From f52e877f7c2a75c042d51e9d44aa93271fd5e410 Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Fri, 11 Sep 2015 15:30:44 +0200 Subject: [PATCH] CISD save energy --- plugins/CAS_SD/README.rst | 89 +++ plugins/CIS/README.rst | 41 ++ plugins/CISD/README.rst | 33 + plugins/CISD/cisd.irp.f | 1 + plugins/CISD_selected/README.rst | 194 +++++ plugins/CISD_selected/cisd_selection.irp.f | 2 + plugins/FCIdump/.gitignore | 36 +- plugins/FCIdump/README.rst | 19 + plugins/Full_CI/.gitignore | 1 + plugins/Full_CI/README.rst | 46 +- plugins/Generators_CAS/README.rst | 37 + plugins/MRCC_CASSD/README.rst | 27 + plugins/MRCC_Utils/README.rst | 789 +++++++++++++++++++++ plugins/Perturbation/README.rst | 36 +- plugins/Psiref_CAS/README.rst | 43 ++ plugins/Psiref_Utils/README.rst | 737 +++++++++++++++++++ plugins/QmcChem/README.rst | 41 ++ plugins/SingleRefMethod/README.rst | 38 + src/Determinants/README.rst | 4 + src/Ezfio_files/README.rst | 168 +++++ src/Integrals_Bielec/README.rst | 22 +- src/Integrals_Bielec/ao_bi_integrals.irp.f | 73 +- 22 files changed, 2375 insertions(+), 102 deletions(-) diff --git a/plugins/CAS_SD/README.rst b/plugins/CAS_SD/README.rst index 63836195..258410a1 100644 --- a/plugins/CAS_SD/README.rst +++ b/plugins/CAS_SD/README.rst @@ -96,3 +96,92 @@ Needed Modules * `Selectors_full `_ * `Generators_CAS `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Perturbation `_ +* `Selectors_full `_ +* `Generators_CAS `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`full_ci `_ + Undocumented + + +`h_apply_cas_sd `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cas_sd_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_pt2 `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cas_sd_pt2_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_pt2_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_selected `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cas_sd_selected_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_selected_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_selected_no_skip `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cas_sd_selected_no_skip_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cas_sd_selected_no_skip_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + diff --git a/plugins/CIS/README.rst b/plugins/CIS/README.rst index 008675e0..60a36cdb 100644 --- a/plugins/CIS/README.rst +++ b/plugins/CIS/README.rst @@ -48,3 +48,44 @@ Needed Modules * `Selectors_full `_ * `SingleRefMethod `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Selectors_full `_ +* `SingleRefMethod `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`cis `_ + Undocumented + + +`h_apply_cis `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cis_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cis_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`super_ci `_ + Undocumented + diff --git a/plugins/CISD/README.rst b/plugins/CISD/README.rst index 2ba297fb..a17ce64e 100644 --- a/plugins/CISD/README.rst +++ b/plugins/CISD/README.rst @@ -42,3 +42,36 @@ Documentation particles. Assume N_int is already provided. +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Selectors_full `_ +* `SingleRefMethod `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`h_apply_cisd `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + diff --git a/plugins/CISD/cisd.irp.f b/plugins/CISD/cisd.irp.f index 6d310d95..1af891d8 100644 --- a/plugins/CISD/cisd.irp.f +++ b/plugins/CISD/cisd.irp.f @@ -14,6 +14,7 @@ program cisd enddo call save_wavefunction + call ezfio_set_cisd_energy(CI_energy(1)) ! call CISD_SC2(psi_det,psi_coef,eigvalues,size(psi_coef,1),N_det,N_states,N_int) ! do i = 1, N_states ! print*,'eigvalues(i) = ',eigvalues(i) diff --git a/plugins/CISD_selected/README.rst b/plugins/CISD_selected/README.rst index e7a3c5cb..12ee6318 100644 --- a/plugins/CISD_selected/README.rst +++ b/plugins/CISD_selected/README.rst @@ -179,3 +179,197 @@ Needed Modules * `Perturbation `_ * `CISD `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Perturbation `_ +* `CISD `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`cisd `_ + Undocumented + + +`h_apply_cisd `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection `_ + Undocumented + + +`h_apply_cisd_selection_delta_rho_one_point `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_delta_rho_one_point_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_delta_rho_one_point_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_dipole_moment_z `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_dipole_moment_z_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_dipole_moment_z_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_epstein_nesbet_2x2 `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_epstein_nesbet_2x2_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_2x2_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2 `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_no_projected_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_projected `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_projected_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_epstein_nesbet_sc2_projected_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_h_core `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_h_core_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_h_core_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_moller_plesset `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_cisd_selection_moller_plesset_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_cisd_selection_moller_plesset_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + diff --git a/plugins/CISD_selected/cisd_selection.irp.f b/plugins/CISD_selected/cisd_selection.irp.f index b05e9ea4..768e4586 100644 --- a/plugins/CISD_selected/cisd_selection.irp.f +++ b/plugins/CISD_selected/cisd_selection.irp.f @@ -43,4 +43,6 @@ program cisd call diagonalize_CI deallocate(pt2,norm_pert,H_pert_diag) call save_wavefunction + call ezfio_set_cisd_energy(CI_energy) + call ezfio_set_cisd_energy_pt2(CI_energy+pt2) end diff --git a/plugins/FCIdump/.gitignore b/plugins/FCIdump/.gitignore index 076918bf..0a548a14 100644 --- a/plugins/FCIdump/.gitignore +++ b/plugins/FCIdump/.gitignore @@ -1,23 +1,23 @@ -# Automatically created by /home/razoa/quantum_package/scripts/module/module_handler.py -IRPF90_temp -IRPF90_man -irpf90_entities -tags -irpf90.make -Makefile -Makefile.depend -.ninja_log +# Automatically created by $QP_ROOT/scripts/module/module_handler.py .ninja_deps -ezfio_interface.irp.f -Ezfio_files +.ninja_log +AO_Basis +Bitmask Determinants +Electrons +Ezfio_files +IRPF90_man +IRPF90_temp +Integrals_Bielec Integrals_Monoelec MO_Basis -Utils -Pseudo -Bitmask -AO_Basis -Electrons +Makefile +Makefile.depend Nuclei -Integrals_Bielec -fcidump \ No newline at end of file +Pseudo +Utils +ezfio_interface.irp.f +fcidump +irpf90.make +irpf90_entities +tags \ No newline at end of file diff --git a/plugins/FCIdump/README.rst b/plugins/FCIdump/README.rst index f867eb70..4c1908c9 100644 --- a/plugins/FCIdump/README.rst +++ b/plugins/FCIdump/README.rst @@ -23,3 +23,22 @@ Needed Modules * `Determinants `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Determinants `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`fcidump `_ + Undocumented + diff --git a/plugins/Full_CI/.gitignore b/plugins/Full_CI/.gitignore index a806bcbc..2d978fa6 100644 --- a/plugins/Full_CI/.gitignore +++ b/plugins/Full_CI/.gitignore @@ -22,6 +22,7 @@ Properties Pseudo Selectors_full Utils +exc_degree ezfio_interface.irp.f full_ci full_ci_no_skip diff --git a/plugins/Full_CI/README.rst b/plugins/Full_CI/README.rst index 1af26ae6..bc2307cd 100644 --- a/plugins/Full_CI/README.rst +++ b/plugins/Full_CI/README.rst @@ -27,7 +27,7 @@ Documentation Undocumented -`h_apply_fci `_ +`h_apply_fci `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. @@ -38,126 +38,126 @@ Documentation Assume N_int is already provided. -`h_apply_fci_mono `_ +`h_apply_fci_mono `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_fci_mono_diexc `_ +`h_apply_fci_mono_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_mono_monoexc `_ +`h_apply_fci_mono_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_monoexc `_ +`h_apply_fci_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_no_skip `_ +`h_apply_fci_no_skip `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_fci_no_skip_diexc `_ +`h_apply_fci_no_skip_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_no_skip_monoexc `_ +`h_apply_fci_no_skip_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_pt2 `_ +`h_apply_fci_pt2 `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_fci_pt2_diexc `_ +`h_apply_fci_pt2_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_fci_pt2_monoexc `_ +`h_apply_fci_pt2_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_pt2_mono_delta_rho `_ +`h_apply_pt2_mono_delta_rho `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_pt2_mono_delta_rho_diexc `_ +`h_apply_pt2_mono_delta_rho_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_pt2_mono_delta_rho_monoexc `_ +`h_apply_pt2_mono_delta_rho_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_pt2_mono_di_delta_rho `_ +`h_apply_pt2_mono_di_delta_rho `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_pt2_mono_di_delta_rho_diexc `_ +`h_apply_pt2_mono_di_delta_rho_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_pt2_mono_di_delta_rho_monoexc `_ +`h_apply_pt2_mono_di_delta_rho_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_select_mono_delta_rho `_ +`h_apply_select_mono_delta_rho `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_select_mono_delta_rho_diexc `_ +`h_apply_select_mono_delta_rho_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_select_mono_delta_rho_monoexc `_ +`h_apply_select_mono_delta_rho_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_select_mono_di_delta_rho `_ +`h_apply_select_mono_di_delta_rho `_ Calls H_apply on the HF determinant and selects all connected single and double excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. -`h_apply_select_mono_di_delta_rho_diexc `_ +`h_apply_select_mono_di_delta_rho_diexc `_ Generate all double excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. -`h_apply_select_mono_di_delta_rho_monoexc `_ +`h_apply_select_mono_di_delta_rho_monoexc `_ Generate all single excitations of key_in using the bit masks of holes and particles. Assume N_int is already provided. diff --git a/plugins/Generators_CAS/README.rst b/plugins/Generators_CAS/README.rst index 9a361c8b..9d880b0d 100644 --- a/plugins/Generators_CAS/README.rst +++ b/plugins/Generators_CAS/README.rst @@ -49,3 +49,40 @@ Needed Modules * `Determinants `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Determinants `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`n_det_generators `_ + Number of generator detetrminants + + +`psi_coef_generators `_ + For Single reference wave functions, the generator is the + Hartree-Fock determinant + + +`psi_det_generators `_ + For Single reference wave functions, the generator is the + Hartree-Fock determinant + + +`select_max `_ + Memo to skip useless selectors + + +`size_select_max `_ + Size of the select_max array + diff --git a/plugins/MRCC_CASSD/README.rst b/plugins/MRCC_CASSD/README.rst index 5ef5db62..b2713b43 100644 --- a/plugins/MRCC_CASSD/README.rst +++ b/plugins/MRCC_CASSD/README.rst @@ -31,3 +31,30 @@ Documentation `print_cas_coefs `_ Undocumented +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Perturbation `_ +* `Selectors_full `_ +* `Generators_full `_ +* `Psiref_CAS `_ +* `MRCC_Utils `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`mrcc `_ + Undocumented + + +`print_cas_coefs `_ + Undocumented + diff --git a/plugins/MRCC_Utils/README.rst b/plugins/MRCC_Utils/README.rst index c396bae7..62eba2d1 100644 --- a/plugins/MRCC_Utils/README.rst +++ b/plugins/MRCC_Utils/README.rst @@ -166,3 +166,792 @@ Documentation `set_generators_bitmasks_as_holes_and_particles `_ Undocumented +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Perturbation `_ +* `Selectors_full `_ +* `Generators_full `_ +* `Psiref_Utils `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`a_coef `_ + Undocumented + + +`abort_all `_ + If True, all the calculation is aborted + + +`abort_here `_ + If True, all the calculation is aborted + + +`add_poly `_ + Add two polynomials + D(t) =! D(t) +( B(t)+C(t)) + + +`add_poly_multiply `_ + Add a polynomial multiplied by a constant + D(t) =! D(t) +( cst * B(t)) + + +`align_double `_ + Compute 1st dimension such that it is aligned for vectorization. + + +`apply_rotation `_ + Apply the rotation found by find_rotation + + +`approx_dble `_ + Undocumented + + +`b_coef `_ + Undocumented + + +`binom `_ + Binomial coefficients + + +`binom_func `_ + .. math :: + .br + \frac{i!}{j!(i-j)!} + .br + + +`binom_transp `_ + Binomial coefficients + + +`catch_signal `_ + What to do on Ctrl-C. If two Ctrl-C are pressed within 1 sec, the calculation if aborted. + + +`ci_eigenvectors_dressed `_ + Eigenvectors/values of the CI matrix + + +`ci_eigenvectors_s2_dressed `_ + Eigenvectors/values of the CI matrix + + +`ci_electronic_energy_dressed `_ + Eigenvectors/values of the CI matrix + + +`ci_energy_dressed `_ + N_states lowest eigenvalues of the dressed CI matrix + + +`davidson_diag_hjj_mrcc `_ + Davidson diagonalization with specific diagonal elements of the H matrix + .br + H_jj : specific diagonal H matrix elements to diagonalize de Davidson + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit for the I/O + .br + Initial guess vectors are not necessarily orthonormal + + +`davidson_diag_mrcc `_ + Davidson diagonalization. + .br + dets_in : bitmasks corresponding to determinants + .br + u_in : guess coefficients on the various states. Overwritten + on exit + .br + dim_in : leftmost dimension of u_in + .br + sze : Number of determinants + .br + N_st : Number of eigenstates + .br + iunit : Unit number for the I/O + .br + Initial guess vectors are not necessarily orthonormal + + +`dble_fact `_ + Undocumented + + +`dble_fact_even `_ + n!! + + +`dble_fact_odd `_ + n!! + + +`dble_logfact `_ + n!! + + +`ddfact2 `_ + Undocumented + + +`delta_ii `_ + Dressing matrix in N_det basis + + +`delta_ij `_ + Dressing matrix in N_det basis + + +`diagonalize_ci_dressed `_ + Replace the coefficients of the CI states by the coefficients of the + eigenstates of the CI matrix + + +`dset_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`dset_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`dsort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`erf0 `_ + Undocumented + + +`f_integral `_ + function that calculates the following integral + \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx + + +`fact `_ + n! + + +`fact_inv `_ + 1/n! + + +`find_rotation `_ + Find A.C = B + + +`find_triples_and_quadruples `_ + Undocumented + + +`gammln `_ + Undocumented + + +`gammp `_ + Undocumented + + +`gaussian_product `_ + Gaussian product in 1D. + e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} + + +`gaussian_product_x `_ + Gaussian product in 1D. + e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} + + +`gcf `_ + Undocumented + + +`get_pseudo_inverse `_ + Find C = A^-1 + + +`give_explicit_poly_and_gaussian `_ + Transforms the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) + into + fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) + * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) + * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) + + +`give_explicit_poly_and_gaussian_double `_ + Transforms the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) + exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama + .br + into + fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) + * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) + * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) + + +`give_explicit_poly_and_gaussian_x `_ + Transform the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) + into + fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2) + + +`gser `_ + Undocumented + + +`h_apply_mrcc `_ + Calls H_apply on the HF determinant and selects all connected single and double + excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script. + + +`h_apply_mrcc_diexc `_ + Generate all double excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_apply_mrcc_monoexc `_ + Generate all single excitations of key_in using the bit masks of holes and + particles. + Assume N_int is already provided. + + +`h_matrix_dressed `_ + Dressed H with Delta_ij + + +`h_u_0_mrcc `_ + Computes v_0 = H|u_0> + .br + n : number of determinants + .br + H_jj : array of + + +`heap_dsort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_dsort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_i2sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_i2sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_i8sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_i8sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_isort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_isort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`hermite `_ + Hermite polynomial + + +`i2radix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i2set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`i2set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`i2sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`i8radix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i8radix_sort_big `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i8set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`i8set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`i8sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_dsort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_dsort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_i2sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_i2sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_i8sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_i8sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_isort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_isort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`inv_int `_ + 1/i + + +`iradix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`iradix_sort_big `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`iset_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`iset_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`isort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`lambda_mrcc `_ + cm/ or perturbative 1/Delta_E(m) + + +`lambda_mrcc_tmp `_ + Undocumented + + +`lambda_pert `_ + cm/ or perturbative 1/Delta_E(m) + + +`lapack_diag `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_diag_s2 `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_diagd `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_partial_diag `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`logfact `_ + n! + + +`mrcc_dress `_ + Undocumented + + +`mrcc_dress_simple `_ + Undocumented + + +`mrcc_iterations `_ + Undocumented + + +`multiply_poly `_ + Multiply two polynomials + D(t) =! D(t) +( B(t)*C(t)) + + +`normalize `_ + Normalizes vector u + u is expected to be aligned in memory. + + +`nproc `_ + Number of current OpenMP threads + + +`ortho_lowdin `_ + Compute C_new=C_old.S^-1/2 canonical orthogonalization. + .br + overlap : overlap matrix + .br + LDA : leftmost dimension of overlap array + .br + N : Overlap matrix is NxN (array is (LDA,N) ) + .br + C : Coefficients of the vectors to orthogonalize. On exit, + orthogonal vectors + .br + LDC : leftmost dimension of C + .br + m : Coefficients matrix is MxN, ( array is (LDC,N) ) + .br + + +`oscillations `_ + Undocumented + + +`overlap_a_b_c `_ + Undocumented + + +`overlap_gaussian_x `_ + .. math:: + .br + \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx + .br + + +`overlap_gaussian_xyz `_ + .. math:: + .br + S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ + S = S_x S_y S_z + .br + + +`overlap_x_abs `_ + .. math :: + .br + \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx + .br + + +`pert_determinants `_ + Undocumented + + +`progress_active `_ + Current status for displaying progress bars. Global variable. + + +`progress_bar `_ + Current status for displaying progress bars. Global variable. + + +`progress_timeout `_ + Current status for displaying progress bars. Global variable. + + +`progress_title `_ + Current status for displaying progress bars. Global variable. + + +`progress_value `_ + Current status for displaying progress bars. Global variable. + + +`psi_ref_lock `_ + Locks on ref determinants to fill delta_ij + + +`recentered_poly2 `_ + Recenter two polynomials + + +`rint `_ + .. math:: + .br + \int_0^1 dx \exp(-p x^2) x^n + .br + + +`rint1 `_ + Standard version of rint + + +`rint_large_n `_ + Version of rint for large values of n + + +`rint_sum `_ + Needed for the calculation of two-electron integrals. + + +`rinteg `_ + Undocumented + + +`rintgauss `_ + Undocumented + + +`run_mrcc `_ + Undocumented + + +`run_progress `_ + Display a progress bar with documentation of what is happening + + +`sabpartial `_ + Undocumented + + +`set_generators_bitmasks_as_holes_and_particles `_ + Undocumented + + +`set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`set_zero_extra_diag `_ + Undocumented + + +`sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`start_progress `_ + Starts the progress bar + + +`stop_progress `_ + Stop the progress bar + + +`trap_signals `_ + What to do when a signal is caught. Here, trap Ctrl-C and call the control_C subroutine. + + +`u_dot_u `_ + Compute + + +`u_dot_v `_ + Compute + + +`wall_time `_ + The equivalent of cpu_time, but for the wall time. + + +`write_git_log `_ + Write the last git commit in file iunit. + diff --git a/plugins/Perturbation/README.rst b/plugins/Perturbation/README.rst index 3f77b2a2..088bf2de 100644 --- a/plugins/Perturbation/README.rst +++ b/plugins/Perturbation/README.rst @@ -107,92 +107,92 @@ Documentation Undocumented -`perturb_buffer_by_mono_delta_rho_one_point `_ +`perturb_buffer_by_mono_delta_rho_one_point `_ Applly pertubration ``delta_rho_one_point`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_dipole_moment_z `_ +`perturb_buffer_by_mono_dipole_moment_z `_ Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_epstein_nesbet `_ +`perturb_buffer_by_mono_epstein_nesbet `_ Applly pertubration ``epstein_nesbet`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_epstein_nesbet_2x2 `_ +`perturb_buffer_by_mono_epstein_nesbet_2x2 `_ Applly pertubration ``epstein_nesbet_2x2`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_epstein_nesbet_sc2 `_ +`perturb_buffer_by_mono_epstein_nesbet_sc2 `_ Applly pertubration ``epstein_nesbet_sc2`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_epstein_nesbet_sc2_no_projected `_ +`perturb_buffer_by_mono_epstein_nesbet_sc2_no_projected `_ Applly pertubration ``epstein_nesbet_sc2_no_projected`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_epstein_nesbet_sc2_projected `_ +`perturb_buffer_by_mono_epstein_nesbet_sc2_projected `_ Applly pertubration ``epstein_nesbet_sc2_projected`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_h_core `_ +`perturb_buffer_by_mono_h_core `_ Applly pertubration ``h_core`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_by_mono_moller_plesset `_ +`perturb_buffer_by_mono_moller_plesset `_ Applly pertubration ``moller_plesset`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_delta_rho_one_point `_ +`perturb_buffer_delta_rho_one_point `_ Applly pertubration ``delta_rho_one_point`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_dipole_moment_z `_ +`perturb_buffer_dipole_moment_z `_ Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_epstein_nesbet `_ +`perturb_buffer_epstein_nesbet `_ Applly pertubration ``epstein_nesbet`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_epstein_nesbet_2x2 `_ +`perturb_buffer_epstein_nesbet_2x2 `_ Applly pertubration ``epstein_nesbet_2x2`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_epstein_nesbet_sc2 `_ +`perturb_buffer_epstein_nesbet_sc2 `_ Applly pertubration ``epstein_nesbet_sc2`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_epstein_nesbet_sc2_no_projected `_ +`perturb_buffer_epstein_nesbet_sc2_no_projected `_ Applly pertubration ``epstein_nesbet_sc2_no_projected`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_epstein_nesbet_sc2_projected `_ +`perturb_buffer_epstein_nesbet_sc2_projected `_ Applly pertubration ``epstein_nesbet_sc2_projected`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_h_core `_ +`perturb_buffer_h_core `_ Applly pertubration ``h_core`` to the buffer of determinants generated in the H_apply routine. -`perturb_buffer_moller_plesset `_ +`perturb_buffer_moller_plesset `_ Applly pertubration ``moller_plesset`` to the buffer of determinants generated in the H_apply routine. diff --git a/plugins/Psiref_CAS/README.rst b/plugins/Psiref_CAS/README.rst index b15aefb5..1715049a 100644 --- a/plugins/Psiref_CAS/README.rst +++ b/plugins/Psiref_CAS/README.rst @@ -49,3 +49,46 @@ Needed Modules * `Psiref_Utils `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Psiref_Utils `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`idx_ref `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + + +`n_det_ref `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + + +`psi_ref `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + + +`psi_ref_coef `_ + CAS wave function, defined from the application of the CAS bitmask on the + determinants. idx_cas gives the indice of the CAS determinant in psi_det. + + +`psi_ref_coef_restart `_ + Projection of the CAS wave function on the restart wave function. + + +`psi_ref_restart `_ + Projection of the CAS wave function on the restart wave function. + diff --git a/plugins/Psiref_Utils/README.rst b/plugins/Psiref_Utils/README.rst index 8b25e0a1..c30cdb11 100644 --- a/plugins/Psiref_Utils/README.rst +++ b/plugins/Psiref_Utils/README.rst @@ -119,3 +119,740 @@ Documentation Reference determinants sorted to accelerate the search of a random determinant in the wave function. +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`a_coef `_ + Undocumented + + +`abort_all `_ + If True, all the calculation is aborted + + +`abort_here `_ + If True, all the calculation is aborted + + +`add_poly `_ + Add two polynomials + D(t) =! D(t) +( B(t)+C(t)) + + +`add_poly_multiply `_ + Add a polynomial multiplied by a constant + D(t) =! D(t) +( cst * B(t)) + + +`align_double `_ + Compute 1st dimension such that it is aligned for vectorization. + + +`apply_rotation `_ + Apply the rotation found by find_rotation + + +`approx_dble `_ + Undocumented + + +`b_coef `_ + Undocumented + + +`binom `_ + Binomial coefficients + + +`binom_func `_ + .. math :: + .br + \frac{i!}{j!(i-j)!} + .br + + +`binom_transp `_ + Binomial coefficients + + +`catch_signal `_ + What to do on Ctrl-C. If two Ctrl-C are pressed within 1 sec, the calculation if aborted. + + +`dble_fact `_ + Undocumented + + +`dble_fact_even `_ + n!! + + +`dble_fact_odd `_ + n!! + + +`dble_logfact `_ + n!! + + +`ddfact2 `_ + Undocumented + + +`dset_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`dset_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`dsort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`erf0 `_ + Undocumented + + +`f_integral `_ + function that calculates the following integral + \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx + + +`fact `_ + n! + + +`fact_inv `_ + 1/n! + + +`find_rotation `_ + Find A.C = B + + +`gammln `_ + Undocumented + + +`gammp `_ + Undocumented + + +`gaussian_product `_ + Gaussian product in 1D. + e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} + + +`gaussian_product_x `_ + Gaussian product in 1D. + e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} + + +`gcf `_ + Undocumented + + +`get_index_in_psi_ref_sorted_bit `_ + Returns the index of the determinant in the ``psi_ref_sorted_bit`` array + + +`get_pseudo_inverse `_ + Find C = A^-1 + + +`give_explicit_poly_and_gaussian `_ + Transforms the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) + into + fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) + * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) + * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) + + +`give_explicit_poly_and_gaussian_double `_ + Transforms the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) + exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama + .br + into + fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) + * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) + * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) + + +`give_explicit_poly_and_gaussian_x `_ + Transform the product of + (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) + into + fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2) + + +`gser `_ + Undocumented + + +`h_matrix_ref `_ + Undocumented + + +`heap_dsort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_dsort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_i2sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_i2sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_i8sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_i8sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_isort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_isort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`heap_sort `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`heap_sort_big `_ + Sort array x(isize) using the heap sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`hermite `_ + Hermite polynomial + + +`holes_operators `_ + holes_operators represents an array of integers where all the holes have + been done going from psi_ref to psi_non_ref + particles_operators represents an array of integers where all the particles have + been done going from psi_ref to psi_non_ref + + +`i2radix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i2set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`i2set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`i2sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`i8radix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i8radix_sort_big `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`i8set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`i8set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`i8sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`idx_non_ref `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + idx_non_ref_rev gives the reverse. + + +`idx_non_ref_rev `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + idx_non_ref_rev gives the reverse. + + +`insertion_dsort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_dsort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_i2sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_i2sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_i8sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_i8sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_isort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_isort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`insertion_sort `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`insertion_sort_big `_ + Sort array x(isize) using the insertion sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`inv_int `_ + 1/i + + +`iradix_sort `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`iradix_sort_big `_ + Sort integer array x(isize) using the radix sort algorithm. + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + iradix should be -1 in input. + + +`is_in_psi_ref `_ + True if the determinant ``det`` is in the wave function + + +`iset_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`iset_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`isort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`lapack_diag `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_diag_s2 `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_diagd `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`lapack_partial_diag `_ + Diagonalize matrix H + .br + H is untouched between input and ouptut + .br + eigevalues(i) = ith lowest eigenvalue of the H matrix + .br + eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + .br + + +`logfact `_ + n! + + +`multiply_poly `_ + Multiply two polynomials + D(t) =! D(t) +( B(t)*C(t)) + + +`n_det_non_ref `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + idx_non_ref_rev gives the reverse. + + +`normalize `_ + Normalizes vector u + u is expected to be aligned in memory. + + +`nproc `_ + Number of current OpenMP threads + + +`ortho_lowdin `_ + Compute C_new=C_old.S^-1/2 canonical orthogonalization. + .br + overlap : overlap matrix + .br + LDA : leftmost dimension of overlap array + .br + N : Overlap matrix is NxN (array is (LDA,N) ) + .br + C : Coefficients of the vectors to orthogonalize. On exit, + orthogonal vectors + .br + LDC : leftmost dimension of C + .br + m : Coefficients matrix is MxN, ( array is (LDC,N) ) + .br + + +`overlap_a_b_c `_ + Undocumented + + +`overlap_gaussian_x `_ + .. math:: + .br + \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx + .br + + +`overlap_gaussian_xyz `_ + .. math:: + .br + S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ + S = S_x S_y S_z + .br + + +`overlap_x_abs `_ + .. math :: + .br + \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx + .br + + +`particles_operators `_ + holes_operators represents an array of integers where all the holes have + been done going from psi_ref to psi_non_ref + particles_operators represents an array of integers where all the particles have + been done going from psi_ref to psi_non_ref + + +`progress_active `_ + Current status for displaying progress bars. Global variable. + + +`progress_bar `_ + Current status for displaying progress bars. Global variable. + + +`progress_timeout `_ + Current status for displaying progress bars. Global variable. + + +`progress_title `_ + Current status for displaying progress bars. Global variable. + + +`progress_value `_ + Current status for displaying progress bars. Global variable. + + +`psi_coef_ref_diagonalized `_ + Undocumented + + +`psi_non_ref `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + idx_non_ref_rev gives the reverse. + + +`psi_non_ref_coef `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + idx_non_ref_rev gives the reverse. + + +`psi_non_ref_coef_restart `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + But this is with respect to the restart wave function. + + +`psi_non_ref_coef_sorted_bit `_ + Reference determinants sorted to accelerate the search of a random determinant in the wave + function. + + +`psi_non_ref_restart `_ + Set of determinants which are not part of the reference, defined from the application + of the reference bitmask on the determinants. + idx_non_ref gives the indice of the determinant in psi_det. + But this is with respect to the restart wave function. + + +`psi_non_ref_sorted_bit `_ + Reference determinants sorted to accelerate the search of a random determinant in the wave + function. + + +`psi_ref_coef_sorted_bit `_ + Reference determinants sorted to accelerate the search of a random determinant in the wave + function. + + +`psi_ref_energy `_ + Undocumented + + +`psi_ref_energy_diagonalized `_ + Undocumented + + +`psi_ref_sorted_bit `_ + Reference determinants sorted to accelerate the search of a random determinant in the wave + function. + + +`recentered_poly2 `_ + Recenter two polynomials + + +`rint `_ + .. math:: + .br + \int_0^1 dx \exp(-p x^2) x^n + .br + + +`rint1 `_ + Standard version of rint + + +`rint_large_n `_ + Version of rint for large values of n + + +`rint_sum `_ + Needed for the calculation of two-electron integrals. + + +`rinteg `_ + Undocumented + + +`rintgauss `_ + Undocumented + + +`run_progress `_ + Display a progress bar with documentation of what is happening + + +`sabpartial `_ + Undocumented + + +`set_order `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + + +`set_order_big `_ + array A has already been sorted, and iorder has contains the new order of + elements of A. This subroutine changes the order of x to match the new order of A. + This is a version for very large arrays where the indices need + to be in integer*8 format + + +`set_zero_extra_diag `_ + Undocumented + + +`sort `_ + Sort array x(isize). + iorder in input should be (1,2,3,...,isize), and in output + contains the new order of the elements. + + +`start_progress `_ + Starts the progress bar + + +`stop_progress `_ + Stop the progress bar + + +`trap_signals `_ + What to do when a signal is caught. Here, trap Ctrl-C and call the control_C subroutine. + + +`u_dot_u `_ + Compute + + +`u_dot_v `_ + Compute + + +`wall_time `_ + The equivalent of cpu_time, but for the wall time. + + +`write_git_log `_ + Write the last git commit in file iunit. + diff --git a/plugins/QmcChem/README.rst b/plugins/QmcChem/README.rst index 0c5e452f..9724e4fb 100644 --- a/plugins/QmcChem/README.rst +++ b/plugins/QmcChem/README.rst @@ -43,3 +43,44 @@ Needed Modules * `Determinants `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Determinants `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`ao_pseudo_grid `_ + Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C + .br + + + +`mo_pseudo_grid `_ + Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \phi_i^{A} (r-r_A) d\Omega_C + .br + + + +`save_for_qmc `_ + Undocumented + + +`test_pseudo_grid_ao `_ + Undocumented + + +`write_pseudopotential `_ + Write the pseudo_potential into the EZFIO file + diff --git a/plugins/SingleRefMethod/README.rst b/plugins/SingleRefMethod/README.rst index 1295f24f..19e47d71 100644 --- a/plugins/SingleRefMethod/README.rst +++ b/plugins/SingleRefMethod/README.rst @@ -43,3 +43,41 @@ Needed Modules * `Bitmask `_ +Needed Modules +============== +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +.. image:: tree_dependency.png + +* `Bitmask `_ + +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`n_det_generators `_ + For Single reference wave functions, the number of generators is 1 : the + Hartree-Fock determinant + + +`psi_coef_generators `_ + For Single reference wave functions, the generator is the + Hartree-Fock determinant + + +`psi_det_generators `_ + For Single reference wave functions, the generator is the + Hartree-Fock determinant + + +`select_max `_ + Memo to skip useless selectors + + +`size_select_max `_ + Size of select_max + diff --git a/src/Determinants/README.rst b/src/Determinants/README.rst index 2c2759ae..62b035fc 100644 --- a/src/Determinants/README.rst +++ b/src/Determinants/README.rst @@ -54,7 +54,11 @@ Documentation .. by the `update_README.py` script. +`a_operator `_ Needed for diag_H_mat_elem + + +`abs_psi_coef_max `_ Max and min values of the coefficients diff --git a/src/Ezfio_files/README.rst b/src/Ezfio_files/README.rst index c97e6268..b843770a 100644 --- a/src/Ezfio_files/README.rst +++ b/src/Ezfio_files/README.rst @@ -170,3 +170,171 @@ Documentation Write a time stamp in the output for chronological reconstruction +Documentation +============= +.. Do not edit this section It was auto-generated +.. by the `update_README.py` script. + + +`ezfio_filename `_ + Name of EZFIO file. It is obtained from the QPACKAGE_INPUT environment + variable if it is set, or as the 1st argument of the command line. + + +`getunitandopen `_ + :f: + file name + .br + :mode: + 'R' : READ, UNFORMATTED + 'W' : WRITE, UNFORMATTED + 'r' : READ, FORMATTED + 'w' : WRITE, FORMATTED + 'a' : APPEND, FORMATTED + 'x' : READ/WRITE, FORMATTED + .br + + +`output_ao_basis `_ + Output file for AO_Basis + + +`output_bitmask `_ + Output file for Bitmask + + +`output_cas_sd `_ + Output file for CAS_SD + + +`output_cis `_ + Output file for CIS + + +`output_cisd `_ + Output file for CISD + + +`output_cisd_selected `_ + Output file for CISD_selected + + +`output_cpu_time_0 `_ + Initial CPU and wall times when printing in the output files + + +`output_determinants `_ + Output file for Determinants + + +`output_electrons `_ + Output file for Electrons + + +`output_ezfio_files `_ + Output file for Ezfio_files + + +`output_fcidump `_ + Output file for FCIdump + + +`output_full_ci `_ + Output file for Full_CI + + +`output_generators_cas `_ + Output file for Generators_CAS + + +`output_generators_full `_ + Output file for Generators_full + + +`output_hartree_fock `_ + Output file for Hartree_Fock + + +`output_integrals_bielec `_ + Output file for Integrals_Bielec + + +`output_integrals_monoelec `_ + Output file for Integrals_Monoelec + + +`output_mo_basis `_ + Output file for MO_Basis + + +`output_moguess `_ + Output file for MOGuess + + +`output_mrcc_cassd `_ + Output file for MRCC_CASSD + + +`output_mrcc_utils `_ + Output file for MRCC_Utils + + +`output_nuclei `_ + Output file for Nuclei + + +`output_perturbation `_ + Output file for Perturbation + + +`output_properties `_ + Output file for Properties + + +`output_pseudo `_ + Output file for Pseudo + + +`output_psiref_cas `_ + Output file for Psiref_CAS + + +`output_psiref_utils `_ + Output file for Psiref_Utils + + +`output_qmcchem `_ + Output file for QmcChem + + +`output_selectors_full `_ + Output file for Selectors_full + + +`output_singlerefmethod `_ + Output file for SingleRefMethod + + +`output_utils `_ + Output file for Utils + + +`output_wall_time_0 `_ + Initial CPU and wall times when printing in the output files + + +`write_bool `_ + Write an logical value in output + + +`write_double `_ + Write a double precision value in output + + +`write_int `_ + Write an integer value in output + + +`write_time `_ + Write a time stamp in the output for chronological reconstruction + diff --git a/src/Integrals_Bielec/README.rst b/src/Integrals_Bielec/README.rst index b71d9c0d..3ed86fe6 100644 --- a/src/Integrals_Bielec/README.rst +++ b/src/Integrals_Bielec/README.rst @@ -113,7 +113,7 @@ Documentation Save to disk the $ao integrals -`eri `_ +`eri `_ ATOMIC PRIMTIVE bielectronic integral between the 4 primitives :: primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2) primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2) @@ -176,37 +176,37 @@ Documentation Return the number of elements in the MO map -`give_polynom_mult_center_x `_ +`give_polynom_mult_center_x `_ subroutine that returns the explicit polynom in term of the "t" variable of the following polynomw : I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q) -`i_x1_new `_ +`i_x1_new `_ recursive function involved in the bielectronic integral -`i_x1_pol_mult `_ +`i_x1_pol_mult `_ recursive function involved in the bielectronic integral -`i_x1_pol_mult_a1 `_ +`i_x1_pol_mult_a1 `_ recursive function involved in the bielectronic integral -`i_x1_pol_mult_a2 `_ +`i_x1_pol_mult_a2 `_ recursive function involved in the bielectronic integral -`i_x1_pol_mult_recurs `_ +`i_x1_pol_mult_recurs `_ recursive function involved in the bielectronic integral -`i_x2_new `_ +`i_x2_new `_ recursive function involved in the bielectronic integral -`i_x2_pol_mult `_ +`i_x2_pol_mult `_ recursive function involved in the bielectronic integral @@ -218,7 +218,7 @@ Documentation Create new entry into MO map, or accumulate in an existing entry -`integrale_new `_ +`integrale_new `_ calculate the integral of the polynom :: I_x1(a_x+b_x, c_x+d_x,p,q) * I_x1(a_y+b_y, c_y+d_y,p,q) * I_x1(a_z+b_z, c_z+d_z,p,q) between ( 0 ; 1) @@ -292,7 +292,7 @@ Documentation Aligned n_pt_max_integrals -`n_pt_sup `_ +`n_pt_sup `_ Returns the upper boundary of the degree of the polynomial involved in the bielctronic integral : Ix(a_x,b_x,c_x,d_x) * Iy(a_y,b_y,c_y,d_y) * Iz(a_z,b_z,c_z,d_z) diff --git a/src/Integrals_Bielec/ao_bi_integrals.irp.f b/src/Integrals_Bielec/ao_bi_integrals.irp.f index ba3bbcc1..f9cd44d0 100644 --- a/src/Integrals_Bielec/ao_bi_integrals.irp.f +++ b/src/Integrals_Bielec/ao_bi_integrals.irp.f @@ -28,7 +28,7 @@ double precision function ao_bielec_integral(i,j,k,l) num_l = ao_nucl(l) ao_bielec_integral = 0.d0 - if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then +! if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) @@ -71,36 +71,36 @@ double precision function ao_bielec_integral(i,j,k,l) enddo ! q enddo ! p - else - - do p = 1, 3 - I_power(p) = ao_power(i,p) - J_power(p) = ao_power(j,p) - K_power(p) = ao_power(k,p) - L_power(p) = ao_power(l,p) - enddo - double precision :: ERI - - do p = 1, ao_prim_num(i) - coef1 = ao_coef_normalized_ordered_transp(p,i) - do q = 1, ao_prim_num(j) - coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) - do r = 1, ao_prim_num(k) - coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) - do s = 1, ao_prim_num(l) - coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) - integral = ERI( & - ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& - I_power(1),J_power(1),K_power(1),L_power(1), & - I_power(2),J_power(2),K_power(2),L_power(2), & - I_power(3),J_power(3),K_power(3),L_power(3)) - ao_bielec_integral += coef4 * integral - enddo ! s - enddo ! r - enddo ! q - enddo ! p - - endif +! else +! +! do p = 1, 3 +! I_power(p) = ao_power(i,p) +! J_power(p) = ao_power(j,p) +! K_power(p) = ao_power(k,p) +! L_power(p) = ao_power(l,p) +! enddo +! double precision :: ERI +! +! do p = 1, ao_prim_num(i) +! coef1 = ao_coef_normalized_ordered_transp(p,i) +! do q = 1, ao_prim_num(j) +! coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) +! do r = 1, ao_prim_num(k) +! coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) +! do s = 1, ao_prim_num(l) +! coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) +! integral = ERI( & +! ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& +! I_power(1),J_power(1),K_power(1),L_power(1), & +! I_power(2),J_power(2),K_power(2),L_power(2), & +! I_power(3),J_power(3),K_power(3),L_power(3)) +! ao_bielec_integral += coef4 * integral +! enddo ! s +! enddo ! r +! enddo ! q +! enddo ! p +! +! endif end @@ -643,7 +643,16 @@ double precision function general_primitive_integral(dim, & !DEC$ FORCEINLINE call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out) double precision :: rint_sum - accu = accu + rint_sum(n_pt_out,const,d1) + if (dist /= 0.d0) then + double precision :: rho_mu, const_mu + rho_mu = 1.d0/( 1.d0/rho + 4.d0 ) + const_mu = dist * rho_mu + accu = accu + dsqrt(const_mu/const) * rint_sum(n_pt_out,const_mu,d1) +! print *, const_mu, const, accu +! pause + else + accu = accu + rint_sum(n_pt_out,const,d1) + endif general_primitive_integral = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q) end