10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-26 07:02:14 +02:00

FIxed Davidson

This commit is contained in:
Anthony Scemama 2016-09-25 22:14:17 +02:00
parent 7f60089223
commit f75ce67a87
5 changed files with 56 additions and 54 deletions

View File

@ -1,11 +1,11 @@
program fci_zmq
implicit none
integer :: i,j,k
logical, external :: detEq
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: degree
allocate (pt2(N_states))
pt2 = 1.d0
@ -30,10 +30,10 @@ program fci_zmq
print *, '-----'
enddo
endif
double precision :: E_CI_before(N_states)
double precision :: E_CI_before(N_states)
integer :: n_det_before
integer :: n_det_before
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
@ -44,16 +44,16 @@ program fci_zmq
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
endif
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
@ -64,42 +64,44 @@ program fci_zmq
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_energy(CI_energy)
enddo
N_det = min(N_det_max,N_det)
touch N_det psi_det psi_coef
call diagonalize_CI
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.9999d0
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ZMQ_selection(1, pt2)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print *, 'State', k
print *, 'PT2 = ', pt2
print *, 'E = ', E_CI_before
print *, 'E+PT2 = ', E_CI_before+pt2
print *, '-----'
enddo
call ezfio_set_full_ci_energy_pt2(E_CI_before+pt2)
endif
call save_wavefunction
if (N_det > N_det_max) then
N_det = N_det_max
touch N_det psi_det psi_coef
call diagonalize_CI
endif
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = 1.d0
threshold_generators = 0.9999d0
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ZMQ_selection(1, pt2)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print *, 'State', k
print *, 'PT2 = ', pt2
print *, 'E = ', E_CI_before
print *, 'E+PT2 = ', E_CI_before+pt2
print *, '-----'
enddo
call ezfio_set_full_ci_energy_pt2(E_CI_before+pt2)
endif
call save_wavefunction
end

View File

@ -58,7 +58,7 @@ subroutine update_energy(energy)
! Update energy when it is received from ZMQ
END_DOC
integer :: j,k
do j=1,N_states_diag
do j=1,N_states
do k=1,N_det
CI_eigenvectors(k,j) = psi_coef(k,j)
enddo

View File

@ -30,6 +30,8 @@ END_PROVIDER
! Hartree-Fock determinant
END_DOC
integer :: i, k
psi_coef_generators = 0.d0
psi_det_generators = 0_bit_kind
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_det_sorted(k,1,i)

View File

@ -8,8 +8,10 @@ BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,min(N_det,N_states)
do j=1,min(N_det,N_states_diag)
CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion
enddo
do j=1,min(N_det,N_states)
write(st,'(I4)') j
call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st))
call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st))
@ -38,14 +40,14 @@ END_PROVIDER
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
! Guess values for the "N_states_diag" states of the CI_eigenvectors
! Guess values for the "N_states" states of the CI_eigenvectors
do j=1,min(N_states,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do j=N_det+1,N_states_diag
do j=min(N_states,N_det)+1,N_states_diag
do i=1,N_det
CI_eigenvectors(i,j) = 0.d0
enddo
@ -143,14 +145,15 @@ END_PROVIDER
endif
if( s2_eig.and.(n_states_diag > 1).and.(n_det >= n_states_diag) )then
if( s2_eig.and.(N_states_diag > 1).and.(N_det >= N_states_diag) )then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag), e_array(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,N_det,size(psi_det,3), &
size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
double precision, allocatable :: psi_coef_tmp(:,:)
allocate(psi_coef_tmp(psi_det_size,N_states_diag))
do j = 1, N_states
do j = 1, N_states_diag
do i = 1, N_det
psi_coef_tmp(i,j) = CI_eigenvectors(i,j)
enddo
@ -200,11 +203,6 @@ END_PROVIDER
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
CI_electronic_energy(i_state + i_other_state) = e_array(i_state + i_other_state)
enddo
do j=1,N_states
do i=1,N_det
psi_coef(i,j) = psi_coef_tmp(i,j)
enddo
enddo
deallocate(iorder,e_array,index_good_state_array,good_state_array,psi_coef_tmp)
deallocate(s2_eigvalues)

View File

@ -12,7 +12,7 @@ BEGIN_PROVIDER [ integer, davidson_sze_max ]
! Max number of Davidson sizes
END_DOC
ASSERT (davidson_sze_max <= davidson_iter_max)
davidson_sze_max = 8*N_states
davidson_sze_max = N_states+7
END_PROVIDER