10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-21 20:52:18 +02:00

Merge branch 'master' of github.com:LCPQ/quantum_package

Conflicts:
	src/MOGuess/NEEDED_MODULES
This commit is contained in:
Manu 2014-06-25 00:14:04 +02:00
commit fee0041769
37 changed files with 606 additions and 379 deletions

View File

@ -27,7 +27,7 @@ filter_integrals
class H_apply(object):
def __init__(self,sub,SingleRef=False):
def __init__(self,sub,SingleRef=False,do_mono_exc=True, do_double_exc=True):
s = {}
for k in keywords:
s[k] = ""
@ -56,6 +56,9 @@ class H_apply(object):
s["omp_do"] = "!$OMP DO SCHEDULE (static)"
s["omp_enddo"] = "!$OMP ENDDO NOWAIT"
d = { True : '.True.', False : '.False.'}
s["do_mono_excitations"] = d[do_mono_exc]
s["do_double_excitations"] = d[do_double_exc]
s["keys_work"] += "call fill_H_apply_buffer_no_selection(key_idx,keys_out,N_int,iproc)"
s["filter_integrals"] = "array_pairs = .True."

View File

@ -93,46 +93,6 @@ END_PROVIDER
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_overlap, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! matrix of the overlap for tha AOs
! S(i,j) = overlap between the ith and the jth atomic basis function
END_DOC
integer :: i,j,k,l,nz,num_i,num_j,powA(3),powB(3)
double precision :: accu,overlap_x,overlap_y,overlap_z,A_center(3),B_center(3),norm
nz=100
do i = 1, ao_num
num_i = ao_nucl(i)
powA(1) = ao_power(i,1)
powA(2) = ao_power(i,2)
powA(3) = ao_power(i,3)
A_center(1)=nucl_coord(num_i,1)
A_center(2)=nucl_coord(num_i,2)
A_center(3)=nucl_coord(num_i,3)
do j = i, ao_num
num_j = ao_nucl(j)
powB(1) = ao_power(j,1)
powB(2) = ao_power(j,2)
powB(3) = ao_power(j,3)
B_center(1)=nucl_coord(num_j,1)
B_center(2)=nucl_coord(num_j,2)
B_center(3)=nucl_coord(num_j,3)
accu = 0.d0
do k = 1, ao_prim_num(i)
do l = 1, ao_prim_num(j)
call overlap_gaussian_xyz(A_center,B_center,ao_expo(i,k),ao_expo(j,l),powA,powB,overlap_x,overlap_y,overlap_z,norm,nz)
accu = accu + norm * ao_coef(i,k) * ao_coef(j,l)
enddo
enddo
ao_overlap(i,j) = accu
ao_overlap(j,i) = accu
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_coef_transp, (ao_prim_num_max_align,ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_expo_transp, (ao_prim_num_max_align,ao_num) ]
implicit none

View File

@ -3,7 +3,7 @@
BEGIN_SHELL [ /usr/bin/env python ]
from generate_h_apply import H_apply
H = H_apply("cisd")
H = H_apply("cisd",do_double_exc=True,do_mono_exc=False)
print H
END_SHELL

View File

@ -36,7 +36,7 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/CISD/cisd_lapack.irp.f#L1>`_
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/CID/cid_lapack.irp.f#L1>`_
Undocumented

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .False.
END_PROVIDER

View File

@ -3,7 +3,7 @@ BEGIN_SHELL [ /usr/bin/env python ]
from generate_h_apply import *
from perturbation import perturbations
s = H_apply("PT2",SingleRef=True)
s = H_apply("PT2",SingleRef=True,do_mono_exc=False,do_double_exc=True)
s.set_perturbation("epstein_nesbet_sc2_projected")
print s
END_SHELL

View File

@ -8,7 +8,7 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`cisd_sc2_selected <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_SC2_selected/cisd_sc2_selection.irp.f#L1>`_
`cisd_sc2_selected <http://github.com/LCPQ/quantum_package/tree/master/src/CID_SC2_selected/cid_sc2_selection.irp.f#L1>`_
Undocumented

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .False.
END_PROVIDER

View File

@ -4,7 +4,7 @@ from generate_h_apply import *
from perturbation import perturbations
for perturbation in perturbations:
s = H_apply("cisd_selection_"+perturbation)
s = H_apply("cisd_selection_"+perturbation,do_mono_exc=False)
s.set_selection_pt2(perturbation)
print s
END_SHELL

View File

@ -8,10 +8,10 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`h_apply_cisd_selection <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/H_apply.irp.f#L13>`_
`h_apply_cisd_selection <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/H_apply.irp.f#L13>`_
Undocumented
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/CISD_selected/cisd_selection.irp.f#L1>`_
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/CID_selected/cid_selection.irp.f#L1>`_
Undocumented

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .False.
END_PROVIDER

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .True.
END_PROVIDER

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .True.
END_PROVIDER

View File

@ -1,19 +0,0 @@
BEGIN_PROVIDER [logical, do_double_excitations]
implicit none
BEGIN_DOC
! if True then the double excitations are performed in the calculation
! always true in the CISD
END_DOC
do_double_excitations = .True.
END_PROVIDER
BEGIN_PROVIDER [logical, do_mono_excitations]
implicit none
BEGIN_DOC
! if True then the mono excitations are performed in the calculation
! always true in the CISD
END_DOC
do_mono_excitations = .True.
END_PROVIDER

View File

@ -209,51 +209,3 @@ END_PROVIDER
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_a, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_b, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix
END_DOC
integer :: j,k,l
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ_alpha
one_body_dm_a = 0.d0
one_body_dm_b = 0.d0
do k=1,det_num
call bitstring_to_list(det_provider(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(det_provider(1,2,k), occ(1,2), n_occ_alpha, N_int)
ck = det_coef_provider(k)
do l=1,elec_alpha_num
j = occ(l,1)
one_body_dm_a(j,j) += ck*ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
one_body_dm_b(j,j) += ck*ck
enddo
do l=1,k-1
call get_excitation_degree(det_provider(1,1,k),det_provider(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(det_provider(1,1,k),det_provider(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
ckl = ck * det_coef_provider(l) * phase
if (s1==1) then
one_body_dm_a(h1,p1) += ckl
one_body_dm_a(p1,h1) += ckl
else
one_body_dm_b(h1,p1) += ckl
one_body_dm_b(p1,h1) += ckl
endif
enddo
enddo
END_PROVIDER

View File

@ -389,7 +389,7 @@ subroutine $subroutine($params_main)
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(i_generator,wall_2,ispin,k,mask)
allocate( mask(N_int,2,6) )
!$OMP DO SCHEDULE(guided)
!$OMP DO SCHEDULE(dynamic,4)
do i_generator=1,nmax
if (abort_here) then
cycle
@ -420,13 +420,13 @@ subroutine $subroutine($params_main)
enddo
enddo
if(do_double_excitations)then
if($do_double_excitations)then
call $subroutine_diexc(psi_generators(1,1,i_generator), &
mask(1,1,d_hole1), mask(1,1,d_part1), &
mask(1,1,d_hole2), mask(1,1,d_part2), &
i_generator $params_post)
endif
if(do_mono_excitations)then
if($do_mono_excitations)then
call $subroutine_monoexc(psi_generators(1,1,i_generator), &
mask(1,1,s_hole ), mask(1,1,s_part ), &
i_generator $params_post)
@ -475,13 +475,13 @@ subroutine $subroutine($params_main)
not(psi_generators(k,ispin,i_generator)) )
enddo
enddo
if(do_double_excitations)then
if($do_double_excitations)then
call $subroutine_diexc(psi_generators(1,1,i_generator), &
mask(1,1,d_hole1), mask(1,1,d_part1), &
mask(1,1,d_hole2), mask(1,1,d_part2), &
i_generator $params_post)
endif
if(do_mono_excitations)then
if($do_mono_excitations)then
call $subroutine_monoexc(psi_generators(1,1,i_generator), &
mask(1,1,s_hole ), mask(1,1,s_part ), &
i_generator $params_post)

View File

@ -50,11 +50,11 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`copy_h_apply_buffer_to_wf <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L113>`_
`copy_h_apply_buffer_to_wf <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L112>`_
Copies the H_apply buffer to psi_coef. You need to touch psi_det, psi_coef and N_det
after calling this function.
`fill_h_apply_buffer_no_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L199>`_
`fill_h_apply_buffer_no_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L198>`_
Fill the H_apply buffer with determiants for CISD
`h_apply_buffer_allocated <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L14>`_
@ -64,7 +64,7 @@ Documentation
`h_apply_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L44>`_
Theshold on | <Di|H|Dj> |
`resize_h_apply_buffer <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L63>`_
`resize_h_apply_buffer <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L62>`_
Undocumented
`cisd_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/SC2.irp.f#L1>`_
@ -152,55 +152,55 @@ Documentation
`davidson_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L374>`_
Can be : [ energy | residual | both | wall_time | cpu_time | iterations ]
`det_search_key <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L273>`_
`det_search_key <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L303>`_
Return an integer*8 corresponding to a determinant index for searching
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L20>`_
Number of determinants in the wave function
`n_det_max_jacobi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L38>`_
`n_det_max_jacobi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L48>`_
Maximum number of determinants diagonalized my jacobi
`n_states <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L3>`_
Number of states to consider
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L186>`_
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L216>`_
Contribution of determinants to the state-averaged density
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L207>`_
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L237>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L150>`_
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L171>`_
The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file
is empty
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L206>`_
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L236>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
`psi_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L237>`_
`psi_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L267>`_
Determinants on which we apply <i|H|psi> for perturbation.
o They are sorted by determinants interpreted as integers. Useful
to accelerate the search of a determinant
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L64>`_
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L84>`_
The wave function determinants. Initialized with Hartree-Fock if the EZFIO file
is empty
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L56>`_
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L66>`_
Size of the psi_det/psi_coef arrays
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L205>`_
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L235>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
`psi_det_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L236>`_
`psi_det_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L266>`_
Determinants on which we apply <i|H|psi> for perturbation.
o They are sorted by determinants interpreted as integers. Useful
to accelerate the search of a determinant
`read_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L107>`_
`read_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L127>`_
Reads the determinants from the EZFIO file
`save_wavefunction <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L288>`_
`save_wavefunction <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L318>`_
Save the wave function into the EZFIO file
`double_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L40>`_
@ -237,19 +237,22 @@ Documentation
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`ci_sc2_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L19>`_
`ci_sc2_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L27>`_
Eigenvectors/values of the CI matrix
`ci_sc2_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L18>`_
`ci_sc2_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L26>`_
Eigenvectors/values of the CI matrix
`ci_sc2_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L1>`_
N_states lowest eigenvalues of the CI matrix
`diagonalize_ci_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L38>`_
`diagonalize_ci_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L46>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`threshold_convergence_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/diagonalize_CI_SC2.irp.f#L18>`_
convergence of the correlation energy of SC2 iterations
`filter_connected <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/filter_connected.irp.f#L2>`_
Filters out the determinants that are not connected by H
.br

View File

@ -0,0 +1,106 @@
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix for each state
END_DOC
integer :: j,k,l,m
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ_alpha
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
one_body_dm_mo_alpha = 0.d0
one_body_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, &
!$OMP tmp_a, tmp_b, n_occ_alpha)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,&
!$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,&
!$OMP mo_tot_num)
allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
do k=1,N_det
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
do m=1,N_states
ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j) += ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j) += ck
enddo
enddo
do l=1,k-1
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m)
if (s1==1) then
tmp_a(h1,p1) += ckl
tmp_a(p1,h1) += ckl
else
tmp_b(h1,p1) += ckl
tmp_b(p1,h1) += ckl
endif
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_body_dm_mo_alpha = one_body_dm_mo_alpha + tmp_a
!$OMP END CRITICAL
!$OMP CRITICAL
one_body_dm_mo_beta = one_body_dm_mo_beta + tmp_b
!$OMP END CRITICAL
deallocate(tmp_a,tmp_b)
!$OMP BARRIER
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! One-body density matrix
END_DOC
one_body_dm_mo = one_body_dm_mo_alpha + one_body_dm_mo_beta
END_PROVIDER
subroutine save_natural_mos
implicit none
BEGIN_DOC
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:)
allocate(tmp(size(one_body_dm_mo,1),size(one_body_dm_mo,2)))
! Negation to have the occupied MOs first after the diagonalization
tmp = -one_body_dm_mo
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label)
deallocate(tmp)
call save_mos
end
BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights in the state-average calculation of the density matrix
END_DOC
state_average_weight = 1.d0/dble(N_states)
END_PROVIDER

View File

@ -0,0 +1,4 @@
program save_natorb
call save_natural_mos
end

View File

@ -25,14 +25,14 @@ program cisd
exit
endif
enddo
print *, 'Final step'
call remove_small_contributions
call diagonalize_CI
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
! print *, 'Final step'
! call remove_small_contributions
! call diagonalize_CI
! print *, 'N_det = ', N_det
! print *, 'N_states = ', N_states
! print *, 'PT2 = ', pt2
! print *, 'E = ', CI_energy
! print *, 'E+PT2 = ', CI_energy+pt2
! print *, '-----'
deallocate(pt2,norm_pert)
end

View File

@ -47,7 +47,13 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_generators, (N_int,2,psi_det_size) ]
! For Single reference wave functions, the generator is the
! Hartree-Fock determinant
END_DOC
psi_generators = psi_det_sorted
integer :: i, k
do i=1,N_det
do k=1,N_int
psi_generators(k,1,i) = psi_det_sorted(k,1,i)
psi_generators(k,2,i) = psi_det_sorted(k,2,i)
enddo
enddo
END_PROVIDER

View File

@ -217,3 +217,46 @@ BEGIN_PROVIDER [ double precision, HF_energy ]
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num_align, ao_num) ]
implicit none
BEGIN_DOC
! Fock matrix in AO basis set
END_DOC
if (elec_alpha_num == elec_beta_num) then
integer :: i,j
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num_align
Fock_matrix_ao(i,j) = Fock_matrix_alpha_ao(i,j)
enddo
enddo
else
double precision, allocatable :: T(:,:), M(:,:)
! F_ao = S C F_mo C^t S
allocate (T(mo_tot_num_align,mo_tot_num),M(ao_num_align,mo_tot_num))
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
ao_overlap, size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
M, size(M,1), &
Fock_matrix_mo, size(Fock_matrix_mo,1), &
0.d0, &
T, size(T,1))
call dgemm('N','T', mo_tot_num,ao_num,mo_tot_num, 1.d0, &
T, size(T,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
M, size(M,1), &
ao_overlap, size(ao_overlap,1), &
0.d0, &
Fock_matrix_ao, size(Fock_matrix_ao,1))
deallocate(T)
endif
END_PROVIDER

View File

@ -1,46 +1,27 @@
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_alpha, (ao_num_align,ao_num) ]
&BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_beta, (ao_num_align,ao_num) ]
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_alpha, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! Alpha and Beta density matrix in the AO basis
! Alpha density matrix in the AO basis
END_DOC
integer :: i,j,k,l1,l2
integer, allocatable :: mo_occ(:,:)
allocate ( mo_occ(elec_alpha_num,2) )
call bitstring_to_list( HF_bitmask(1,1), mo_occ(1,1), j, N_int)
ASSERT ( j==elec_alpha_num )
call dgemm('N','T',ao_num,ao_num,elec_alpha_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
HF_density_matrix_ao_alpha, size(HF_density_matrix_ao_alpha,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao_beta, (ao_num_align,ao_num) ]
implicit none
BEGIN_DOC
! Beta density matrix in the AO basis
END_DOC
call bitstring_to_list( HF_bitmask(1,2), mo_occ(1,2), j, N_int)
ASSERT ( j==elec_beta_num )
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num_align
HF_density_matrix_ao_alpha(i,j) = 0.d0
HF_density_matrix_ao_beta (i,j) = 0.d0
enddo
do k=1,elec_beta_num
l1 = mo_occ(k,1)
l2 = mo_occ(k,2)
!DIR$ VECTOR ALIGNED
do i=1,ao_num
HF_density_matrix_ao_alpha(i,j) = HF_density_matrix_ao_alpha(i,j) +&
mo_coef(i,l1) * mo_coef(j,l1)
HF_density_matrix_ao_beta (i,j) = HF_density_matrix_ao_beta (i,j) +&
mo_coef(i,l2) * mo_coef(j,l2)
enddo
enddo
do k=elec_beta_num+1,elec_alpha_num
l1 = mo_occ(k,1)
!DIR$ VECTOR ALIGNED
do i=1,ao_num
HF_density_matrix_ao_alpha(i,j) = HF_density_matrix_ao_alpha(i,j) +&
mo_coef(i,l1) * mo_coef(j,l1)
enddo
enddo
enddo
deallocate(mo_occ)
call dgemm('N','T',ao_num,ao_num,elec_beta_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
HF_density_matrix_ao_beta, size(HF_density_matrix_ao_beta,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_density_matrix_ao, (ao_num_align,ao_num) ]
@ -48,40 +29,13 @@ BEGIN_PROVIDER [ double precision, HF_density_matrix_ao, (ao_num_align,ao_num) ]
BEGIN_DOC
! Density matrix in the AO basis
END_DOC
integer :: i,j,k,l1,l2
integer, allocatable :: mo_occ(:,:)
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_alpha,1))
if (elec_alpha_num== elec_beta_num) then
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_alpha
else
ASSERT (size(HF_density_matrix_ao,1) == size(HF_density_matrix_ao_beta ,1))
HF_density_matrix_ao = HF_density_matrix_ao_alpha + HF_density_matrix_ao_beta
endif
allocate ( mo_occ(elec_alpha_num,2) )
call bitstring_to_list( HF_bitmask(1,1), mo_occ(1,1), j, N_int)
ASSERT ( j==elec_alpha_num )
call bitstring_to_list( HF_bitmask(1,2), mo_occ(1,2), j, N_int)
ASSERT ( j==elec_beta_num )
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num_align
HF_density_matrix_ao(i,j) = 0.d0
enddo
do k=1,elec_beta_num
l1 = mo_occ(k,1)
l2 = mo_occ(k,2)
!DIR$ VECTOR ALIGNED
do i=1,ao_num
HF_density_matrix_ao(i,j) = HF_density_matrix_ao(i,j) + &
mo_coef(i,l1) * mo_coef(j,l1) + &
mo_coef(i,l2) * mo_coef(j,l2)
enddo
enddo
do k=elec_beta_num+1,elec_alpha_num
l1 = mo_occ(k,1)
!DIR$ VECTOR ALIGNED
do i=1,ao_num
HF_density_matrix_ao(i,j) = HF_density_matrix_ao(i,j) + &
mo_coef(i,l1) * mo_coef(j,l1)
enddo
enddo
enddo
deallocate(mo_occ)
END_PROVIDER

View File

@ -32,6 +32,9 @@ Documentation
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/Fock_matrix.irp.f#L172>`_
Fock matrix on the MO basis
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/Fock_matrix.irp.f#L220>`_
Fock matrix in AO basis set
`fock_matrix_beta_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/Fock_matrix.irp.f#L84>`_
Alpha Fock matrix in AO basis set
@ -71,14 +74,35 @@ Documentation
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/Fock_matrix.irp.f#L211>`_
Hartree-Fock energy
`hf_density_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/HF_density_matrix_ao.irp.f#L46>`_
`hf_density_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/HF_density_matrix_ao.irp.f#L27>`_
Density matrix in the AO basis
`hf_density_matrix_ao_alpha <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/HF_density_matrix_ao.irp.f#L1>`_
Alpha and Beta density matrix in the AO basis
Alpha density matrix in the AO basis
`hf_density_matrix_ao_beta <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/HF_density_matrix_ao.irp.f#L2>`_
Alpha and Beta density matrix in the AO basis
`hf_density_matrix_ao_beta <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/HF_density_matrix_ao.irp.f#L14>`_
Beta density matrix in the AO basis
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L31>`_
Undocumented
`insert_new_scf_density_matrix <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L19>`_
Undocumented
`it_scf <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L1>`_
Number of the current SCF iteration
`scf_density_matrices <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L9>`_
Density matrices at every SCF iteration
`scf_energies <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L10>`_
Density matrices at every SCF iteration
`scf_interpolation_step <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L64>`_
Undocumented
`scf_iterations <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/SCF.irp.f#L89>`_
Undocumented
`diagonal_fock_matrix_mo <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/diagonalize_fock.irp.f#L1>`_
Diagonal Fock matrix in the MO basis
@ -86,13 +110,16 @@ Documentation
`eigenvectors_fock_matrix_mo <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/diagonalize_fock.irp.f#L2>`_
Diagonal Fock matrix in the MO basis
`scf_iteration <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/mo_SCF_iterations.irp.f#L1>`_
`run <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/mo_SCF_iterations.irp.f#L7>`_
Undocumented
`do_diis <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/options.irp.f#L41>`_
`scf <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/mo_SCF_iterations.irp.f#L2>`_
Undocumented
`do_diis <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/options.irp.f#L39>`_
If True, compute integrals on the fly
`n_it_scf_max <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/options.irp.f#L22>`_
`n_it_scf_max <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/options.irp.f#L21>`_
Maximum number of SCF iterations
`thresh_scf <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock/options.irp.f#L1>`_

108
src/Hartree_Fock/SCF.irp.f Normal file
View File

@ -0,0 +1,108 @@
BEGIN_PROVIDER [ integer, it_scf ]
implicit none
BEGIN_DOC
! Number of the current SCF iteration
END_DOC
it_scf = 0
END_PROVIDER
BEGIN_PROVIDER [ double precision, SCF_density_matrices, (ao_num_align,ao_num,2,n_it_scf_max) ]
&BEGIN_PROVIDER [ double precision, SCF_energies, (n_it_scf_max) ]
implicit none
BEGIN_DOC
! Density matrices at every SCF iteration
END_DOC
SCF_density_matrices = 0.d0
SCF_energies = 0.d0
END_PROVIDER
subroutine insert_new_SCF_density_matrix
implicit none
integer :: i,j
do j=1,ao_num
do i=1,ao_num
SCF_density_matrices(i,j,1,it_scf) = HF_density_matrix_ao_alpha(i,j)
SCF_density_matrices(i,j,2,it_scf) = HF_density_matrix_ao_beta(i,j)
enddo
enddo
SCF_energies(it_scf) = HF_energy
end
subroutine Fock_mo_to_ao(FMO,LDFMO,FAO,LDFAO)
implicit none
integer, intent(in) :: LDFMO ! size(FMO,1)
integer, intent(in) :: LDFAO ! size(FAO,1)
double precision, intent(in) :: FMO(LDFMO,*)
double precision, intent(out) :: FAO(LDFAO,*)
double precision, allocatable :: T(:,:), M(:,:)
! F_ao = S C F_mo C^t S
allocate (T(mo_tot_num_align,mo_tot_num),M(ao_num_align,mo_tot_num))
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
ao_overlap, size(ao_overlap,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
call dgemm('N','N', ao_num,mo_tot_num,mo_tot_num, 1.d0, &
M, size(M,1), &
FMO, size(FMO,1), &
0.d0, &
T, size(T,1))
call dgemm('N','T', mo_tot_num,ao_num,mo_tot_num, 1.d0, &
T, size(T,1), &
mo_coef, size(mo_coef,1), &
0.d0, &
M, size(M,1))
call dgemm('N','N', ao_num,ao_num,ao_num, 1.d0, &
M, size(M,1), &
ao_overlap, size(ao_overlap,1), &
0.d0, &
FAO, size(FAO,1))
deallocate(T,M)
end
subroutine SCF_interpolation_step
implicit none
integer :: i,j
double precision :: c
if (it_scf == 1) then
return
endif
call random_number(c)
c = c*0.5d0
do j=1,ao_num
do i=1,ao_num
HF_density_matrix_ao_alpha(i,j) = c*SCF_density_matrices(i,j,1,it_scf-1)+SCF_density_matrices(i,j,1,it_scf) * (1.d0 - c)
HF_density_matrix_ao_beta (i,j) = c*SCF_density_matrices(i,j,2,it_scf-1)+SCF_density_matrices(i,j,2,it_scf) * (1.d0 - c)
enddo
enddo
TOUCH HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
! call Fock_mo_to_ao(Fock_matrix_mo_alpha, size(Fock_matrix_mo_alpha,1),&
! Fock_matrix_alpha_ao, size(Fock_matrix_alpha_ao,1) )
! call Fock_mo_to_ao(Fock_matrix_mo_beta, size(Fock_matrix_mo_beta,1),&
! Fock_matrix_beta_ao, size(Fock_matrix_beta_ao,1) )
! SOFT_TOUCH Fock_matrix_alpha_ao Fock_matrix_beta_ao Fock_matrix_mo_alpha Fock_matrix_mo_beta
end
subroutine scf_iterations
implicit none
integer :: i,j
do i=1,n_it_scf_max
it_scf += 1
SOFT_TOUCH it_scf
mo_coef = eigenvectors_Fock_matrix_mo
TOUCH mo_coef
call insert_new_SCF_density_matrix
print *, HF_energy
if (SCF_energies(it_scf)>SCF_energies(it_scf-1)) then
call SCF_interpolation_step
endif
if (it_scf>1 ) then
if (dabs(SCF_energies(it_scf)-SCF_energies(it_scf-1)) < thresh_SCF) then
exit
endif
endif
enddo
end

View File

@ -5,16 +5,52 @@
! Diagonal Fock matrix in the MO basis
END_DOC
double precision, allocatable :: R(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: R
integer :: i,j
integer :: liwork, lwork, n, info
integer, allocatable :: iwork(:)
double precision, allocatable :: work(:), F(:,:), S(:,:)
allocate(R(mo_tot_num_align,mo_tot_num))
allocate(F(ao_num_align,ao_num), S(ao_num_align,ao_num) )
do j=1,ao_num
do i=1,ao_num
S(i,j) = ao_overlap(i,j)
F(i,j) = Fock_matrix_ao(i,j)
enddo
enddo
n = ao_num
lwork = 1+6*n + 2*n*n
liwork = 3 + 5*n
call lapack_diag(diagonal_Fock_matrix_mo,R,Fock_matrix_mo,size(Fock_matrix_mo,1),&
mo_tot_num)
call dgemm('N','N',ao_num,mo_tot_num,mo_tot_num,1.d0,mo_coef,size(mo_coef,1),&
R,size(R,1),0.d0,eigenvectors_Fock_matrix_mo,size(eigenvectors_Fock_matrix_mo,1))
deallocate(R)
allocate(work(lwork), iwork(liwork) )
lwork = -1
liwork = -1
call dsygvd(1,'v','u',mo_tot_num,F,size(F,1),S,size(S,1),&
diagonal_Fock_matrix_mo, work, lwork, iwork, liwork, info)
if (info /= 0) then
print *, irp_here//' failed'
stop 1
endif
lwork = int(work(1))
liwork = iwork(1)
deallocate(work,iwork)
allocate(work(lwork), iwork(liwork) )
call dsygvd(1,'v','u',mo_tot_num,F,size(F,1),S,size(S,1),&
diagonal_Fock_matrix_mo, work, lwork, iwork, liwork, info)
if (info /= 0) then
print *, irp_here//' failed'
stop 1
endif
do j=1,ao_num
do i=1,ao_num
eigenvectors_Fock_matrix_mo(i,j) = F(i,j)
enddo
enddo
deallocate(work, iwork, F, S)
END_PROVIDER

View File

@ -1,35 +1,21 @@
program scf_iteration
program scf
call orthonormalize_mos
call run
end
subroutine run
use bitmasks
implicit none
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem,get_mo_bielec_integral
double precision :: E0
integer :: i_it
integer :: i_it, i, j, k
E0 = HF_energy
i_it = 0
n_it_scf_max = 10
SCF_energy_before = huge(1.d0)
SCF_energy_after = E0
print *, E0
mo_label = "Canonical"
thresh_SCF = 1.d-10
do while (i_it < 40 .and. dabs(SCF_energy_before - SCF_energy_after) > thresh_SCF)
SCF_energy_before = SCF_energy_after
mo_coef = eigenvectors_Fock_matrix_mo
TOUCH mo_coef mo_label
call clear_mo_map
SCF_energy_after = HF_energy
print*,SCF_energy_after, dabs(SCF_energy_before - SCF_energy_after)
i_it +=1
if(i_it > n_it_scf_max)exit
enddo
if (i_it >= n_it_scf_max) then
stop 'Failed'
endif
if (SCF_energy_after - E0 > thresh_SCF) then
stop 'Failed'
endif
thresh_SCF = 1.d-10
call damping_SCF
mo_label = "Canonical"
TOUCH mo_label mo_coef
call save_mos

View File

@ -22,19 +22,19 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`h_core_guess <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/H_CORE_guess.irp.f#L1>`_
`h_core_guess <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/H_CORE_guess.irp.f#L/subroutine h_core_guess/;">`_
Undocumented
`ao_ortho_lowdin_coef <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/mo_ortho_lowdin.irp.f#L2>`_
`ao_ortho_lowdin_coef <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/mo_ortho_lowdin.irp.f#L/BEGIN_PROVIDER [double precision, ao_ortho_lowdin_coef, (ao_num_align,ao_num)]/;">`_
matrix of the coefficients of the mos generated by the
orthonormalization by the S^{-1/2} canonical transformation of the aos
ao_ortho_lowdin_coef(i,j) = coefficient of the ith ao on the jth ao_ortho_lowdin orbital
`ao_ortho_lowdin_overlap <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/mo_ortho_lowdin.irp.f#L26>`_
`ao_ortho_lowdin_overlap <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/mo_ortho_lowdin.irp.f#L/BEGIN_PROVIDER [double precision, ao_ortho_lowdin_overlap, (ao_num_align,ao_num)]/;">`_
overlap matrix of the ao_ortho_lowdin
supposed to be the Identity
`ao_ortho_lowdin_nucl_elec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/pot_mo_ortho_lowdin_ints.irp.f#L1>`_
`ao_ortho_lowdin_nucl_elec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/MOGuess/pot_mo_ortho_lowdin_ints.irp.f#L/BEGIN_PROVIDER [double precision, ao_ortho_lowdin_nucl_elec_integral, (mo_tot_num_align,mo_tot_num)]/;">`_
Undocumented

View File

@ -1 +1 @@
AOs Ezfio_files Nuclei Output Utils
AOs Ezfio_files Nuclei Output Utils Electrons

View File

@ -27,6 +27,7 @@ Needed Modules
* `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_
* `Output <http://github.com/LCPQ/quantum_package/tree/master/src/Output>`_
* `Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils>`_
* `Electrons <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons>`_
Documentation
=============
@ -34,12 +35,19 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`cholesky_mo <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/cholesky_mo.irp.f#L1>`_
Cholesky decomposition of MO Density matrix to
generate MOs
`mo_density_matrix <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/cholesky_mo.irp.f#L44>`_
Density matrix in MO basis
`mo_coef <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L22>`_
Molecular orbital coefficients on AO basis set
mo_coef(i,j) = coefficient of the ith ao on the jth mo
mo_label : Label characterizing the MOS (local, canonical, natural, etc)
`mo_coef_transp <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L61>`_
`mo_coef_transp <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L60>`_
Molecular orbital coefficients on AO basis set
`mo_label <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L23>`_
@ -47,13 +55,16 @@ Documentation
mo_coef(i,j) = coefficient of the ith ao on the jth mo
mo_label : Label characterizing the MOS (local, canonical, natural, etc)
`mo_occ <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L78>`_
MO occupation numbers
`mo_tot_num <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L1>`_
Total number of molecular orbitals and the size of the keys corresponding
`mo_tot_num_align <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/mos.irp.f#L12>`_
Aligned variable for dimensioning of arrays
`mo_as_eigvectors_of_mo_matrix <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/utils.irp.f#L21>`_
`mo_as_eigvectors_of_mo_matrix <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/utils.irp.f#L22>`_
Undocumented
`save_mos <http://github.com/LCPQ/quantum_package/tree/master/src/MOs/utils.irp.f#L1>`_

80
src/MOs/cholesky_mo.irp.f Normal file
View File

@ -0,0 +1,80 @@
subroutine cholesky_mo(n,m,P,LDP,C,LDC,tol_in,rank)
implicit none
BEGIN_DOC
! Cholesky decomposition of AO Density matrix to
! generate MOs
END_DOC
integer, intent(in) :: n,m, LDC, LDP
double precision, intent(in) :: P(LDP,n)
double precision, intent(out) :: C(LDC,m)
double precision, intent(in) :: tol_in
integer, intent(out) :: rank
integer :: info
integer :: i,k
integer :: ipiv(n)
double precision:: tol
double precision, allocatable :: W(:,:), work(:)
!DEC$ ATTRIBUTES ALIGN: 32 :: W
!DEC$ ATTRIBUTES ALIGN: 32 :: work
!DEC$ ATTRIBUTES ALIGN: 32 :: ipiv
allocate(W(LDC,n),work(2*n))
tol=tol_in
info = 0
do i=1,n
do k=1,i
W(i,k) = P(i,k)
enddo
do k=i+1,n
W(i,k) = 0.
enddo
enddo
call DPSTRF('L', n, W, LDC, ipiv, rank, tol, work, info )
do i=1,n
do k=1,min(m,rank)
C(ipiv(i),k) = W(i,k)
enddo
enddo
deallocate(W,work)
end
BEGIN_PROVIDER [ double precision, mo_density_matrix, (mo_tot_num_align, mo_tot_num) ]
implicit none
BEGIN_DOC
! Density matrix in MO basis
END_DOC
integer :: i,j,k
mo_density_matrix = 0.d0
do k=1,mo_tot_num
if (mo_occ(k) == 0.d0) then
cycle
endif
do j=1,ao_num
do i=1,ao_num
mo_density_matrix(i,j) = mo_density_matrix(i,j) + &
mo_occ(k) * mo_coef(i,k) * mo_coef(j,k)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_density_matrix_virtual, (mo_tot_num_align, mo_tot_num) ]
implicit none
BEGIN_DOC
! Density matrix in MO basis (virtual MOs)
END_DOC
integer :: i,j,k
mo_density_matrix_virtual = 0.d0
do k=1,mo_tot_num
do j=1,ao_num
do i=1,ao_num
mo_density_matrix_virtual(i,j) = mo_density_matrix_virtual(i,j) + &
(2.d0-mo_occ(k)) * mo_coef(i,k) * mo_coef(j,k)
enddo
enddo
enddo
END_PROVIDER

View File

@ -1,5 +1,7 @@
mo_basis
ao_num integer
mo_tot_num integer
mo_coef double precision (ao_basis_ao_num,mo_basis_mo_tot_num)
mo_label character*(64)
mo_occ double precision (mo_basis_mo_tot_num)

View File

@ -32,7 +32,7 @@ END_PROVIDER
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: buffer
logical :: exists
PROVIDE ezfio_filename
!Label
call ezfio_has_mo_basis_mo_label(exists)
if (exists) then
@ -40,7 +40,7 @@ END_PROVIDER
else
mo_label = 'no_label'
endif
! Coefs
allocate(buffer(ao_num,mo_tot_num))
buffer = 0.d0
@ -75,3 +75,25 @@ BEGIN_PROVIDER [ double precision, mo_coef_transp, (mo_tot_num_align,ao_num) ]
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_occ, (mo_tot_num) ]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
PROVIDE ezfio_filename
logical :: exists
call ezfio_has_mo_basis_mo_occ(exists)
if (exists) then
call ezfio_get_mo_basis_mo_occ(mo_occ)
else
mo_occ = 0.d0
integer :: i
do i=1,elec_beta_num
mo_occ(i) = 2.d0
enddo
do i=elec_beta_num+1,elec_alpha_num
mo_occ(i) = 1.d0
enddo
endif
END_PROVIDER

View File

@ -14,6 +14,7 @@ subroutine save_mos
enddo
enddo
call ezfio_set_mo_basis_mo_coef(buffer)
call ezfio_set_mo_basis_mo_occ(mo_occ)
deallocate (buffer)
end
@ -27,21 +28,31 @@ subroutine mo_as_eigvectors_of_mo_matrix(matrix,n,m,label)
double precision, allocatable :: mo_coef_new(:,:), R(:,:),eigvalues(:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, R
call write_time(output_mos)
if (m /= mo_tot_num) then
print *, irp_here, ': Error : m/= mo_tot_num'
stop 1
endif
allocate(R(n,m))
allocate(mo_coef_new(ao_num_align,m),eigvalues(m))
allocate(R(n,m),mo_coef_new(ao_num_align,m),eigvalues(m))
mo_coef_new = mo_coef
call lapack_diag(eigvalues,R,matrix,size(matrix,1),size(matrix,2))
integer :: i
write (output_mos,'(A)'), 'MOs are now **'//trim(label)//'**'
write (output_mos,'(A)'), ''
write (output_mos,'(A)'), 'Eigenvalues'
write (output_mos,'(A)'), '-----------'
write (output_mos,'(A)'), ''
write (output_mos,'(A)'), '======== ================'
do i = 1, m
print*,'eigvalues(i) = ',eigvalues(i)
write (output_mos,'(I8,X,F16.10)'), i,eigvalues(i)
enddo
write (output_mos,'(A)'), '======== ================'
write (output_mos,'(A)'), ''
call dgemm('N','N',ao_num,m,m,1.d0,mo_coef_new,size(mo_coef_new,1),R,size(R,1),0.d0,mo_coef,size(mo_coef,1))
deallocate(mo_coef_new,R,eigvalues)
call write_time(output_mos)
mo_label = label
SOFT_TOUCH mo_coef mo_label

View File

@ -1 +1 @@
AOs Ezfio_files MOs Nuclei Output Utils
AOs Electrons Ezfio_files MOs Nuclei Output Utils

View File

@ -5,6 +5,7 @@ Needed Modules
.. NEEDED_MODULES file.
* `AOs <http://github.com/LCPQ/quantum_package/tree/master/src/AOs>`_
* `Electrons <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons>`_
* `Ezfio_files <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files>`_
* `MOs <http://github.com/LCPQ/quantum_package/tree/master/src/MOs>`_
* `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_

View File

@ -82,7 +82,7 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`pt2_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/Moller_plesset.irp.f#L1>`_
`pt2_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/Moller_plesset.irp.f#L/subroutine pt2_moller_plesset(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the standard Moller-Plesset perturbative first order coefficient and second order energetic contribution
.br
for the various n_st states.
@ -92,7 +92,7 @@ Documentation
e_2_pert(i) = <psi(i)|H|det_pert>^2/(difference of orbital energies)
.br
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L1>`_
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)/;">`_
compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states.
@ -102,7 +102,7 @@ Documentation
e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
.br
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L40>`_
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet_2x2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)/;">`_
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
.br
for the various N_st states.
@ -112,20 +112,46 @@ Documentation
c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
.br
`fill_h_apply_buffer_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L1>`_
`pt2_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/pert_sc2.irp.f#L/subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)/;">`_
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states,
.br
but with the correction in the denominator
.br
comming from the interaction of that determinant with all the others determinants
.br
that can be repeated by repeating all the double excitations
.br
: you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
.br
that could be repeated to this determinant.
.br
In addition, for the perturbative energetic contribution you have the standard second order
.br
e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
.br
and also the purely projected contribution
.br
H_pert_diag = <HF|H|det_pert> c_pert
`repeat_all_e_corr <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/pert_sc2.irp.f#L/double precision function repeat_all_e_corr(key_in)/;">`_
Undocumented
`fill_h_apply_buffer_selection <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L/subroutine fill_H_apply_buffer_selection(n_selected,det_buffer,e_2_pert_buffer,coef_pert_buffer, &>`_
Fill the H_apply buffer with determiants for the selection
`remove_small_contributions <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L81>`_
`remove_small_contributions <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L/subroutine remove_small_contributions/;">`_
Remove determinants with small contributions. N_states is assumed to be
provided.
`selection_criterion <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L68>`_
`selection_criterion <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L/BEGIN_PROVIDER [ double precision, selection_criterion ]/;">`_
Threshold to select determinants. Set by selection routines.
`selection_criterion_factor <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L70>`_
`selection_criterion_factor <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L/&BEGIN_PROVIDER [ double precision, selection_criterion_factor ]/;">`_
Threshold to select determinants. Set by selection routines.
`selection_criterion_min <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L69>`_
`selection_criterion_min <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/selection.irp.f#L/&BEGIN_PROVIDER [ double precision, selection_criterion_min ]/;">`_
Threshold to select determinants. Set by selection routines.