BEGIN_PROVIDER [ double precision, ao_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ] implicit none BEGIN_DOC ! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C ! ! END_DOC ! l,m : Y(l,m) parameters ! c(3) : pseudopotential center ! a(3) : Atomic Orbital center ! n_a(3) : Powers of x,y,z in the Atomic Orbital ! g_a : Atomic Orbital exponent ! r : Distance between the Atomic Orbital center and the considered point double precision, external :: ylm_orb integer :: n_a(3) double precision :: a(3), c(3), g_a integer :: i,j,k,l,m,n,p double precision :: dr, Ulc double precision :: y double precision, allocatable :: r(:) allocate (r(pseudo_grid_size)) dr = pseudo_grid_rmax/dble(pseudo_grid_size) r(1) = 0.d0 do j=2,pseudo_grid_size r(j) = r(j-1) + dr enddo ao_pseudo_grid = 0.d0 do j=1,pseudo_grid_size do k=1,nucl_num c(1:3) = nucl_coord(k,1:3) do l=0,pseudo_lmax do i=1,ao_num a(1:3) = nucl_coord(ao_nucl(i),1:3) n_a(1:3) = ao_power(i,1:3) do p=1,ao_prim_num(i) g_a = ao_expo_ordered_transp(p,i) do m=-l,l y = ylm_orb(l,m,c,a,n_a,g_a,r(j)) ao_pseudo_grid(i,m,l,k,j) = ao_pseudo_grid(i,m,l,k,j) + & ao_coef_normalized_ordered_transp(p,i)*y enddo enddo enddo enddo enddo enddo deallocate(r) END_PROVIDER BEGIN_PROVIDER [ double precision, mo_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ] implicit none BEGIN_DOC ! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \phi_i^{A} (r-r_A) d\Omega_C ! ! END_DOC ! l,m : Y(l,m) parameters ! c(3) : pseudopotential center ! a(3) : Atomic Orbital center ! n_a(3) : Powers of x,y,z in the Atomic Orbital ! g_a : Atomic Orbital exponent ! r : Distance between the Atomic Orbital center and the considered point double precision, external :: ylm_orb integer :: n_a(3) double precision :: a(3), c(3), g_a integer :: i,j,k,l,m,n,p double precision :: dr, Ulc double precision :: y double precision, allocatable :: r(:) allocate (r(pseudo_grid_size)) dr = pseudo_grid_rmax/dble(pseudo_grid_size) r(1) = 0.d0 do j=2,pseudo_grid_size r(j) = r(j-1) + dr enddo mo_pseudo_grid = 0.d0 do n=1,pseudo_grid_size do k=1,nucl_num do l=0,pseudo_lmax do m=-l,l do i=1,ao_num do j=1,mo_tot_num if (dabs(ao_pseudo_grid(i,m,l,k,n)) < 1.e-12) then cycle endif if (dabs(mo_coef(i,j)) < 1.e-8) then cycle endif mo_pseudo_grid(j,m,l,k,n) = mo_pseudo_grid(j,m,l,k,n) + & ao_pseudo_grid(i,m,l,k,n) * mo_coef(i,j) enddo enddo enddo enddo enddo enddo deallocate(r) END_PROVIDER double precision function test_pseudo_grid_ao(i,j) implicit none integer, intent(in) :: i,j integer :: k,l,m,n double precision :: r, dr,u dr = pseudo_grid_rmax/dble(pseudo_grid_size) test_pseudo_grid_ao = 0.d0 r = 0.d0 do k=1,pseudo_grid_size do n=1,nucl_num do l = 0,pseudo_lmax u = pseudo_v_kl(n,l,1) * exp(-pseudo_dz_kl(n,l,1)*r*r)* r*r*dr do m=-l,l test_pseudo_grid_ao += ao_pseudo_grid(i,m,l,n,k) * ao_pseudo_grid(j,m,l,n,k) * u enddo enddo enddo r = r+dr enddo end