sym_points, mo_tot_num) double precision, allocatable :: tmp(:,:) allocate(tmp(n_sym_points,ao_num)) call compute_sym_ao_values(sym_points,n_sym_points,tmp) call dgemm('N','N',n_sym_points,mo_tot_num,ao_num, & 1.d0, tmp,size(tmp,1), mo_coef, size(mo_coef,1), & 0.d0, result,size(result,1)) deallocate(tmp) end subroutine compute_sym_det_values(sym_points, n_sym_points, result) use bitmasks implicit none BEGIN_DOC ! Values of the determinant symmetry functions END_DOC integer, intent(in) :: n_sym_points double precision, intent(in) :: sym_points(3,n_sym_points) double precision, intent(out) :: result(n_sym_points, N_det) integer :: list(N_int*bit_kind_size,2) integer :: n_elements(2) integer :: i, j, imo double precision, allocatable :: tmp(:,:) allocate(tmp(n_sym_points,mo_tot_num)) call compute_sym_mo_values(sym_points, n_sym_points, tmp) result = 1.d0 do i=1,N_det call bitstring_to_list_ab(psi_det(1,1,i), list, n_elements, N_int) do j=1,n_elements(1) imo = list(j,1) result(:,i) *= tmp(:,imo) enddo do j=1,n_elements(2) imo = list(j,2) result(:,i) *= tmp(:,imo) enddo enddo deallocate(tmp) end