mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-12 22:18:31 +01:00
merged with scemama
This commit is contained in:
commit
ff1ef59d32
@ -24,6 +24,7 @@ addons:
|
||||
cache:
|
||||
directories:
|
||||
- $HOME/.opam/
|
||||
- $HOME/lapack-release
|
||||
|
||||
language: python
|
||||
python:
|
||||
|
@ -1,7 +1,9 @@
|
||||
## IMPORTANT
|
||||
|
||||
If you have problems upgrading to the current version, consider re-installing everything from scratch including the OCaml compiler.
|
||||
To do this, you will have to remove the `quantum_package` directory **and** the `$HOME/.opam` directory as well.
|
||||
If you have problems upgrading to the current version, first try
|
||||
`qp_upgrade_ocaml.sh`. If it fails, then consider re-installing everything from
|
||||
scratch including the OCaml compiler. To do this, you will have to remove the
|
||||
`quantum_package` directory **and** the `$HOME/.opam` directory as well.
|
||||
|
||||
|
||||
|
||||
|
28
configure
vendored
28
configure
vendored
@ -49,7 +49,7 @@ QP_ROOT_INSTALL = join(QP_ROOT, "install")
|
||||
os.environ["PATH"] = os.environ["PATH"] + ":" + QP_ROOT_BIN
|
||||
|
||||
d_dependency = {
|
||||
"ocaml": ["m4", "curl", "zlib", "patch", "gcc", "zeromq"],
|
||||
"ocaml": ["m4", "curl", "zlib", "patch", "gcc", "zeromq", "gmp"],
|
||||
"m4": ["make"],
|
||||
"curl": ["make"],
|
||||
"zlib": ["gcc", "make"],
|
||||
@ -67,7 +67,8 @@ d_dependency = {
|
||||
"ninja": ["g++", "python"],
|
||||
"make": [],
|
||||
"p_graphviz": ["python"],
|
||||
"bats": []
|
||||
"bats": [],
|
||||
"gmp" : ["make", "g++"]
|
||||
}
|
||||
|
||||
from collections import namedtuple
|
||||
@ -136,6 +137,11 @@ zeromq = Info(
|
||||
description=' ZeroMQ',
|
||||
default_path=join(QP_ROOT_LIB, "libzmq.a"))
|
||||
|
||||
gmp= Info(
|
||||
url='https://gmplib.org/download/gmp/gmp-6.1.2.tar.bz2',
|
||||
description=' The GNU Multiple Precision Arithmetic Library',
|
||||
default_path=join(QP_ROOT_LIB, "libgmp.a"))
|
||||
|
||||
f77zmq = Info(
|
||||
url='{head}/zeromq/f77_zmq/{tail}'.format(**path_github),
|
||||
description=' F77-ZeroMQ',
|
||||
@ -155,7 +161,7 @@ d_info = dict()
|
||||
|
||||
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
|
||||
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz",
|
||||
"zeromq", "f77zmq", "bats"]:
|
||||
"zeromq", "f77zmq", "bats", "gmp"]:
|
||||
exec ("d_info['{0}']={0}".format(m))
|
||||
|
||||
|
||||
@ -480,16 +486,16 @@ def create_ninja_and_rc(l_installed):
|
||||
'export QP_PYTHON={0}'.format(":".join(l_python)), "",
|
||||
'export IRPF90={0}'.format(path_irpf90.replace(QP_ROOT,"${QP_ROOT}")),
|
||||
'export NINJA={0}'.format(path_ninja.replace(QP_ROOT,"${QP_ROOT}")),
|
||||
'function qp_append_export () {',
|
||||
' #Append path $2:${!1}. Add the semicolon only if ${!1} is defined',
|
||||
'function qp_prepend_export () {',
|
||||
' #Prepend path $2:${!1}. Add the semicolon only if ${!1} is defined',
|
||||
' eval "value_1=\"\${$1}\""',
|
||||
' echo ${2}${value_1:+:${value_1}}',
|
||||
' echo ${value_1:+${value_1}:}${2}',
|
||||
'}',
|
||||
'export PYTHONPATH=$(qp_append_export "PYTHONPATH" "${QP_EZFIO}/Python":"${QP_PYTHON}")',
|
||||
'export PATH=$(qp_append_export "PATH" "${QP_PYTHON}":"${QP_ROOT}"/bin:"${QP_ROOT}"/ocaml)',
|
||||
'export LD_LIBRARY_PATH=$(qp_append_export "LD_LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)',
|
||||
'export LIBRARY_PATH=$(qp_append_export "LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)',
|
||||
'export C_INCLUDE_PATH=$(qp_append_export "C_INCLUDE_PATH" "${QP_ROOT}"/include)',
|
||||
'export PYTHONPATH=$(qp_prepend_export "PYTHONPATH" "${QP_EZFIO}/Python":"${QP_PYTHON}")',
|
||||
'export PATH=$(qp_prepend_export "PATH" "${QP_PYTHON}":"${QP_ROOT}"/bin:"${QP_ROOT}"/ocaml)',
|
||||
'export LD_LIBRARY_PATH=$(qp_prepend_export "LD_LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)',
|
||||
'export LIBRARY_PATH=$(qp_prepend_export "LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)',
|
||||
'export C_INCLUDE_PATH=$(qp_prepend_export "C_INCLUDE_PATH" "${QP_ROOT}"/include)',
|
||||
'',
|
||||
'if [[ $SHELL == "bash" ]] ; then',
|
||||
' source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh',
|
||||
|
@ -1,6 +1,6 @@
|
||||
#!/bin/bash -x
|
||||
|
||||
git clone https://github.com/Reference-LAPACK/lapack-release.git
|
||||
git clone https://github.com/Reference-LAPACK/lapack-release.git || echo "Clone failed"
|
||||
cd lapack-release
|
||||
cp make.inc.example make.inc
|
||||
make -j 8
|
||||
|
@ -5,11 +5,12 @@ QP_ROOT=$PWD
|
||||
cd -
|
||||
|
||||
# Normal installation
|
||||
PACKAGES="core.v0.9.1 cryptokit.1.10 ocamlfind sexplib.v0.9.1 ZMQ ppx_sexp_conv ppx_deriving"
|
||||
PACKAGES="core.v0.10.0 cryptokit ocamlfind sexplib.v0.10.0 ZMQ ppx_sexp_conv ppx_deriving"
|
||||
|
||||
# Needed for ZeroMQ
|
||||
export C_INCLUDE_PATH="${QP_ROOT}"/include:"${C_INCLUDE_PATH}"
|
||||
export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"
|
||||
export LDFLAGS="-L$QP_ROOT/lib"
|
||||
export LD_LIBRARY_PATH="${QP_ROOT}"/lib:"${LD_LIBRARY_PATH}"
|
||||
|
||||
# return 0 if program version is equal or greater than check version
|
||||
@ -64,7 +65,7 @@ fi
|
||||
cd Downloads || exit 1
|
||||
chmod +x ocaml.sh || exit 1
|
||||
|
||||
echo N | ./ocaml.sh ${QP_ROOT}/bin/ 4.04.2 || exit 1
|
||||
echo N | ./ocaml.sh ${QP_ROOT}/bin/ 4.06.0 || exit 1
|
||||
|
||||
${QP_ROOT}/bin/opam config setup -a -q || exit 1
|
||||
|
||||
|
@ -93,8 +93,16 @@ end = struct
|
||||
;;
|
||||
|
||||
let write_n_states n =
|
||||
States_number.to_int n
|
||||
|> Ezfio.set_determinants_n_states
|
||||
let n_states =
|
||||
States_number.to_int n
|
||||
in
|
||||
Ezfio.set_determinants_n_states n_states;
|
||||
let data =
|
||||
Array.create n_states 1.
|
||||
|> Array.to_list
|
||||
in
|
||||
Ezfio.ezfio_array_of_list ~rank:1 ~dim:[| n_states |] ~data
|
||||
|> Ezfio.set_determinants_state_average_weight
|
||||
;;
|
||||
|
||||
let write_state_average_weight data =
|
||||
|
@ -1,6 +1,7 @@
|
||||
open Core
|
||||
open Qptypes
|
||||
|
||||
module StringHashtbl = Hashtbl.Make(String)
|
||||
|
||||
type pub_state =
|
||||
| Waiting
|
||||
@ -28,7 +29,7 @@ type t =
|
||||
progress_bar : Progress_bar.t option ;
|
||||
running : bool;
|
||||
accepting_clients : bool;
|
||||
data : (string, string) Hashtbl.t;
|
||||
data : string StringHashtbl.t;
|
||||
}
|
||||
|
||||
|
||||
@ -208,7 +209,7 @@ let end_job msg program_state rep_socket pair_socket =
|
||||
address_inproc = None;
|
||||
running = true;
|
||||
accepting_clients = false;
|
||||
data = Hashtbl.create ~hashable:String.hashable ();
|
||||
data = StringHashtbl.create ();
|
||||
}
|
||||
|
||||
and wait n =
|
||||
@ -592,7 +593,7 @@ let put_data msg rest_of_msg program_state rep_socket =
|
||||
in
|
||||
|
||||
let success () =
|
||||
Hashtbl.set program_state.data ~key ~data:value ;
|
||||
StringHashtbl.set program_state.data ~key ~data:value ;
|
||||
Message.PutDataReply (Message.PutDataReply_msg.create ())
|
||||
|> Message.to_string
|
||||
|> ZMQ.Socket.send rep_socket;
|
||||
@ -622,7 +623,7 @@ let get_data msg program_state rep_socket =
|
||||
|
||||
let success () =
|
||||
let value =
|
||||
match Hashtbl.find program_state.data key with
|
||||
match StringHashtbl.find program_state.data key with
|
||||
| Some value -> value
|
||||
| None -> ""
|
||||
in
|
||||
@ -776,7 +777,7 @@ let run ~port =
|
||||
address_inproc = None;
|
||||
progress_bar = None ;
|
||||
accepting_clients = false;
|
||||
data = Hashtbl.create ~hashable:String.hashable ();
|
||||
data = StringHashtbl.create ();
|
||||
}
|
||||
in
|
||||
|
||||
|
@ -665,7 +665,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
|
||||
|
||||
let command =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:(fun () -> "
|
||||
|
||||
|
@ -128,7 +128,7 @@ let spec =
|
||||
+> anon ("ezfio_file" %: string)
|
||||
|
||||
let () =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:( fun () -> "
|
||||
Creates an open-shell multiplet initial guess\n\n" )
|
||||
|
@ -95,7 +95,7 @@ let spec =
|
||||
|
||||
|
||||
let command =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:(fun () ->
|
||||
"Find all the pi molecular orbitals to create a pi space.
|
||||
|
@ -141,7 +141,7 @@ let run_o ~action ezfio_filename =
|
||||
;;
|
||||
|
||||
let command =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:(fun () ->
|
||||
"
|
||||
|
@ -150,7 +150,7 @@ let spec =
|
||||
|
||||
|
||||
let () =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:( fun () -> "
|
||||
Executes a Quantum Package binary file among these:\n\n"
|
||||
|
@ -323,7 +323,7 @@ let spec =
|
||||
|
||||
|
||||
let command =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:(fun () ->
|
||||
"Set the orbital classes in an EZFIO directory
|
||||
|
@ -1,2 +1,2 @@
|
||||
Generators_CAS Perturbation Selectors_CASSD ZMQ
|
||||
Generators_CAS Perturbation Selectors_CASSD ZMQ DavidsonUndressed
|
||||
|
||||
|
@ -1 +1 @@
|
||||
Selectors_full SingleRefMethod Davidson
|
||||
Selectors_full SingleRefMethod DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Perturbation CID
|
||||
Perturbation CID DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Selectors_full SingleRefMethod Davidson
|
||||
Selectors_full SingleRefMethod DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Selectors_full SingleRefMethod Davidson
|
||||
Selectors_full SingleRefMethod DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Determinants Davidson
|
||||
Determinants DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Perturbation Selectors_full Generators_full ZMQ FourIdx MPI
|
||||
Perturbation Selectors_full Generators_full ZMQ FourIdx MPI DavidsonUndressed
|
||||
|
@ -25,8 +25,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
|
||||
|
||||
double precision :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth)
|
||||
double precision, external :: omp_get_wtime
|
||||
double precision :: state_average_weight_save(N_states), w(N_states)
|
||||
double precision :: time
|
||||
double precision :: w(N_states)
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
|
||||
if (N_det < max(10,N_states)) then
|
||||
@ -35,18 +35,19 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
|
||||
error(:) = 0.d0
|
||||
else
|
||||
|
||||
state_average_weight_save(:) = state_average_weight(:)
|
||||
do pt2_stoch_istate=1,N_states
|
||||
SOFT_TOUCH pt2_stoch_istate
|
||||
w(:) = 0.d0
|
||||
w(pt2_stoch_istate) = 1.d0
|
||||
call update_psi_average_norm_contrib(w)
|
||||
state_average_weight(:) = 0.d0
|
||||
state_average_weight(pt2_stoch_istate) = 1.d0
|
||||
TOUCH state_average_weight
|
||||
|
||||
allocate(pt2_detail(N_states,N_det_generators+1), comb(N_det_generators), computed(N_det_generators), tbc(0:size_tbc))
|
||||
sumabove = 0d0
|
||||
sum2above = 0d0
|
||||
Nabove = 0d0
|
||||
|
||||
provide nproc fragment_first fragment_count mo_bielec_integrals_in_map mo_mono_elec_integral pt2_weight psi_selectors
|
||||
provide nproc fragment_first fragment_count mo_bielec_integrals_in_map mo_mono_elec_integral pt2_weight psi_selectors
|
||||
|
||||
computed = .false.
|
||||
|
||||
@ -141,7 +142,9 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
|
||||
|
||||
deallocate(pt2_detail, comb, computed, tbc)
|
||||
enddo
|
||||
FREE psi_average_norm_contrib pt2_stoch_istate
|
||||
FREE pt2_stoch_istate
|
||||
state_average_weight(:) = state_average_weight_save(:)
|
||||
TOUCH state_average_weight
|
||||
endif
|
||||
do k=N_det+1,N_states
|
||||
pt2(k) = 0.d0
|
||||
|
@ -623,6 +623,9 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
min_e_pert = 0d0
|
||||
|
||||
! double precision :: hij
|
||||
! call i_h_j(psi_det_generators(1,1,i_generator), det, N_int, hij)
|
||||
|
||||
do istate=1,N_states
|
||||
delta_E = E0(istate) - Hii
|
||||
val = mat(istate, p1, p2) + mat(istate, p1, p2)
|
||||
@ -633,7 +636,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
e_pert = 0.5d0 * (tmp - delta_E)
|
||||
pt2(istate) = pt2(istate) + e_pert
|
||||
min_e_pert = min(e_pert,min_e_pert)
|
||||
! ci(istate) = e_pert / mat(istate, p1, p2)
|
||||
! ci(istate) = e_pert / hij
|
||||
end do
|
||||
|
||||
if(min_e_pert <= buf%mini) then
|
||||
|
@ -1 +0,0 @@
|
||||
Determinants
|
@ -1,13 +0,0 @@
|
||||
program test
|
||||
double precision :: energy(N_states)
|
||||
if (is_gaspi_master) then
|
||||
energy = 1.d0
|
||||
else
|
||||
energy = 0.d0
|
||||
endif
|
||||
call broadcast_wf(energy)
|
||||
print *, 'energy (1.d0) :', GASPI_rank, energy(1)
|
||||
print *, 'coef :', GASPI_rank, psi_coef(1,1)
|
||||
print *, 'det :', GASPI_rank, psi_det (1,1,1)
|
||||
call gaspi_finalize
|
||||
end
|
@ -1,76 +0,0 @@
|
||||
BEGIN_PROVIDER [ logical, GASPI_is_initialized ]
|
||||
&BEGIN_PROVIDER [ logical, has_gaspi ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This is true when GASPI_Init has been called
|
||||
END_DOC
|
||||
|
||||
has_gaspi = .False.
|
||||
IRP_IF GASPI
|
||||
use GASPI
|
||||
integer(gaspi_return_t) :: res
|
||||
res = gaspi_proc_init(GASPI_BLOCK)
|
||||
if (res /= GASPI_SUCCESS) then
|
||||
print *, res
|
||||
print *, 'GASPI failed to initialize'
|
||||
stop -1
|
||||
endif
|
||||
has_gaspi = .True.
|
||||
IRP_ENDIF
|
||||
GASPI_is_initialized = .True.
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, GASPI_rank ]
|
||||
&BEGIN_PROVIDER [ integer, GASPI_size ]
|
||||
&BEGIN_PROVIDER [ logical, is_GASPI_master ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Usual GASPI variables
|
||||
END_DOC
|
||||
|
||||
PROVIDE GASPI_is_initialized
|
||||
|
||||
IRP_IF GASPI
|
||||
use GASPI
|
||||
integer(gaspi_return_t) :: res
|
||||
integer(gaspi_rank_t) :: n
|
||||
res = gaspi_proc_num(n)
|
||||
GASPI_size = n
|
||||
if (res /= GASPI_SUCCESS) then
|
||||
print *, res
|
||||
print *, 'Unable to get GASPI_size'
|
||||
stop -1
|
||||
endif
|
||||
res = gaspi_proc_rank(n)
|
||||
GASPI_rank = n
|
||||
if (res /= GASPI_SUCCESS) then
|
||||
print *, res
|
||||
print *, 'Unable to get GASPI_rank'
|
||||
stop -1
|
||||
endif
|
||||
is_GASPI_master = (GASPI_rank == 0)
|
||||
IRP_ELSE
|
||||
GASPI_rank = 0
|
||||
GASPI_size = 1
|
||||
is_GASPI_master = .True.
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine gaspi_finalize()
|
||||
implicit none
|
||||
PROVIDE GASPI_is_initialized
|
||||
IRP_IF GASPI
|
||||
use GASPI
|
||||
integer(gaspi_return_t) :: res
|
||||
res = gaspi_proc_term(GASPI_BLOCK)
|
||||
if (res /= GASPI_SUCCESS) then
|
||||
print *, res
|
||||
print *, 'Unable to finalize GASPI'
|
||||
stop -1
|
||||
endif
|
||||
IRP_ENDIF
|
||||
end subroutine
|
||||
|
@ -30,15 +30,8 @@ END_PROVIDER
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i, k
|
||||
psi_coef_generators = 0.d0
|
||||
psi_det_generators = 0_bit_kind
|
||||
do i=1,N_det_generators
|
||||
do k=1,N_int
|
||||
psi_det_generators(k,1,i) = psi_det_sorted(k,1,i)
|
||||
psi_det_generators(k,2,i) = psi_det_sorted(k,2,i)
|
||||
enddo
|
||||
psi_coef_generators(i,:) = psi_coef_sorted(i,:)
|
||||
enddo
|
||||
psi_det_generators(1:N_int,1:2,1:N_det) = psi_det_sorted(1:N_int,1:2,1:N_det)
|
||||
psi_coef_generators(1:N_det,1:N_states) = psi_coef_sorted(1:N_det,1:N_states)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -14,6 +14,8 @@ END_DOC
|
||||
|
||||
integer :: i,j
|
||||
double precision, allocatable :: mo_coef_save(:,:)
|
||||
|
||||
PROVIDE ao_md5 mo_occ level_shift
|
||||
|
||||
allocate(mo_coef_save(ao_num,mo_tot_num), &
|
||||
Fock_matrix_DIIS (ao_num,ao_num,max_dim_DIIS), &
|
||||
|
@ -23,7 +23,7 @@ subroutine create_guess
|
||||
mo_coef = ao_ortho_lowdin_coef
|
||||
TOUCH mo_coef
|
||||
mo_label = 'Guess'
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label,.false.)
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label,1,.false.)
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
else if (mo_guess_type == "Huckel") then
|
||||
call huckel_guess
|
||||
|
@ -3,19 +3,17 @@ BEGIN_SHELL [ /usr/bin/env python ]
|
||||
from generate_h_apply import *
|
||||
|
||||
s = H_apply("mrcc")
|
||||
s.data["parameters"] = ", delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["parameters"] = ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
|
||||
double precision, intent(in) :: delta_ij_(Nstates, Ndet_non_ref, Ndet_ref)
|
||||
double precision, intent(in) :: delta_ii_(Nstates, Ndet_ref)
|
||||
"""
|
||||
s.data["keys_work"] = "call mrcc_dress(delta_ij_,delta_ii_,Nstates,Ndet_non_ref,Ndet_ref,i_generator,key_idx,keys_out,N_int,iproc,key_mask)"
|
||||
s.data["params_post"] += ", delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["params_main"] += "delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["keys_work"] = "call mrcc_dress(delta_ij_,Nstates,Ndet_non_ref,Ndet_ref,i_generator,key_idx,keys_out,N_int,iproc,key_mask)"
|
||||
s.data["params_post"] += ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["params_main"] += "delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["decls_main"] += """
|
||||
integer, intent(in) :: Ndet_ref, Ndet_non_ref, Nstates
|
||||
double precision, intent(in) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
|
||||
double precision, intent(in) :: delta_ii_(Nstates,Ndet_ref)
|
||||
"""
|
||||
s.data["finalization"] = ""
|
||||
s.data["copy_buffer"] = ""
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -14,14 +14,13 @@ BEGIN_PROVIDER [ integer(omp_lock_kind), psi_ref_lock, (psi_det_size) ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine mrcc_dress(delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref,i_generator,n_selected,det_buffer,Nint,iproc,key_mask)
|
||||
subroutine mrcc_dress(delta_ij_, Nstates, Ndet_non_ref, Ndet_ref,i_generator,n_selected,det_buffer,Nint,iproc,key_mask)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint, iproc
|
||||
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
|
||||
double precision, intent(inout) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
|
||||
double precision, intent(inout) :: delta_ii_(Nstates,Ndet_ref)
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,l,m
|
||||
@ -265,10 +264,8 @@ subroutine mrcc_dress(delta_ij_, delta_ii_, Nstates, Ndet_non_ref, Ndet_ref,i_ge
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
|
||||
delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
enddo
|
||||
else
|
||||
!delta_ii_(i_state,i_I) = 0.d0
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0 * dIa_hla(i_state,k_sd)
|
||||
|
@ -139,210 +139,6 @@ BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressed H with Delta_ij
|
||||
END_DOC
|
||||
integer :: i, j,istate,ii,jj
|
||||
do istate = 1,N_states
|
||||
do j=1,N_det
|
||||
do i=1,N_det
|
||||
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do ii = 1, N_det_ref
|
||||
i =idx_ref(ii)
|
||||
h_matrix_dressed(i,i,istate) += delta_ii(istate,ii)
|
||||
do jj = 1, N_det_non_ref
|
||||
j =idx_non_ref(jj)
|
||||
h_matrix_dressed(i,j,istate) += delta_ij(istate,jj,ii)
|
||||
h_matrix_dressed(j,i,istate) += delta_ij(istate,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the dressed CI matrix
|
||||
END_DOC
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
integer :: mrcc_state
|
||||
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
allocate (eigenvectors(size(CI_eigenvectors_dressed,1),size(CI_eigenvectors_dressed,2)),&
|
||||
eigenvalues(size(CI_electronic_energy_dressed,1)))
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do mrcc_state=1,N_states
|
||||
do j=mrcc_state,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
call davidson_diag_mrcc_HS2(psi_det,eigenvectors, &
|
||||
size(eigenvectors,1), &
|
||||
eigenvalues,N_det,N_states,N_states_diag,N_int, &
|
||||
6,mrcc_state)
|
||||
CI_eigenvectors_dressed(1:N_det,mrcc_state) = eigenvectors(1:N_det,mrcc_state)
|
||||
CI_electronic_energy_dressed(mrcc_state) = eigenvalues(mrcc_state)
|
||||
enddo
|
||||
do k=N_states+1,N_states_diag
|
||||
CI_eigenvectors_dressed(1:N_det,k) = eigenvectors(1:N_det,k)
|
||||
CI_electronic_energy_dressed(k) = eigenvalues(k)
|
||||
enddo
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
|
||||
N_states_diag,size(CI_eigenvectors_dressed,1))
|
||||
|
||||
deallocate (eigenvectors,eigenvalues)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state += 1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if (i_state==N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (i_state /= 0) then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! N_states lowest eigenvalues of the dressed CI matrix
|
||||
END_DOC
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
call write_time(6)
|
||||
do j=1,min(N_det,N_states)
|
||||
write(st,'(I4)') j
|
||||
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
||||
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
|
||||
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine diagonalize_CI_dressed(lambda)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
double precision, intent(in) :: lambda
|
||||
integer :: i,j
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_coef(i,j) = lambda * CI_eigenvectors_dressed(i,j) + (1.d0 - lambda) * psi_coef(i,j)
|
||||
enddo
|
||||
call normalize(psi_coef(1,j), N_det)
|
||||
enddo
|
||||
SOFT_TOUCH psi_coef
|
||||
|
||||
end
|
||||
|
||||
|
||||
logical function is_generable(det1, det2, Nint)
|
||||
|
@ -1,101 +0,0 @@
|
||||
subroutine multi_state(CI_electronic_energy_dressed_,CI_eigenvectors_dressed_,LDA)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multi-state mixing
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA
|
||||
double precision, intent(inout) :: CI_electronic_energy_dressed_(N_states)
|
||||
double precision, intent(inout) :: CI_eigenvectors_dressed_(LDA,N_states)
|
||||
double precision, allocatable :: h(:,:,:), s(:,:), Psi(:,:), H_Psi(:,:,:), H_jj(:)
|
||||
|
||||
allocate( h(N_states,N_states,0:N_states), s(N_states,N_states) )
|
||||
allocate( Psi(LDA,N_states), H_Psi(LDA,N_states,0:N_states) )
|
||||
allocate (H_jj(LDA) )
|
||||
|
||||
! e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
|
||||
|
||||
integer :: i,j,k,istate
|
||||
double precision :: U(N_states,N_states), Vt(N_states,N_states), D(N_states)
|
||||
double precision, external :: diag_H_mat_elem
|
||||
do istate=1,N_states
|
||||
do i=1,N_det
|
||||
H_jj(i) = diag_H_mat_elem(psi_det(1,1,i),N_int)
|
||||
enddo
|
||||
|
||||
do i=1,N_det_ref
|
||||
H_jj(idx_ref(i)) += delta_ii(istate,i)
|
||||
enddo
|
||||
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
Psi(i,k) = CI_eigenvectors_dressed_(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call H_u_0_mrcc_nstates(H_Psi(1,1,istate),Psi,H_jj,N_det,psi_det,N_int,istate,N_states,LDA)
|
||||
|
||||
do k=1,N_states
|
||||
do i=1,N_states
|
||||
double precision, external :: u_dot_v
|
||||
h(i,k,istate) = u_dot_v(Psi(1,i), H_Psi(1,k,istate), N_det)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_states
|
||||
do i=1,N_states
|
||||
s(i,k) = u_dot_v(Psi(1,i), Psi(1,k), N_det)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, s(:,:)
|
||||
print *, ''
|
||||
|
||||
h(:,:,0) = h(:,:,1)
|
||||
do istate=2,N_states
|
||||
U(:,:) = h(:,:,0)
|
||||
call dgemm('N','N',N_states,N_states,N_states,1.d0,&
|
||||
U, size(U,1), h(1,1,istate), size(h,1), 0.d0, &
|
||||
h(1,1,0), size(Vt,1))
|
||||
enddo
|
||||
|
||||
call svd(h(1,1,0), size(h,1), U, size(U,1), D, Vt, size(Vt,1), N_states, N_states)
|
||||
do k=1,N_states
|
||||
D(k) = D(k)**(1./dble(N_states))
|
||||
if (D(k) > 0.d0) then
|
||||
D(k) = -D(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j=1,N_states
|
||||
do i=1,N_states
|
||||
h(i,j,0) = 0.d0
|
||||
do k=1,N_states
|
||||
h(i,j,0) += U(i,k) * D(k) * Vt(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, h(:,:,0)
|
||||
print *,''
|
||||
|
||||
integer :: LWORK, INFO
|
||||
double precision, allocatable :: WORK(:)
|
||||
LWORK=3*N_states
|
||||
allocate (WORK(LWORK))
|
||||
call dsygv(1, 'V', 'U', N_states, h(1,1,0), size(h,1), s, size(s,1), D, WORK, LWORK, INFO)
|
||||
deallocate(WORK)
|
||||
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed_(i,j) = 0.d0
|
||||
do k=1,N_states
|
||||
CI_eigenvectors_dressed_(i,j) += Psi(i,k) * h(k,j,0)
|
||||
enddo
|
||||
enddo
|
||||
CI_electronic_energy_dressed_(j) = D(j)
|
||||
enddo
|
||||
|
||||
|
||||
deallocate (h,s, H_jj)
|
||||
deallocate( Psi, H_Psi )
|
||||
end
|
@ -1 +1 @@
|
||||
Determinants Davidson
|
||||
Determinants DavidsonUndressed
|
||||
|
@ -1 +1 @@
|
||||
Psiref_Utils Davidson
|
||||
Psiref_Utils DavidsonUndressed
|
||||
|
1
plugins/UndressedMethod/NEEDED_CHILDREN_MODULES
Normal file
1
plugins/UndressedMethod/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
|
@ -1,8 +1,8 @@
|
||||
=====
|
||||
GASPI
|
||||
=====
|
||||
===============
|
||||
UndressedMethod
|
||||
===============
|
||||
|
||||
Providers for GASPI programs (with the GPI2 library).
|
||||
Defines a null dressing vector
|
||||
|
||||
Needed Modules
|
||||
==============
|
10
plugins/UndressedMethod/null_dressing_vector.irp.f
Normal file
10
plugins/UndressedMethod/null_dressing_vector.irp.f
Normal file
@ -0,0 +1,10 @@
|
||||
BEGIN_PROVIDER [ double precision, dressing_column_h, (N_det,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, dressing_column_s, (N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Null dressing vectors
|
||||
END_DOC
|
||||
dressing_column_h(:,:) = 0.d0
|
||||
dressing_column_s(:,:) = 0.d0
|
||||
END_PROVIDER
|
||||
|
@ -1 +1 @@
|
||||
Perturbation Selectors_full Generators_full Psiref_CAS MRCC_Utils ZMQ
|
||||
Perturbation Selectors_full Generators_full Psiref_CAS MRCC_Utils ZMQ
|
||||
|
@ -74,10 +74,8 @@ BEGIN_PROVIDER [ double precision, mrcc_norm_acc, (0:N_det_non_ref, N_states) ]
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc_sto,(N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_mrcc_sto, (N_states, N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_sto, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc_sto, (N_states, N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc_sto,(N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_sto, (N_states,N_det_non_ref) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer :: gen, h, p, n, t, i, j, h1, h2, p1, p2, s1, s2, iproc
|
||||
@ -94,10 +92,8 @@ END_PROVIDER
|
||||
read(*,*) n_in_teeth
|
||||
!n_in_teeth = 2
|
||||
in_teeth_step = 1d0 / dfloat(n_in_teeth)
|
||||
!double precision :: delta_ij_mrcc_tmp,(N_states,N_det_non_ref,N_det_ref) ]
|
||||
!double precision :: delta_ii_mrcc_tmp, (N_states,N_det_ref) ]
|
||||
!double precision :: delta_ij_s2_mrcc_tmp(N_states,N_det_non_ref,N_det_ref)
|
||||
!double precision :: delta_ii_s2_mrcc_tmp(N_states, N_det_ref)
|
||||
!double precision :: delta_ij_mrcc_tmp,(N_states,N_det_non_ref)
|
||||
!double precision :: delta_ij_s2_mrcc_tmp(N_states,N_det_non_ref)
|
||||
|
||||
coefs = 0d0
|
||||
coefs(:mrcc_teeth(1,1)-1) = 1d0
|
||||
@ -144,15 +140,13 @@ END_PROVIDER
|
||||
|
||||
|
||||
delta_ij_mrcc_sto = 0d0
|
||||
delta_ii_mrcc_sto = 0d0
|
||||
delta_ij_s2_mrcc_sto = 0d0
|
||||
delta_ii_s2_mrcc_sto = 0d0
|
||||
PROVIDE dij
|
||||
provide hh_shortcut psi_det_size! lambda_mrcc
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic) &
|
||||
!$OMP shared(psi_ref, psi_non_ref, hh_exists, pp_exists, N_int, hh_shortcut) &
|
||||
!$OMP shared(N_det_generators, coefs,N_det_non_ref, N_det_ref, delta_ii_mrcc_sto, delta_ij_mrcc_sto) &
|
||||
!$OMP shared(contrib,psi_det_generators, delta_ii_s2_mrcc_sto, delta_ij_s2_mrcc_sto) &
|
||||
!$OMP shared(N_det_generators, coefs,N_det_non_ref, delta_ij_mrcc_sto) &
|
||||
!$OMP shared(contrib,psi_det_generators, delta_ij_s2_mrcc_sto) &
|
||||
!$OMP private(i,j,curnorm,myCoef, h, n, mask, omask, buf, ok, iproc)
|
||||
do gen= 1,N_det_generators
|
||||
if(coefs(gen) == 0d0) cycle
|
||||
@ -174,8 +168,8 @@ END_PROVIDER
|
||||
end do
|
||||
n = n - 1
|
||||
if(n /= 0) then
|
||||
call mrcc_part_dress(delta_ij_mrcc_sto, delta_ii_mrcc_sto, delta_ij_s2_mrcc_sto, &
|
||||
delta_ii_s2_mrcc_sto, gen,n,buf,N_int,omask,myCoef,contrib)
|
||||
call mrcc_part_dress(delta_ij_mrcc_sto, delta_ij_s2_mrcc_sto, &
|
||||
gen,n,buf,N_int,omask,myCoef,contrib)
|
||||
endif
|
||||
end do
|
||||
deallocate(buf)
|
||||
@ -185,21 +179,17 @@ END_PROVIDER
|
||||
|
||||
|
||||
curnorm = 0d0
|
||||
do i=1,N_det_ref
|
||||
do j=1,N_det_non_ref
|
||||
curnorm += delta_ij_mrcc_sto(1, j, i)**2
|
||||
curnorm += delta_ij_mrcc_sto(1,j)*delta_ij_mrcc_sto(1,j)
|
||||
end do
|
||||
end do
|
||||
print *, "NORM DELTA ", curnorm**0.5d0
|
||||
print *, "NORM DELTA ", dsqrt(curnorm)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_cancel, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_cancel, (N_states, N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_cancel, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2_cancel, (N_states, N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_cancel, (N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_cancel, (N_states,N_det_non_ref) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
@ -216,15 +206,19 @@ END_PROVIDER
|
||||
integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2),inac, virt
|
||||
integer, external :: get_index_in_psi_det_sorted_bit, searchDet,detCmp
|
||||
logical, external :: is_in_wavefunction
|
||||
double precision :: c0(N_states)
|
||||
|
||||
provide dij
|
||||
|
||||
delta_ij_cancel = 0d0
|
||||
delta_ii_cancel = 0d0
|
||||
|
||||
do i_state = 1, N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
do i=1,N_det_ref
|
||||
!$OMP PARALLEL DO default(shared) private(kk, k, blok, exc_Ik,det_tmp2,ok,deg,phase_Ik, l,ll) &
|
||||
!$OMP private(contrib, contrib_s2, i_state)
|
||||
!$OMP private(contrib, contrib_s2, i_state, c0)
|
||||
do kk = 1, nlink(i)
|
||||
k = det_cepa0_idx(linked(kk, i))
|
||||
blok = blokMwen(kk, i)
|
||||
@ -244,21 +238,10 @@ END_PROVIDER
|
||||
do i_state = 1, N_states
|
||||
contrib = (dij(j, l, i_state) - dij(i, k, i_state)) * delta_cas(i,j,i_state)! * Hla *phase_ia * phase_ik
|
||||
contrib_s2 = dij(j, l, i_state) - dij(i, k, i_state)! * Sla*phase_ia * phase_ik
|
||||
if(dabs(psi_ref_coef(i,i_state)).ge.1.d-3) then
|
||||
!$OMP ATOMIC
|
||||
delta_ij_cancel(i_state,l,i) += contrib
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_cancel(i_state,l,i) += contrib_s2
|
||||
!$OMP ATOMIC
|
||||
delta_ii_cancel(i_state,i) -= contrib / psi_ref_coef(i, i_state) * psi_non_ref_coef(l,i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ii_s2_cancel(i_state,i) -= contrib_s2 / psi_ref_coef(i, i_state) * psi_non_ref_coef(l,i_state)
|
||||
else
|
||||
!$OMP ATOMIC
|
||||
delta_ij_cancel(i_state,l,i) += contrib * 0.5d0
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_cancel(i_state,l,i) += contrib_s2 * 0.5d0
|
||||
endif
|
||||
!$OMP ATOMIC
|
||||
delta_ij_cancel(i_state,l) += contrib * psi_ref_coef(i,i_state) * c0(i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_cancel(i_state,l) += contrib_s2* psi_ref_coef(i,i_state) * c0(i_state)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
@ -268,10 +251,8 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_mrcc, (N_states, N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc, (N_states, N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc, (N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc, (N_states,N_det_non_ref) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer :: gen, h, p, n, t, i, h1, h2, p1, p2, s1, s2, iproc
|
||||
@ -286,14 +267,12 @@ END_PROVIDER
|
||||
|
||||
contrib = 0d0
|
||||
delta_ij_mrcc = 0d0
|
||||
delta_ii_mrcc = 0d0
|
||||
delta_ij_s2_mrcc = 0d0
|
||||
delta_ii_s2_mrcc = 0d0
|
||||
|
||||
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic) &
|
||||
!$OMP shared(contrib,psi_det_generators, N_det_generators, hh_exists, pp_exists, N_int, hh_shortcut) &
|
||||
!$OMP shared(N_det_non_ref, N_det_ref, delta_ii_mrcc, delta_ij_mrcc, delta_ii_s2_mrcc, delta_ij_s2_mrcc) &
|
||||
!$OMP shared(N_det_non_ref, N_det_ref, delta_ij_mrcc, delta_ij_s2_mrcc) &
|
||||
!$OMP private(h, n, mask, omask, buf, ok, iproc)
|
||||
do gen= 1, N_det_generators
|
||||
allocate(buf(N_int, 2, N_det_non_ref))
|
||||
@ -313,7 +292,7 @@ END_PROVIDER
|
||||
n = n - 1
|
||||
|
||||
if(n /= 0) then
|
||||
call mrcc_part_dress(delta_ij_mrcc, delta_ii_mrcc, delta_ij_s2_mrcc, delta_ii_s2_mrcc, gen,n,buf,N_int,omask,1d0,contrib)
|
||||
call mrcc_part_dress(delta_ij_mrcc, delta_ij_s2_mrcc, gen,n,buf,N_int,omask,1d0,contrib)
|
||||
endif
|
||||
|
||||
end do
|
||||
@ -324,20 +303,18 @@ END_PROVIDER
|
||||
|
||||
|
||||
! subroutine blit(b1, b2)
|
||||
! double precision :: b1(N_states,N_det_non_ref,N_det_ref), b2(N_states,N_det_non_ref,N_det_ref)
|
||||
! double precision :: b1(N_states,N_det_non_ref), b2(N_states,N_det_non_ref)
|
||||
! b1 = b1 + b2
|
||||
! end subroutine
|
||||
|
||||
|
||||
subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_generator,n_selected,det_buffer,Nint,key_mask,coef,contrib)
|
||||
subroutine mrcc_part_dress(delta_ij_, delta_ij_s2_, i_generator,n_selected,det_buffer,Nint,key_mask,coef,contrib)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint
|
||||
double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref,N_det_ref)
|
||||
double precision, intent(inout) :: delta_ii_(N_states,N_det_ref)
|
||||
double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref,N_det_ref)
|
||||
double precision, intent(inout) :: delta_ii_s2_(N_states,N_det_ref)
|
||||
double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref)
|
||||
double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref)
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,l,m
|
||||
@ -399,6 +376,11 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
|
||||
deallocate(microlist, idx_microlist)
|
||||
|
||||
double precision :: c0(N_states)
|
||||
do i_state=1,N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
allocate (dIa_hla(N_states,N_det_non_ref), dIa_sla(N_states,N_det_non_ref))
|
||||
|
||||
! |I>
|
||||
@ -436,8 +418,8 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
|
||||
|
||||
do i_alpha=1,N_tq
|
||||
if(key_mask(1,1) /= 0) then
|
||||
call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint)
|
||||
if(key_mask(1,1) /= 0) then
|
||||
call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint)
|
||||
|
||||
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
|
||||
smallerlist = mobiles(1)
|
||||
@ -445,7 +427,7 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
smallerlist = mobiles(2)
|
||||
end if
|
||||
|
||||
|
||||
|
||||
do l=0,N_microlist(smallerlist)-1
|
||||
microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l)
|
||||
idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l)
|
||||
@ -467,9 +449,9 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
k_sd = idx_alpha(l_sd)
|
||||
call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd))
|
||||
call get_s2(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,sij_cache(k_sd))
|
||||
!if(sij_cache(k_sd) /= 0D0) PRINT *, "SIJ ", sij_cache(k_sd)
|
||||
!if(sij_cache(k_sd) /= 0D0) PRINT *, "SIJ ", sij_cache(k_sd)
|
||||
enddo
|
||||
|
||||
|
||||
! |I>
|
||||
do i_I=1,N_det_ref
|
||||
! Find triples and quadruple grand parents
|
||||
@ -484,12 +466,12 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
|
||||
! <I| <> |alpha>
|
||||
do k_sd=1,idx_alpha(0)
|
||||
|
||||
|
||||
call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint)
|
||||
if (degree > 2) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
|
||||
! <I| /k\ |alpha>
|
||||
|
||||
! |l> = Exc(k -> alpha) |I>
|
||||
@ -499,7 +481,7 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
tmp_det(k,1) = psi_ref(k,1,i_I)
|
||||
tmp_det(k,2) = psi_ref(k,2,i_I)
|
||||
enddo
|
||||
logical :: ok
|
||||
logical :: ok
|
||||
call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint)
|
||||
|
||||
do i_state=1,N_states
|
||||
@ -510,7 +492,7 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
do i_state=1,N_states
|
||||
dka(i_state) = 0.d0
|
||||
enddo
|
||||
|
||||
|
||||
if (ok) then
|
||||
do l_sd=k_sd+1,idx_alpha(0)
|
||||
call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint)
|
||||
@ -522,40 +504,40 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
||||
else if (perturbative_triples) then
|
||||
! Linked
|
||||
|
||||
hka = hij_cache(idx_alpha(k_sd))
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Linked
|
||||
|
||||
hka = hij_cache(idx_alpha(k_sd))
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
|
||||
if (perturbative_triples.and. (degree2 == 1) ) then
|
||||
call i_h_j(psi_ref(1,1,i_I),tmp_det,Nint,hka)
|
||||
hka = hij_cache(idx_alpha(k_sd)) - hka
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
call i_h_j(psi_ref(1,1,i_I),tmp_det,Nint,hka)
|
||||
hka = hij_cache(idx_alpha(k_sd)) - hka
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
|
||||
do i_state=1,N_states
|
||||
dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do i_state=1,N_states
|
||||
ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state)
|
||||
enddo
|
||||
@ -569,39 +551,17 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
enddo
|
||||
enddo
|
||||
do i_state=1,N_states
|
||||
if(dabs(psi_ref_coef(1,i_state)).ge.1.d-3)then
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
p1 = 1
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
!$OMP ATOMIC
|
||||
contrib(i_state) += hdress * psi_ref_coef(p1, i_state) * psi_non_ref_coef(k_sd, i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_(i_state,k_sd,p1) += hdress
|
||||
!$OMP ATOMIC
|
||||
!delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
delta_ii_(i_state,p1) -= hdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_(i_state,k_sd,p1) += sdress
|
||||
!$OMP ATOMIC
|
||||
!delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
delta_ii_s2_(i_state,p1) -= sdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
enddo
|
||||
else
|
||||
!stop "dress with coef < 1d-3"
|
||||
delta_ii_(i_state,1) = 0.d0
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
p1 = 1
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_(i_state,k_sd,p1) = delta_ij_(i_state,k_sd,p1) + 0.5d0*hdress
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_(i_state,k_sd,p1) = delta_ij_s2_(i_state,k_sd,p1) + 0.5d0*sdress
|
||||
enddo
|
||||
endif
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
!$OMP ATOMIC
|
||||
contrib(i_state) += hdress * psi_coef(dressed_column_idx(i_state), i_state) * psi_non_ref_coef(k_sd, i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_(i_state,k_sd) += hdress
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_(i_state,k_sd) += sdress
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -611,15 +571,13 @@ end
|
||||
|
||||
|
||||
|
||||
subroutine mrcc_part_dress_1c(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_generator,n_selected,det_buffer,Nint,key_mask,contrib)
|
||||
subroutine mrcc_part_dress_1c(delta_ij_, delta_ij_s2_, i_generator,n_selected,det_buffer,Nint,key_mask,contrib)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint
|
||||
double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref)
|
||||
double precision, intent(inout) :: delta_ii_(N_states)
|
||||
double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref)
|
||||
double precision, intent(inout) :: delta_ii_s2_(N_states)
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,l,m
|
||||
@ -715,6 +673,11 @@ subroutine mrcc_part_dress_1c(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_
|
||||
end if
|
||||
end if
|
||||
|
||||
double precision :: c0(N_states)
|
||||
do i_state=1,N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
|
||||
do i_alpha=1,N_tq
|
||||
if(key_mask(1,1) /= 0) then
|
||||
@ -850,39 +813,17 @@ subroutine mrcc_part_dress_1c(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_
|
||||
enddo
|
||||
enddo
|
||||
do i_state=1,N_states
|
||||
if(dabs(psi_ref_coef(1,i_state)).ge.1.d-3)then
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
p1 = 1
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
!$OMP ATOMIC
|
||||
contrib(i_state) += hdress * psi_ref_coef(p1, i_state) * psi_non_ref_coef(k_sd, i_state)
|
||||
contrib(i_state) += hdress * psi_ref_coef(dressed_column_idx(i_state), i_state) * psi_non_ref_coef(k_sd, i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_(i_state,k_sd) += hdress
|
||||
!$OMP ATOMIC
|
||||
!delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
delta_ii_(i_state) -= hdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_(i_state,k_sd) += sdress
|
||||
!$OMP ATOMIC
|
||||
!delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
delta_ii_s2_(i_state) -= sdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd)
|
||||
enddo
|
||||
else
|
||||
!stop "dress with coef < 1d-3"
|
||||
delta_ii_(i_state) = 0.d0
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
p1 = 1
|
||||
hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_ij_(i_state,k_sd) = delta_ij_(i_state,k_sd) + 0.5d0*hdress
|
||||
!$OMP ATOMIC
|
||||
delta_ij_s2_(i_state,k_sd) = delta_ij_s2_(i_state,k_sd) + 0.5d0*sdress
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -900,10 +841,8 @@ end
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc_zmq, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_mrcc_zmq, (N_states, N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_zmq, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc_zmq, (N_states, N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_mrcc_zmq, (N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_zmq, (N_states,N_det_non_ref) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
@ -917,9 +856,7 @@ end
|
||||
|
||||
|
||||
delta_ij_mrcc_zmq = 0d0
|
||||
delta_ii_mrcc_zmq = 0d0
|
||||
delta_ij_s2_mrcc_zmq = 0d0
|
||||
delta_ii_s2_mrcc_zmq = 0d0
|
||||
|
||||
!call random_seed()
|
||||
E_CI_before = mrcc_E0_denominator(1) + nuclear_repulsion
|
||||
@ -933,142 +870,67 @@ end
|
||||
call ZMQ_mrcc(E_CI_before, mrcc, delta_ij_mrcc_zmq, delta_ij_s2_mrcc_zmq, abs(target_error))
|
||||
|
||||
mrcc_previous_E(:) = mrcc_E0_denominator(:)
|
||||
do i=N_det_non_ref,1,-1
|
||||
delta_ii_mrcc_zmq(:,1) -= delta_ij_mrcc_zmq(:, i, 1) / psi_ref_coef(1,1) * psi_non_ref_coef(i, 1)
|
||||
delta_ii_s2_mrcc_zmq(:,1) -= delta_ij_s2_mrcc_zmq(:, i, 1) / psi_ref_coef(1,1) * psi_non_ref_coef(i, 1)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii, (N_states, N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2, (N_states, N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2, (N_states,N_det_non_ref) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer :: i, j, i_state
|
||||
!mrmode : 1=mrcepa0, 2=mrsc2 add, 3=mrcc
|
||||
!mrmode : 1=mrcepa0, 2=mrsc2 add, 3=mrcc, 4=stoch
|
||||
if(mrmode == 4) then
|
||||
do i = 1, N_det_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ii(i_state,i)= delta_ii_mrcc_sto(i_state,i)
|
||||
delta_ii_s2(i_state,i)= delta_ii_s2_mrcc_sto(i_state,i)
|
||||
enddo
|
||||
do j = 1, N_det_non_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ij(i_state,j,i) = delta_ij_mrcc_sto(i_state,j,i)
|
||||
delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc_sto(i_state,j,i)
|
||||
delta_ij(i_state,j) = delta_ij_mrcc_sto(i_state,j)
|
||||
delta_ij_s2(i_state,j) = delta_ij_s2_mrcc_sto(i_state,j)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! else if(mrmode == 10) then
|
||||
! do i = 1, N_det_ref
|
||||
! do i_state = 1, N_states
|
||||
! delta_ii(i_state,i)= delta_ii_mrsc2(i_state,i)
|
||||
! delta_ii_s2(i_state,i)= delta_ii_s2_mrsc2(i_state,i)
|
||||
! enddo
|
||||
! do j = 1, N_det_non_ref
|
||||
! do i_state = 1, N_states
|
||||
! delta_ij(i_state,j,i) = delta_ij_mrsc2(i_state,j,i)
|
||||
! delta_ij_s2(i_state,j,i) = delta_ij_s2_mrsc2(i_state,j,i)
|
||||
! delta_ij(i_state,j) = delta_ij_mrsc2(i_state,j)
|
||||
! delta_ij_s2(i_state,j) = delta_ij_s2_mrsc2(i_state,j)
|
||||
! enddo
|
||||
! end do
|
||||
! end do
|
||||
else if(mrmode == 5) then
|
||||
do i = 1, N_det_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ii(i_state,i)= delta_ii_mrcc_zmq(i_state,i)
|
||||
delta_ii_s2(i_state,i)= delta_ii_s2_mrcc_zmq(i_state,i)
|
||||
enddo
|
||||
do j = 1, N_det_non_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ij(i_state,j,i) = delta_ij_mrcc_zmq(i_state,j,i)
|
||||
delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc_zmq(i_state,j,i)
|
||||
delta_ij(i_state,j) = delta_ij_mrcc_zmq(i_state,j)
|
||||
delta_ij_s2(i_state,j) = delta_ij_s2_mrcc_zmq(i_state,j)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
else if(mrmode == 3) then
|
||||
do i = 1, N_det_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ii(i_state,i)= delta_ii_mrcc(i_state,i)
|
||||
delta_ii_s2(i_state,i)= delta_ii_s2_mrcc(i_state,i)
|
||||
enddo
|
||||
do j = 1, N_det_non_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ij(i_state,j,i) = delta_ij_mrcc(i_state,j,i)
|
||||
delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc(i_state,j,i)
|
||||
delta_ij(i_state,j) = delta_ij_mrcc(i_state,j)
|
||||
delta_ij_s2(i_state,j) = delta_ij_s2_mrcc(i_state,j)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
! =-=-= BEGIN STATE AVERAGE
|
||||
! do i = 1, N_det_ref
|
||||
! delta_ii(:,i)= delta_ii_mrcc(1,i)
|
||||
! delta_ii_s2(:,i)= delta_ii_s2_mrcc(1,i)
|
||||
! do i_state = 2, N_states
|
||||
! delta_ii(:,i) += delta_ii_mrcc(i_state,i)
|
||||
! delta_ii_s2(:,i) += delta_ii_s2_mrcc(i_state,i)
|
||||
! enddo
|
||||
! do j = 1, N_det_non_ref
|
||||
! delta_ij(:,j,i) = delta_ij_mrcc(1,j,i)
|
||||
! delta_ij_s2(:,j,i) = delta_ij_s2_mrcc(1,j,i)
|
||||
! do i_state = 2, N_states
|
||||
! delta_ij(:,j,i) += delta_ij_mrcc(i_state,j,i)
|
||||
! delta_ij_s2(:,j,i) += delta_ij_s2_mrcc(i_state,j,i)
|
||||
! enddo
|
||||
! end do
|
||||
! end do
|
||||
! delta_ij = delta_ij * (1.d0/dble(N_states))
|
||||
! delta_ii = delta_ii * (1.d0/dble(N_states))
|
||||
! =-=-= END STATE AVERAGE
|
||||
!
|
||||
! do i = 1, N_det_ref
|
||||
! delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state) - delta_sub_ii(i,i_state)
|
||||
! do j = 1, N_det_non_ref
|
||||
! delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state) - delta_sub_ij(i,j,i_state)
|
||||
! end do
|
||||
! end do
|
||||
else if(mrmode == 2) then
|
||||
do i = 1, N_det_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ii(i_state,i)= delta_ii_old(i_state,i)
|
||||
delta_ii_s2(i_state,i)= delta_ii_s2_old(i_state,i)
|
||||
enddo
|
||||
do j = 1, N_det_non_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ij(i_state,j,i) = delta_ij_old(i_state,j,i)
|
||||
delta_ij_s2(i_state,j,i) = delta_ij_s2_old(i_state,j,i)
|
||||
delta_ij(i_state,j) = delta_ij_old(i_state,j)
|
||||
delta_ij_s2(i_state,j) = delta_ij_s2_old(i_state,j)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
else if(mrmode == 1) then
|
||||
do i = 1, N_det_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state)
|
||||
delta_ii_s2(i_state,i)= delta_mrcepa0_ii_s2(i,i_state)
|
||||
enddo
|
||||
do j = 1, N_det_non_ref
|
||||
do i_state = 1, N_states
|
||||
delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state)
|
||||
delta_ij_s2(i_state,j,i) = delta_mrcepa0_ij_s2(i,j,i_state)
|
||||
delta_ij(i_state,j) = delta_mrcepa0_ij(j,i_state)
|
||||
delta_ij_s2(i_state,j) = delta_mrcepa0_ij_s2(j,i_state)
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
else
|
||||
stop "invalid mrmode"
|
||||
end if
|
||||
|
||||
!if(mrmode == 2 .or. mrmode == 3) then
|
||||
! do i = 1, N_det_ref
|
||||
! do i_state = 1, N_states
|
||||
! delta_ii(i_state,i) += delta_ii_cancel(i_state,i)
|
||||
! enddo
|
||||
! do j = 1, N_det_non_ref
|
||||
! do i_state = 1, N_states
|
||||
! delta_ij(i_state,j,i) += delta_ij_cancel(i_state,j,i)
|
||||
! delta_ij(i_state,j) += delta_ij_cancel(i_state,j)
|
||||
! enddo
|
||||
! end do
|
||||
! end do
|
||||
!end if
|
||||
END_PROVIDER
|
||||
|
||||
@ -1350,10 +1212,8 @@ subroutine getHP(a,h,p,Nint)
|
||||
end subroutine
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij, (N_det_ref,N_det_non_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii, (N_det_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij_s2, (N_det_ref,N_det_non_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii_s2, (N_det_ref,N_states) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij, (N_det_non_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij_s2, (N_det_non_ref,N_states) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
@ -1361,7 +1221,7 @@ end subroutine
|
||||
integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_, sortRefIdx(N_det_ref)
|
||||
logical :: ok
|
||||
double precision :: phase_iI, phase_Ik, phase_Jl, phase_IJ, phase_al, diI, hIi, hJi, delta_JI, dkI(1), HkI, ci_inv(1), dia_hla(1)
|
||||
double precision :: contrib, contrib2, contrib_s2, contrib2_s2, HIIi, HJk, wall
|
||||
double precision :: contrib, contrib_s2, HIIi, HJk, wall
|
||||
integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ
|
||||
integer(bit_kind) :: det_tmp(N_int, 2), made_hole(N_int,2), made_particle(N_int,2), myActive(N_int,2)
|
||||
integer(bit_kind),allocatable :: sortRef(:,:,:)
|
||||
@ -1383,20 +1243,23 @@ end subroutine
|
||||
idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i
|
||||
enddo
|
||||
|
||||
double precision :: c0(N_states)
|
||||
do i_state=1,N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
! To provide everything
|
||||
contrib = dij(1, 1, 1)
|
||||
|
||||
delta_mrcepa0_ii(:,:) = 0d0
|
||||
delta_mrcepa0_ij(:,:,:) = 0d0
|
||||
delta_mrcepa0_ii_s2(:,:) = 0d0
|
||||
delta_mrcepa0_ij_s2(:,:,:) = 0d0
|
||||
delta_mrcepa0_ij(:,:) = 0d0
|
||||
delta_mrcepa0_ij_s2(:,:) = 0d0
|
||||
|
||||
do i_state = 1, N_states
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic) shared(delta_mrcepa0_ij, delta_mrcepa0_ii, delta_mrcepa0_ij_s2, delta_mrcepa0_ii_s2) &
|
||||
!$OMP private(m,i,II,J,k,degree,myActive,made_hole,made_particle,hjk,contrib,contrib2,contrib_s2,contrib2_s2) &
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic) shared(delta_mrcepa0_ij, delta_mrcepa0_ij_s2) &
|
||||
!$OMP private(m,i,II,J,k,degree,myActive,made_hole,made_particle,hjk,contrib,contrib_s2) &
|
||||
!$OMP shared(active_sorb, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef, cepa0_shortcut, det_cepa0_active) &
|
||||
!$OMP shared(N_det_ref, N_det_non_ref,N_int,det_cepa0_idx,lambda_mrcc,det_ref_active, delta_cas, delta_cas_s2) &
|
||||
!$OMP shared(notf,i_state, sortRef, sortRefIdx, dij)
|
||||
!$OMP shared(notf,i_state, sortRef, sortRefIdx, dij,c0)
|
||||
do blok=1,cepa0_shortcut(0)
|
||||
do i=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1
|
||||
do II=1,N_det_ref
|
||||
@ -1436,23 +1299,12 @@ end subroutine
|
||||
!$OMP ATOMIC
|
||||
notf = notf+1
|
||||
|
||||
! call i_h_j(psi_non_ref(1,1,det_cepa0_idx(k)),psi_ref(1,1,J),N_int,HJk)
|
||||
contrib = delta_cas(II, J, i_state)* dij(J, det_cepa0_idx(k), i_state)
|
||||
contrib_s2 = delta_cas_s2(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state)
|
||||
|
||||
if(dabs(psi_ref_coef(J,i_state)).ge.1.d-3) then
|
||||
contrib2 = contrib / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
|
||||
contrib2_s2 = contrib_s2 / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_mrcepa0_ii(J,i_state) -= contrib2
|
||||
delta_mrcepa0_ii_s2(J,i_state) -= contrib2_s2
|
||||
else
|
||||
contrib = contrib * 0.5d0
|
||||
contrib_s2 = contrib_s2 * 0.5d0
|
||||
end if
|
||||
!$OMP ATOMIC
|
||||
delta_mrcepa0_ij(J, det_cepa0_idx(i), i_state) += contrib
|
||||
delta_mrcepa0_ij_s2(J, det_cepa0_idx(i), i_state) += contrib_s2
|
||||
delta_mrcepa0_ij(det_cepa0_idx(i), i_state) += contrib * c0(i_state) * psi_ref_coef(J,i_state)
|
||||
delta_mrcepa0_ij_s2(det_cepa0_idx(i), i_state) += contrib_s2 * c0(i_state) * psi_ref_coef(J,i_state)
|
||||
|
||||
end do kloop
|
||||
end do
|
||||
@ -1467,8 +1319,7 @@ end subroutine
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_sub_ij, (N_det_ref,N_det_non_ref,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_sub_ii, (N_det_ref, N_states) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_sub_ij, (N_det_non_ref,N_states) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
@ -1476,7 +1327,7 @@ END_PROVIDER
|
||||
integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_
|
||||
logical :: ok
|
||||
double precision :: phase_Ji, phase_Ik, phase_Ii
|
||||
double precision :: contrib, contrib2, delta_IJk, HJk, HIk, HIl
|
||||
double precision :: contrib, delta_IJk, HJk, HIk, HIl
|
||||
integer, dimension(0:2,2,2) :: exc_Ik, exc_Ji, exc_Ii
|
||||
integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2)
|
||||
integer, allocatable :: idx_sorted_bit(:)
|
||||
@ -1490,21 +1341,27 @@ END_PROVIDER
|
||||
do i=1,N_det_non_ref
|
||||
idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i
|
||||
enddo
|
||||
|
||||
double precision :: c0(N_states)
|
||||
do i_state=1,N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
do i_state = 1, N_states
|
||||
delta_sub_ij(:,:,:) = 0d0
|
||||
delta_sub_ii(:,:) = 0d0
|
||||
delta_sub_ij(:,:) = 0d0
|
||||
|
||||
provide mo_bielec_integrals_in_map
|
||||
|
||||
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic,10) shared(delta_sub_ij, delta_sub_ii) &
|
||||
!$OMP PARALLEL DO default(none) schedule(dynamic,10) shared(delta_sub_ij) &
|
||||
!$OMP private(i, J, k, degree, degree2, l, deg, ni) &
|
||||
!$OMP private(p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_) &
|
||||
!$OMP private(ok, phase_Ji, phase_Ik, phase_Ii, contrib2, contrib, delta_IJk, HJk, HIk, HIl, exc_Ik, exc_Ji, exc_Ii) &
|
||||
!$OMP private(ok, phase_Ji, phase_Ik, phase_Ii, contrib, delta_IJk, HJk, HIk, HIl, exc_Ik, exc_Ji, exc_Ii) &
|
||||
!$OMP private(det_tmp, det_tmp2, II, blok) &
|
||||
!$OMP shared(idx_sorted_bit, N_det_non_ref, N_det_ref, N_int, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef) &
|
||||
!$OMP shared(i_state,lambda_mrcc, hf_bitmask, active_sorb)
|
||||
!$OMP shared(i_state,lambda_mrcc, hf_bitmask, active_sorb,c0)
|
||||
do i=1,N_det_non_ref
|
||||
if(mod(i,1000) == 0) print *, i, "/", N_det_non_ref
|
||||
do J=1,N_det_ref
|
||||
@ -1551,15 +1408,8 @@ END_PROVIDER
|
||||
call apply_excitation(psi_non_ref(1,1,i),exc_Ik,det_tmp,ok,N_int)
|
||||
if(ok) cycle
|
||||
contrib = delta_IJk * HIl * lambda_mrcc(i_state,l)
|
||||
if(dabs(psi_ref_coef(II,i_state)).ge.1.d-3) then
|
||||
contrib2 = contrib / psi_ref_coef(II, i_state) * psi_non_ref_coef(l,i_state)
|
||||
!$OMP ATOMIC
|
||||
delta_sub_ii(II,i_state) -= contrib2
|
||||
else
|
||||
contrib = contrib * 0.5d0
|
||||
endif
|
||||
!$OMP ATOMIC
|
||||
delta_sub_ij(II, i, i_state) += contrib
|
||||
delta_sub_ij(i, i_state) += contrib* c0(i_state) * psi_ref_coef(II,i_state)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
@ -402,17 +402,15 @@ end
|
||||
|
||||
|
||||
|
||||
subroutine mrsc2_dressing_collector(zmq_socket_pull,delta_ii_,delta_ij_,delta_ii_s2_,delta_ij_s2_)
|
||||
subroutine mrsc2_dressing_collector(zmq_socket_pull,delta_ij_,delta_ij_s2_)
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Collects results from the AO integral calculation
|
||||
END_DOC
|
||||
|
||||
double precision,intent(inout) :: delta_ij_(N_states,N_det_non_ref,N_det_ref)
|
||||
double precision,intent(inout) :: delta_ii_(N_states,N_det_ref)
|
||||
double precision,intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref,N_det_ref)
|
||||
double precision,intent(inout) :: delta_ii_s2_(N_states,N_det_ref)
|
||||
double precision,intent(inout) :: delta_ij_(N_states,N_det_non_ref)
|
||||
double precision,intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref)
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
|
||||
! integer :: j,l
|
||||
@ -431,15 +429,18 @@ subroutine mrsc2_dressing_collector(zmq_socket_pull,delta_ii_,delta_ij_,delta_ii
|
||||
integer :: I_i, J, l, i_state, n(2), kk
|
||||
integer,allocatable :: idx(:,:)
|
||||
|
||||
delta_ii_(:,:) = 0d0
|
||||
delta_ij_(:,:,:) = 0d0
|
||||
delta_ii_s2_(:,:) = 0d0
|
||||
delta_ij_s2_(:,:,:) = 0d0
|
||||
delta_ij_(:,:) = 0d0
|
||||
delta_ij_s2_(:,:) = 0d0
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
allocate ( delta(N_states,0:N_det_non_ref,2), delta_s2(N_states,0:N_det_non_ref,2) )
|
||||
|
||||
double precision :: c0(N_states)
|
||||
do i_state=1,N_states
|
||||
c0(i_state) = 1.d0/psi_coef(dressed_column_idx(i_state),i_state)
|
||||
enddo
|
||||
|
||||
allocate(idx(N_det_non_ref,2))
|
||||
more = 1
|
||||
do while (more == 1)
|
||||
@ -449,34 +450,19 @@ subroutine mrsc2_dressing_collector(zmq_socket_pull,delta_ii_,delta_ij_,delta_ii
|
||||
|
||||
do l=1, n(1)
|
||||
do i_state=1,N_states
|
||||
delta_ij_(i_state,idx(l,1),i_I) += delta(i_state,l,1)
|
||||
delta_ij_s2_(i_state,idx(l,1),i_I) += delta_s2(i_state,l,1)
|
||||
delta_ij_(i_state,idx(l,1)) += delta(i_state,l,1) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
delta_ij_s2_(i_state,idx(l,1)) += delta_s2(i_state,l,1) * psi_ref_coef(i_I,i_state) * c0(i_state)
|
||||
end do
|
||||
end do
|
||||
|
||||
do l=1, n(2)
|
||||
do i_state=1,N_states
|
||||
delta_ij_(i_state,idx(l,2),J) += delta(i_state,l,2)
|
||||
delta_ij_s2_(i_state,idx(l,2),J) += delta_s2(i_state,l,2)
|
||||
delta_ij_(i_state,idx(l,2)) += delta(i_state,l,2) * psi_ref_coef(J,i_state) * c0(i_state)
|
||||
delta_ij_s2_(i_state,idx(l,2)) += delta_s2(i_state,l,2) * psi_ref_coef(J,i_state) * c0(i_state)
|
||||
end do
|
||||
end do
|
||||
|
||||
|
||||
if(n(1) /= 0) then
|
||||
do i_state=1,N_states
|
||||
delta_ii_(i_state,i_I) += delta(i_state,0,1)
|
||||
delta_ii_s2_(i_state,i_I) += delta_s2(i_state,0,1)
|
||||
end do
|
||||
end if
|
||||
|
||||
if(n(2) /= 0) then
|
||||
do i_state=1,N_states
|
||||
delta_ii_(i_state,J) += delta(i_state,0,2)
|
||||
delta_ii_s2_(i_state,J) += delta_s2(i_state,0,2)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
if (task_id /= 0) then
|
||||
integer, external :: zmq_delete_task
|
||||
if (zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more) == -1) then
|
||||
@ -495,10 +481,8 @@ end
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_old, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_old, (N_states,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_old, (N_states,N_det_non_ref,N_det_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ii_s2_old, (N_states,N_det_ref) ]
|
||||
BEGIN_PROVIDER [ double precision, delta_ij_old, (N_states,N_det_non_ref) ]
|
||||
&BEGIN_PROVIDER [ double precision, delta_ij_s2_old, (N_states,N_det_non_ref) ]
|
||||
implicit none
|
||||
|
||||
integer :: i_state, i, i_I, J, k, kk, degree, degree2, m, l, deg, ni, m2
|
||||
@ -612,11 +596,11 @@ end
|
||||
print *, nzer, ntot, float(nzer) / float(ntot)
|
||||
provide nproc
|
||||
!$OMP PARALLEL DEFAULT(none) &
|
||||
!$OMP SHARED(delta_ii_old,delta_ij_old,delta_ii_s2_old,delta_ij_s2_old,zmq_socket_pull)&
|
||||
!$OMP SHARED(delta_ij_old,delta_ij_s2_old,zmq_socket_pull)&
|
||||
!$OMP PRIVATE(i) NUM_THREADS(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call mrsc2_dressing_collector(zmq_socket_pull,delta_ii_old,delta_ij_old,delta_ii_s2_old,delta_ij_s2_old)
|
||||
call mrsc2_dressing_collector(zmq_socket_pull,delta_ij_old,delta_ij_s2_old)
|
||||
else
|
||||
call mrsc2_dressing_slave_inproc(i)
|
||||
endif
|
||||
|
@ -35,6 +35,10 @@ subroutine ZMQ_mrcc(E, mrcc, delta, delta_s2, relative_error)
|
||||
double precision :: w!(N_states)
|
||||
integer, external :: add_task_to_taskserver
|
||||
|
||||
state_average_weight(:) = 0.d0
|
||||
state_average_weight(mrcc_stoch_istate) = 1.d0
|
||||
TOUCH state_average_weight
|
||||
|
||||
|
||||
provide nproc fragment_first fragment_count mo_bielec_integrals_in_map mo_mono_elec_integral mrcc_weight psi_selectors
|
||||
|
||||
|
@ -14,8 +14,6 @@ subroutine run(N_st,energy)
|
||||
|
||||
integer :: n_it_mrcc_max
|
||||
double precision :: thresh_mrcc
|
||||
double precision, allocatable :: lambda(:)
|
||||
allocate (lambda(N_states))
|
||||
|
||||
thresh_mrcc = thresh_dressed_ci
|
||||
n_it_mrcc_max = n_it_max_dressed_ci
|
||||
@ -34,7 +32,6 @@ subroutine run(N_st,energy)
|
||||
E_new = 0.d0
|
||||
delta_E = 1.d0
|
||||
iteration = 0
|
||||
lambda = 1.d0
|
||||
do while (delta_E > thresh_mrcc)
|
||||
iteration += 1
|
||||
print *, '==============================================='
|
||||
@ -45,12 +42,9 @@ subroutine run(N_st,energy)
|
||||
do i=1,N_st
|
||||
call write_double(6,ci_energy_dressed(i),"Energy")
|
||||
enddo
|
||||
call diagonalize_ci_dressed(lambda)
|
||||
call diagonalize_ci_dressed
|
||||
E_new = mrcc_e0_denominator(1) !sum(ci_energy_dressed(1:N_states))
|
||||
|
||||
! if (.true.) then
|
||||
! provide delta_ij_mrcc_pouet
|
||||
! endif
|
||||
delta_E = (E_new - E_old)/dble(N_states)
|
||||
print *, ''
|
||||
call write_double(6,thresh_mrcc,"thresh_mrcc")
|
||||
|
@ -35,19 +35,16 @@ subroutine run_mrcc_slave(thread,iproc,energy)
|
||||
integer(bit_kind) :: mask(N_int,2), omask(N_int,2)
|
||||
|
||||
double precision,allocatable :: delta_ij_loc(:,:,:)
|
||||
double precision,allocatable :: delta_ii_loc(:,:)
|
||||
!double precision,allocatable :: delta_ij_s2_loc(:,:,:)
|
||||
!double precision,allocatable :: delta_ii_s2_loc(:,:)
|
||||
integer :: h,p,n
|
||||
logical :: ok
|
||||
double precision :: contrib(N_states)
|
||||
allocate(delta_ij_loc(N_states,N_det_non_ref,2) &
|
||||
,delta_ii_loc(N_states,2))! &
|
||||
|
||||
allocate(delta_ij_loc(N_states,N_det_non_ref,2) )
|
||||
!,delta_ij_s2_loc(N_states,N_det_non_ref,N_det_ref) &
|
||||
!,delta_ii_s2_loc(N_states, N_det_ref))
|
||||
|
||||
|
||||
allocate(abuf(N_int, 2, N_det_non_ref))
|
||||
allocate(abuf(N_int, 2, N_det_non_ref))
|
||||
|
||||
allocate(mrcc_detail(N_states, N_det_generators))
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
@ -81,9 +78,7 @@ subroutine run_mrcc_slave(thread,iproc,energy)
|
||||
contrib = 0d0
|
||||
i_generator = ind(i_i_generator)
|
||||
delta_ij_loc = 0d0
|
||||
delta_ii_loc = 0d0
|
||||
!delta_ij_s2_loc = 0d0
|
||||
!delta_ii_s2_loc = 0d0
|
||||
!call select_connected(i_generator,energy,mrcc_detail(1, i_i_generator),buf,subset)
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!
|
||||
@ -102,7 +97,7 @@ subroutine run_mrcc_slave(thread,iproc,energy)
|
||||
n = n - 1
|
||||
|
||||
if(n /= 0) then
|
||||
call mrcc_part_dress_1c(delta_ij_loc(1,1,1), delta_ii_loc(1,1), delta_ij_loc(1,1,2), delta_ii_loc(1,2), &
|
||||
call mrcc_part_dress_1c(delta_ij_loc(1,1,1), delta_ij_loc(1,1,2), &
|
||||
i_generator,n,abuf,N_int,omask,contrib)
|
||||
endif
|
||||
end do
|
||||
|
@ -1 +1 @@
|
||||
Integrals_Monoelec Integrals_Bielec
|
||||
Integrals_Monoelec Integrals_Bielec Hartree_Fock
|
||||
|
@ -44,14 +44,12 @@ program print_integrals
|
||||
do l=1,mo_tot_num
|
||||
do k=1,mo_tot_num
|
||||
do j=l,mo_tot_num
|
||||
do i=k,mo_tot_num
|
||||
!if (i>=j) then
|
||||
double precision :: get_mo_bielec_integral
|
||||
integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
if (dabs(integral) > mo_integrals_threshold) then
|
||||
write (iunit,'(4(I6,X),F20.15)') i,j,k,l, integral
|
||||
endif
|
||||
!end if
|
||||
do i=max(j,k),mo_tot_num
|
||||
double precision :: get_mo_bielec_integral
|
||||
integral = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
if (dabs(integral) > mo_integrals_threshold) then
|
||||
write (iunit,'(4(I6,X),E25.15)') i,j,k,l, integral
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
@ -5,8 +5,44 @@ program read_integrals
|
||||
! - nuclear_mo
|
||||
! - bielec_mo
|
||||
END_DOC
|
||||
|
||||
integer :: iunit
|
||||
integer :: getunitandopen
|
||||
integer :: i,j,n
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_set_integrals_monoelec_disk_access_mo_one_integrals("None")
|
||||
|
||||
logical :: has
|
||||
call ezfio_has_mo_basis_mo_tot_num(has)
|
||||
if (.not.has) then
|
||||
|
||||
iunit = getunitandopen('nuclear_mo','r')
|
||||
n=0
|
||||
do
|
||||
read (iunit,*,end=12) i
|
||||
n = max(n,i)
|
||||
enddo
|
||||
12 continue
|
||||
close(iunit)
|
||||
call ezfio_set_mo_basis_mo_tot_num(n)
|
||||
|
||||
call ezfio_has_ao_basis_ao_num(has)
|
||||
mo_label = "None"
|
||||
if (has) then
|
||||
call huckel_guess
|
||||
else
|
||||
call ezfio_set_ao_basis_ao_num(n)
|
||||
double precision, allocatable :: X(:,:)
|
||||
allocate (X(n,n))
|
||||
X = 0.d0
|
||||
do i=1,n
|
||||
X(i,i) = 1.d0
|
||||
enddo
|
||||
call ezfio_set_mo_basis_mo_coef(X)
|
||||
call save_mos
|
||||
endif
|
||||
endif
|
||||
call run
|
||||
end
|
||||
|
||||
@ -69,9 +105,10 @@ subroutine run
|
||||
13 continue
|
||||
close(iunit)
|
||||
|
||||
call insert_into_mo_integrals_map(n_integrals,buffer_i,buffer_values,0.d0)
|
||||
call map_append(mo_integrals_map, buffer_i, buffer_values, n_integrals)
|
||||
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
call ezfio_set_integrals_bielec_disk_access_mo_integrals("Read")
|
||||
|
@ -256,7 +256,7 @@ let spec =
|
||||
|
||||
|
||||
let command =
|
||||
Command.basic
|
||||
Command.basic_spec
|
||||
~summary: "Quantum Package command"
|
||||
~readme:(fun () ->
|
||||
"
|
||||
|
@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Convert a old ezfio file (with option.irp.f ezfio_default)
|
||||
# into a new EZFIO.cfg type
|
||||
|
||||
# Hartree Fock
|
||||
# Changin the case, don't know if is needed or not
|
||||
mv $1/Hartree_Fock $1/hartree_fock 2> /dev/null
|
||||
|
||||
mv $1/hartree_Fock/thresh_SCF $1/hartree_fock/thresh_scf 2> /dev/null
|
||||
|
||||
# BiInts
|
||||
mv $1/bi_integrals $1/bielect_integrals 2> /dev/null
|
||||
|
||||
if [ -f $1/bielect_integrals/read_ao_integrals ]; then
|
||||
if [ `cat $1/bielect_integrals/read_ao_integrals` -eq "True" ]
|
||||
then
|
||||
echo "Read" > $1/bielect_integrals/disk_access_ao_integrals
|
||||
|
||||
elif [ `cat bielect_integrals/write_ao_integrals` -eq "True" ]
|
||||
then
|
||||
echo "Write" > $1/bielect_integrals/disk_access_ao_integrals
|
||||
|
||||
else
|
||||
echo "None" > $1/bielect_integrals/disk_access_ao_integrals
|
||||
|
||||
fi
|
||||
fi
|
19
scripts/qp_upgrade_ocaml.sh
Executable file
19
scripts/qp_upgrade_ocaml.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
OCAML_VERSION="4.06.0"
|
||||
PACKAGES="core.v0.10.0 cryptokit ocamlfind sexplib.v0.10.0 ZMQ ppx_sexp_conv ppx_deriving"
|
||||
|
||||
if [[ -z ${QP_ROOT} ]]
|
||||
then
|
||||
print "The QP_ROOT environment variable is not set."
|
||||
print "Please reload the quantum_package.rc file."
|
||||
exit -1
|
||||
fi
|
||||
|
||||
cd $QP_ROOT/ocaml
|
||||
opam update
|
||||
opam switch ${OCAML_VERSION}
|
||||
eval `opam config env`
|
||||
opam install -y ${PACKAGES} || echo "Upgrade failed. You can try running
|
||||
configure ; $0"
|
||||
|
@ -1 +1 @@
|
||||
Determinants
|
||||
Determinants DavidsonDressed
|
||||
|
@ -65,7 +65,7 @@ END_PROVIDER
|
||||
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_eigenvectors_s2, &
|
||||
size(CI_eigenvectors,1),CI_electronic_energy, &
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,6)
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
|
1
src/DavidsonDressed/NEEDED_CHILDREN_MODULES
Normal file
1
src/DavidsonDressed/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
|
14
src/DavidsonDressed/README.rst
Normal file
14
src/DavidsonDressed/README.rst
Normal file
@ -0,0 +1,14 @@
|
||||
===============
|
||||
DavidsonDressed
|
||||
===============
|
||||
|
||||
Davidson with single-column dressing
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
@ -1,4 +1,17 @@
|
||||
subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,iunit)
|
||||
BEGIN_PROVIDER [ integer, dressed_column_idx, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Index of the dressed columns
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: tmp
|
||||
integer, external :: idamax
|
||||
do i=1,N_states
|
||||
dressed_column_idx(i) = idamax(size(psi_coef,1), psi_coef(1,i), 1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,dressing_state)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -15,41 +28,45 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! iunit : Unit number for the I/O
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint, iunit
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag)
|
||||
double precision, allocatable :: H_jj(:)
|
||||
integer, intent(in) :: dressing_state
|
||||
double precision, allocatable :: H_jj(:), S2_jj(:)
|
||||
|
||||
double precision :: diag_H_mat_elem, diag_S_mat_elem
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
integer :: i
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (Nint == N_int)
|
||||
PROVIDE mo_bielec_integrals_in_map
|
||||
allocate(H_jj(sze) )
|
||||
allocate(H_jj(sze),S2_jj(sze))
|
||||
|
||||
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
|
||||
!$OMP PRIVATE(i)
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do i=1,sze
|
||||
do i=2,sze
|
||||
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
|
||||
deallocate (H_jj)
|
||||
if (dressing_state > 0) then
|
||||
H_jj(dressed_column_idx(dressing_state)) += dressing_column_h(dressed_column_idx(dressing_state),dressing_state)
|
||||
endif
|
||||
|
||||
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,dressing_state)
|
||||
deallocate (H_jj,S2_jj)
|
||||
end
|
||||
|
||||
|
||||
subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
|
||||
subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,dressing_state)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -72,15 +89,13 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
!
|
||||
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
! iunit : Unit for the I/O
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
|
||||
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
integer, intent(in) :: dressing_state
|
||||
double precision, intent(inout) :: s2_out(N_st_diag)
|
||||
integer, intent(in) :: iunit
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
|
||||
@ -88,7 +103,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
integer :: i,j,k,l,m
|
||||
logical :: converged
|
||||
|
||||
double precision :: u_dot_v, u_dot_u
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
@ -101,7 +116,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(3,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2
|
||||
logical :: state_ok(N_st_diag*davidson_sze_max)
|
||||
include 'constants.include.F'
|
||||
@ -117,35 +132,35 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
|
||||
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse
|
||||
|
||||
call write_time(iunit)
|
||||
call write_time(6)
|
||||
call wall_time(wall)
|
||||
call cpu_time(cpu)
|
||||
write(iunit,'(A)') ''
|
||||
write(iunit,'(A)') 'Davidson Diagonalization'
|
||||
write(iunit,'(A)') '------------------------'
|
||||
write(iunit,'(A)') ''
|
||||
call write_int(iunit,N_st,'Number of states')
|
||||
call write_int(iunit,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(iunit,sze,'Number of determinants')
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of determinants')
|
||||
r1 = 8.d0*(3.d0*dble(sze*N_st_diag*itermax+5.d0*(N_st_diag*itermax)**2 &
|
||||
+ 4.d0*(N_st_diag*itermax)+nproc*(4.d0*N_det_alpha_unique+2.d0*N_st_diag*sze)))/(1024.d0**3)
|
||||
call write_double(iunit, r1, 'Memory(Gb)')
|
||||
write(iunit,'(A)') ''
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ =========== ==========='
|
||||
enddo
|
||||
write(iunit,'(A)') write_buffer(1:6+41*N_states)
|
||||
write(6,'(A)') write_buffer(1:6+41*N_states)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy S^2 Residual '
|
||||
enddo
|
||||
write(iunit,'(A)') write_buffer(1:6+41*N_states)
|
||||
write(6,'(A)') write_buffer(1:6+41*N_states)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ =========== ==========='
|
||||
enddo
|
||||
write(iunit,'(A)') write_buffer(1:6+41*N_states)
|
||||
write(6,'(A)') write_buffer(1:6+41*N_states)
|
||||
|
||||
|
||||
allocate( &
|
||||
@ -225,7 +240,21 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
call H_S2_u_0_nstates_openmp(W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
endif
|
||||
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
do istate=1,N_st_diag
|
||||
l = dressed_column_idx(dressing_state)
|
||||
do i=1,sze
|
||||
W(i,shift+istate) += dressing_column_h(i,dressing_state) * U(l,shift+istate)
|
||||
S(i,shift+istate) += dressing_column_s(i,dressing_state) * U(l,shift+istate)
|
||||
W(l,shift+istate) += dressing_column_h(i,dressing_state) * U(i,shift+istate)
|
||||
S(l,shift+istate) += dressing_column_s(i,dressing_state) * U(i,shift+istate)
|
||||
enddo
|
||||
W(l,shift+istate) -= dressing_column_h(l,dressing_state) * U(l,shift+istate)
|
||||
S(l,shift+istate) -= dressing_column_s(l,dressing_state) * U(l,shift+istate)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
@ -399,7 +428,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
endif
|
||||
enddo
|
||||
|
||||
write(iunit,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter, to_print(1:3,1:N_st)
|
||||
write(6,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter, to_print(1:3,1:N_st)
|
||||
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.e8) then
|
||||
@ -429,9 +458,9 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ =========== ==========='
|
||||
enddo
|
||||
write(iunit,'(A)') trim(write_buffer)
|
||||
write(iunit,'(A)') ''
|
||||
call write_time(iunit)
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate ( &
|
||||
W, residual_norm, &
|
||||
@ -443,6 +472,12 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine u_0_H_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
210
src/DavidsonDressed/diagonalize_CI.irp.f
Normal file
210
src/DavidsonDressed/diagonalize_CI.irp.f
Normal file
@ -0,0 +1,210 @@
|
||||
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! N_states lowest eigenvalues of the CI matrix
|
||||
END_DOC
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
call write_time(6)
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
||||
enddo
|
||||
do j=1,min(N_det,N_states)
|
||||
write(st,'(I4)') j
|
||||
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
|
||||
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k,mrcc_state
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=min(N_states,N_det)+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
allocate (eigenvectors(size(CI_eigenvectors_dressed,1),size(CI_eigenvectors_dressed,2)),&
|
||||
eigenvectors_s2(size(CI_eigenvectors_dressed,1),size(CI_eigenvectors_dressed,2)),&
|
||||
eigenvalues(size(CI_electronic_energy_dressed,1)))
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do mrcc_state=1,N_states
|
||||
do j=mrcc_state,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
eigenvectors(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
call davidson_diag_HS2(psi_det,eigenvectors, eigenvectors_s2, &
|
||||
size(eigenvectors,1), &
|
||||
eigenvalues,N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,&
|
||||
mrcc_state)
|
||||
CI_eigenvectors_dressed(1:N_det,mrcc_state) = eigenvectors(1:N_det,mrcc_state)
|
||||
CI_electronic_energy_dressed(mrcc_state) = eigenvalues(mrcc_state)
|
||||
enddo
|
||||
do k=N_states+1,N_states_diag
|
||||
CI_eigenvectors_dressed(1:N_det,k) = eigenvectors(1:N_det,k)
|
||||
CI_electronic_energy_dressed(k) = eigenvalues(k)
|
||||
enddo
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
|
||||
N_states_diag,size(CI_eigenvectors_dressed,1))
|
||||
|
||||
deallocate (eigenvectors,eigenvalues)
|
||||
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int, &
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine diagonalize_CI_dressed
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
|
||||
enddo
|
||||
enddo
|
||||
SOFT_TOUCH psi_coef
|
||||
end
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressed H with Delta_ij
|
||||
END_DOC
|
||||
integer :: i, j,istate,ii,jj
|
||||
do istate = 1,N_states
|
||||
do j=1,N_det
|
||||
do i=1,N_det
|
||||
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
|
||||
enddo
|
||||
enddo
|
||||
i = dressed_column_idx(istate)
|
||||
do j = 1, N_det
|
||||
h_matrix_dressed(i,j,istate) += dressing_column_h(j,istate)
|
||||
h_matrix_dressed(j,i,istate) += dressing_column_h(j,istate)
|
||||
enddo
|
||||
h_matrix_dressed(i,i,istate) -= dressing_column_h(i,istate)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
1
src/DavidsonUndressed/NEEDED_CHILDREN_MODULES
Normal file
1
src/DavidsonUndressed/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
Davidson UndressedMethod
|
14
src/DavidsonUndressed/README.rst
Normal file
14
src/DavidsonUndressed/README.rst
Normal file
@ -0,0 +1,14 @@
|
||||
=================
|
||||
DavidsonUndressed
|
||||
=================
|
||||
|
||||
Module for main files with undressed Davidson
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
@ -368,13 +368,13 @@ BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
|
||||
END_DOC
|
||||
logical :: exists
|
||||
|
||||
state_average_weight = 1.d0
|
||||
state_average_weight(:) = 1.d0
|
||||
call ezfio_has_determinants_state_average_weight(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_determinants_state_average_weight(state_average_weight)
|
||||
endif
|
||||
state_average_weight = state_average_weight+1.d-31
|
||||
state_average_weight = state_average_weight/(sum(state_average_weight))
|
||||
state_average_weight(:) = state_average_weight(:)+1.d-31
|
||||
state_average_weight(:) = state_average_weight(:)/(sum(state_average_weight(:)))
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -225,34 +225,6 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine update_psi_average_norm_contrib(w)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Compute psi_average_norm_contrib for different state average weights w(:)
|
||||
END_DOC
|
||||
double precision, intent(in) :: w(N_states)
|
||||
double precision :: w0(N_states), f
|
||||
w0(:) = w(:)/sum(w(:))
|
||||
|
||||
integer :: i,j,k
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib(i) = psi_coef(i,1)*psi_coef(i,1)*w(1)
|
||||
enddo
|
||||
do k=2,N_states
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib(i) = psi_average_norm_contrib(i) + &
|
||||
psi_coef(i,k)*psi_coef(i,k)*w(k)
|
||||
enddo
|
||||
enddo
|
||||
f = 1.d0/sum(psi_average_norm_contrib(1:N_det))
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib(i) = psi_average_norm_contrib(i)*f
|
||||
enddo
|
||||
SOFT_TOUCH psi_average_norm_contrib
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_average_norm_contrib, (psi_det_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -260,14 +232,12 @@ BEGIN_PROVIDER [ double precision, psi_average_norm_contrib, (psi_det_size) ]
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: f
|
||||
f = 1.d0/dble(N_states)
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib(i) = psi_coef(i,1)*psi_coef(i,1)*f
|
||||
enddo
|
||||
do k=2,N_states
|
||||
|
||||
psi_average_norm_contrib(:) = 0.d0
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib(i) = psi_average_norm_contrib(i) + &
|
||||
psi_coef(i,k)*psi_coef(i,k)*f
|
||||
psi_coef(i,k)*psi_coef(i,k)*state_average_weight(k)
|
||||
enddo
|
||||
enddo
|
||||
f = 1.d0/sum(psi_average_norm_contrib(1:N_det))
|
||||
|
Loading…
Reference in New Issue
Block a user