10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-29 08:24:51 +02:00

merged files

This commit is contained in:
Emmanuel Giner 2017-03-20 16:34:57 +01:00
commit f188250b24
87 changed files with 4895 additions and 2044 deletions

View File

@ -9,12 +9,12 @@ sudo: false
addons:
apt:
packages:
- zlib1g-dev
- libgmp3-dev
- gfortran
- gcc
- liblapack-dev
- graphviz
# - zlib1g-dev
# - libgmp3-dev
cache:
directories:
@ -29,4 +29,4 @@ script:
- source ./quantum_package.rc ; qp_module.py install Full_CI Full_CI_ZMQ Hartree_Fock CAS_SD_ZMQ mrcepa0 All_singles
- source ./quantum_package.rc ; ninja
- source ./quantum_package.rc ; cd ocaml ; make ; cd -
- source ./quantum_package.rc ; cd tests ; ./run_tests.sh #-v
- source ./quantum_package.rc ; cd tests ; ./run_tests.sh -v

View File

@ -24,7 +24,7 @@ Demo
* Python >= 2.6
* GNU make
* Bash
* Blast/Lapack
* Blas/Lapack
* unzip
* g++ (For ninja)
@ -137,6 +137,10 @@ interface: ezfio
#FAQ
### Opam error: cryptokit
You need to install `gmp-dev`.
### Error: ezfio_* is already defined.
#### Why ?

25
configure vendored
View File

@ -71,8 +71,8 @@ d_dependency = {
"emsl": ["python"],
"gcc": [],
"g++": [],
"zeromq" : [ "g++" ],
"f77zmq" : [ "zeromq", "python" ],
"zeromq" : [ "g++", "make" ],
"f77zmq" : [ "zeromq", "python", "make" ],
"python": [],
"ninja": ["g++", "python"],
"make": [],
@ -102,7 +102,7 @@ curl = Info(
default_path=join(QP_ROOT_BIN, "curl"))
zlib = Info(
url='http://zlib.net/zlib-1.2.8.tar.gz',
url='http://www.zlib.net/zlib-1.2.11.tar.gz',
description=' zlib',
default_path=join(QP_ROOT_LIB, "libz.a"))
@ -150,7 +150,6 @@ f77zmq = Info(
url='{head}/zeromq/f77_zmq/{tail}'.format(**path_github),
description=' F77-ZeroMQ',
default_path=join(QP_ROOT_LIB, "libf77zmq.a") )
# join(QP_ROOT, "src", "ZMQ", "f77zmq.h") )
p_graphviz = Info(
url='https://github.com/xflr6/graphviz/archive/master.tar.gz',
@ -166,7 +165,7 @@ d_info = dict()
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz",
"zeromq", "f77zmq","bats" ]:
"zeromq", "f77zmq","bats"]:
exec ("d_info['{0}']={0}".format(m))
@ -494,16 +493,24 @@ def create_ninja_and_rc(l_installed):
'export PYTHONPATH="${QP_EZFIO}/Python":"${QP_PYTHON}":"${PYTHONPATH}"',
'export PATH="${QP_PYTHON}":"${QP_ROOT}"/bin:"${QP_ROOT}"/ocaml:"${PATH}"',
'export LD_LIBRARY_PATH="${QP_ROOT}"/lib:"${LD_LIBRARY_PATH}"',
'export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"', "",
'source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh', "",
'source ${HOME}/.opam/opam-init/init.sh > /dev/null 2> /dev/null || true',
'export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"',
'export C_INCLUDE_PATH="${C_INCLUDE_PATH}":"${QP_ROOT}"/include',
'',
'source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh',
'',
'# Choose the correct network interface',
'# export QP_NIC=ib0',
'# export QP_NIC=eth0',
""
''
]
qp_opam_root = os.getenv('OPAMROOT')
if not qp_opam_root:
qp_opam_root = '${HOME}/.opam'
l_rc.append('export QP_OPAM={0}'.format(qp_opam_root))
l_rc.append('source ${QP_OPAM}/opam-init/init.sh > /dev/null 2> /dev/null || true')
l_rc.append('')
path = join(QP_ROOT, "quantum_package.rc")
with open(path, "w+") as f:
f.write("\n".join(l_rc))

0
include/.empty Normal file
View File

View File

@ -4,7 +4,11 @@
BUILD=_build/${TARGET}
rm -rf -- ${BUILD}
mkdir ${BUILD} || exit 1
tar -zxf Downloads/${TARGET}.tar.gz --strip-components=1 --directory=${BUILD} || exit 1
if [[ -f Downloads/${TARGET}.tar.gz ]] ; then
tar -zxf Downloads/${TARGET}.tar.gz --strip-components=1 --directory=${BUILD} || exit 1
elif [[ -f Downloads/${TARGET}.tar.bz2 ]] ; then
tar -jxf Downloads/${TARGET}.tar.bz2 --strip-components=1 --directory=${BUILD} || exit 1
fi
_install || exit 1
rm -rf -- ${BUILD} _build/${TARGET}.log
exit 0

View File

@ -10,10 +10,4 @@ function _install()
mv curl.ermine ${QP_ROOT}/bin/curl || return 1
}
BUILD=_build/${TARGET}
rm -rf -- ${BUILD}
mkdir ${BUILD} || exit 1
tar -xvjf Downloads/${TARGET}.tar.bz2 --strip-components=1 --directory=${BUILD} || exit 1
_install || exit 1
rm -rf -- ${BUILD} _build/${TARGET}.log
exit 0
source scripts/build.sh

View File

@ -7,10 +7,9 @@ function _install()
cd ..
QP_ROOT=$PWD
cd -
export C_INCLUDE_PATH="${C_INCLUDE_PATH}":"${QP_ROOT}"/lib
set -e
set -u
export ZMQ_H="${QP_ROOT}"/lib/zmq.h
export ZMQ_H="${QP_ROOT}"/include/zmq.h
cd "${BUILD}"
make -j 8 || exit 1
mv libf77zmq.a "${QP_ROOT}"/lib || exit 1

17
install/scripts/install_gmp.sh Executable file
View File

@ -0,0 +1,17 @@
#!/bin/bash -x
TARGET=gmp
function _install()
{
rm -rf -- ${TARGET}
mkdir ${TARGET} || exit 1
cd ..
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure --prefix=$QP_ROOT && make -j 8 || exit 1
make install || exit 1
}
source scripts/build.sh

View File

@ -8,8 +8,7 @@ function _install()
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure && make || exit 1
ln -sf ${PWD}/src/m4 ${QP_ROOT}/bin || exit 1
./configure --prefix=$QP_ROOT && make || exit 1
}
source scripts/build.sh

View File

@ -5,11 +5,11 @@ QP_ROOT=$PWD
cd -
# Normal installation
PACKAGES="core cryptokit zarith ocamlfind sexplib ZMQ"
PACKAGES="core cryptokit.1.10 ocamlfind sexplib ZMQ"
#ppx_sexp_conv
# Needed for ZeroMQ
export C_INCLUDE_PATH="${QP_ROOT}"/lib:"${C_INCLUDE_PATH}"
export C_INCLUDE_PATH="${QP_ROOT}"/include:"${C_INCLUDE_PATH}"
export LIBRARY_PATH="${QP_ROOT}"/lib:"${LIBRARY_PATH}"
export LD_LIBRARY_PATH="${QP_ROOT}"/lib:"${LD_LIBRARY_PATH}"

View File

@ -9,11 +9,11 @@ function _install()
QP_ROOT=$PWD
cd -
cd ${BUILD}
./configure --prefix=${QP_ROOT}/install/${TARGET} && make || exit 1
./configure --prefix=${QP_ROOT} && make || exit 1
make install || exit 1
cd -
cp ${TARGET}/bin/${TARGET} ${QP_ROOT}/bin || exit 1
rm -R -- ${TARGET} || exit 1
}
source scripts/build.sh
source scripts/build.sh

View File

@ -7,22 +7,13 @@ function _install()
cd ..
QP_ROOT=$PWD
cd -
export C_INCLUDE_PATH="${C_INCLUDE_PATH}":./
set -e
set -u
ORIG=$(pwd)
cd "${BUILD}"
./configure --without-libsodium || exit 1
./configure --prefix=$QP_ROOT --without-libsodium || exit 1
make -j 8 || exit 1
rm -f -- "${QP_ROOT}"/lib/libzmq.a "${QP_ROOT}"/lib/libzmq.so "${QP_ROOT}"/lib/libzmq.so.?
cp .libs/libzmq.a "${QP_ROOT}"/lib
cp .libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.5
# cp src/.libs/libzmq.a "${QP_ROOT}"/lib
# cp src/.libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.4
cp include/{zmq.h,zmq_utils.h} "${QP_ROOT}"/lib
cd "${QP_ROOT}"/lib
ln -s libzmq.so.5 libzmq.so
# ln -s libzmq.so.4 libzmq.so
make install || exit 1
cd ${ORIG}
return 0
}

View File

@ -11,11 +11,8 @@ function _install()
cd -
cd ${BUILD}
./configure && make || exit 1
make install prefix=$QP_ROOT/install/${TARGET} || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/lib/libz.so $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/lib/libz.a $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/include/zlib.h $QP_ROOT/lib || exit 1
ln -s -f $QP_ROOT/install/${TARGET}/include/zconf.h $QP_ROOT/lib || exit 1
./configure --prefix=$QP_ROOT && make || exit 1
make install || exit 1
}
source scripts/build.sh

View File

@ -124,23 +124,27 @@ let to_string t =
let find in_channel element =
In_channel.seek in_channel 0L;
let element_read, old_pos =
ref Element.X,
let loop, element_read, old_pos =
ref true,
ref None,
ref (In_channel.pos in_channel)
in
while !element_read <> element
while !loop
do
let buffer =
old_pos := In_channel.pos in_channel;
match In_channel.input_line in_channel with
| Some line -> String.split ~on:' ' line
|> List.hd_exn
| None -> ""
in
try
element_read := Element.of_string buffer
let buffer =
old_pos := In_channel.pos in_channel;
match In_channel.input_line in_channel with
| Some line -> String.split ~on:' ' line
|> List.hd_exn
| None -> raise End_of_file
in
element_read := Some (Element.of_string buffer);
loop := !element_read <> (Some element)
with
| Element.ElementError _ -> ()
| End_of_file -> loop := false
done ;
In_channel.seek in_channel !old_pos;
!element_read
@ -148,124 +152,126 @@ let find in_channel element =
(** Read the Pseudopotential in GAMESS format *)
let read_element in_channel element =
ignore (find in_channel element);
let rec read result =
match In_channel.input_line in_channel with
| None -> result
| Some line ->
if (String.strip line = "") then
result
else
read (line::result)
in
let data =
read []
|> List.rev
in
let debug_data =
String.concat ~sep:"\n" data
in
let decode_first_line = function
| first_line :: rest ->
match find in_channel element with
| Some e when e = element ->
begin
let first_line_split =
String.split first_line ~on:' '
|> List.filter ~f:(fun x -> (String.strip x) <> "")
let rec read result =
match In_channel.input_line in_channel with
| None -> result
| Some line ->
if (String.strip line = "") then
result
else
read (line::result)
in
match first_line_split with
| e :: "GEN" :: n :: p ->
{ element = Element.of_string e ;
n_elec = Int.of_string n |> Positive_int.of_int ;
local = [] ;
non_local = []
}, rest
| _ -> failwith (
Printf.sprintf "Unable to read Pseudopotential : \n%s\n"
debug_data )
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
let rec loop create_primitive accu = function
| (0,rest) -> List.rev accu, rest
| (n,line::rest) ->
begin
match
String.split line ~on:' '
|> List.filter ~f:(fun x -> String.strip x <> "")
with
| c :: i :: e :: [] ->
let i =
Int.of_string i
in
let elem =
( create_primitive
(Float.of_string e |> AO_expo.of_float)
(i-2 |> R_power.of_int),
Float.of_string c |> AO_coef.of_float
)
in
loop create_primitive (elem::accu) (n-1, rest)
let data =
read []
|> List.rev
in
let debug_data =
String.concat ~sep:"\n" data
in
let decode_first_line = function
| first_line :: rest ->
begin
let first_line_split =
String.split first_line ~on:' '
|> List.filter ~f:(fun x -> (String.strip x) <> "")
in
match first_line_split with
| e :: "GEN" :: n :: p ->
{ element = Element.of_string e ;
n_elec = Int.of_string n |> Positive_int.of_int ;
local = [] ;
non_local = []
}, rest
| _ -> failwith (
Printf.sprintf "Unable to read Pseudopotential : \n%s\n"
debug_data )
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
in
let decode_local (pseudo,data) =
let decode_local_n n rest =
let result, rest =
loop Primitive_local.of_expo_r_power [] (Positive_int.to_int n,rest)
let rec loop create_primitive accu = function
| (0,rest) -> List.rev accu, rest
| (n,line::rest) ->
begin
match
String.split line ~on:' '
|> List.filter ~f:(fun x -> String.strip x <> "")
with
| c :: i :: e :: [] ->
let i =
Int.of_string i
in
let elem =
( create_primitive
(Float.of_string e |> AO_expo.of_float)
(i-2 |> R_power.of_int),
Float.of_string c |> AO_coef.of_float
)
in
loop create_primitive (elem::accu) (n-1, rest)
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
end
| _ -> failwith ("Error reading pseudopotential\n"^debug_data)
in
{ pseudo with local = result }, rest
in
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
let decode_local (pseudo,data) =
let decode_local_n n rest =
let result, rest =
loop Primitive_local.of_expo_r_power [] (Positive_int.to_int n,rest)
in
{ pseudo with local = result }, rest
in
decode_local_n n rest
| _ -> failwith ("Unable to read (non-)local pseudopotential\n"^debug_data)
in
let decode_non_local (pseudo,data) =
let decode_non_local_n proj n (pseudo,data) =
let result, rest =
loop (Primitive_non_local.of_proj_expo_r_power proj)
[] (Positive_int.to_int n, data)
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
decode_local_n n rest
| _ -> failwith ("Unable to read (non-)local pseudopotential\n"^debug_data)
in
{ pseudo with non_local = pseudo.non_local @ result }, rest
in
let rec new_proj (pseudo,data) proj =
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
let result =
decode_non_local_n proj n (pseudo,rest)
and proj_next =
(Positive_int.to_int proj)+1
|> Positive_int.of_int
in
new_proj result proj_next
| _ -> pseudo
in
new_proj (pseudo,data) (Positive_int.of_int 0)
in
decode_first_line data
|> decode_local
|> decode_non_local
let decode_non_local (pseudo,data) =
let decode_non_local_n proj n (pseudo,data) =
let result, rest =
loop (Primitive_non_local.of_proj_expo_r_power proj)
[] (Positive_int.to_int n, data)
in
{ pseudo with non_local = pseudo.non_local @ result }, rest
in
let rec new_proj (pseudo,data) proj =
match data with
| n :: rest ->
let n =
String.strip n
|> Int.of_string
|> Positive_int.of_int
in
let result =
decode_non_local_n proj n (pseudo,rest)
and proj_next =
(Positive_int.to_int proj)+1
|> Positive_int.of_int
in
new_proj result proj_next
| _ -> pseudo
in
new_proj (pseudo,data) (Positive_int.of_int 0)
in
decode_first_line data
|> decode_local
|> decode_non_local
end
| _ -> empty element
include To_md5

View File

@ -88,8 +88,9 @@ let run ~multiplicity ezfio_file =
~alpha:(Elec_alpha_number.of_int alpha_new)
~beta:(Elec_beta_number.of_int beta_new) pair )
in
let c =
Array.create ~len:(List.length determinants) (Det_coef.of_float 1.)
Array.init (List.length determinants) (fun _ -> Det_coef.of_float ((Random.float 2.)-.1.))
in
determinants

5
plugins/All_singles/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
IRPF90_temp/
IRPF90_man/
irpf90.make
irpf90_entities
tags

View File

@ -15,6 +15,7 @@ Needed Modules
* `Properties <http://github.com/LCPQ/quantum_package/tree/master/plugins/Properties>`_
* `Selectors_no_sorted <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_no_sorted>`_
* `Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============

View File

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files

View File

@ -107,6 +107,7 @@ Needed Modules
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_CAS>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
@ -193,31 +194,6 @@ h_apply_cas_s_selected_monoexc
Assume N_int is already provided.
h_apply_cas_s_selected_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_cas_s_selected_no_skip_diexc
Undocumented
h_apply_cas_s_selected_no_skip_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_s_selected_no_skip_diexcp
Undocumented
h_apply_cas_s_selected_no_skip_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_cas_sd
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.

View File

@ -5,11 +5,15 @@ program fci_zmq
double precision, allocatable :: pt2(:)
integer :: degree
double precision :: threshold_davidson_in
allocate (pt2(N_states))
pt2 = 1.d0
diag_algorithm = "Lapack"
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
if (N_det > N_det_max) then
call diagonalize_CI
@ -33,20 +37,11 @@ program fci_zmq
double precision :: E_CI_before(N_states)
integer :: n_det_before
integer :: n_det_before, to_select
print*,'Beginning the selection ...'
E_CI_before(1:N_states) = CI_energy(1:N_states)
do while ( (N_det < N_det_max) .and. (maxval(abs(pt2(1:N_states))) > pt2_max) )
n_det_before = N_det
call ZMQ_selection(max(256-N_det, N_det), pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
@ -71,12 +66,38 @@ program fci_zmq
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = 2*N_det
to_select = max(64-to_select, to_select)
to_select = min(to_select,N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det == N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
endif
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
enddo
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,10)
do i=1,min(N_det_cas,20)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
@ -108,7 +129,7 @@ program fci_zmq
endif
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before+pt2)
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

@ -112,7 +112,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2)
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1_1
get_phase_bi = res(iand(np,1_1))
end subroutine
end function

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files
@ -28,7 +29,6 @@ full_ci
full_ci_no_skip
irpf90.make
irpf90_entities
micro_pt2
tags
target_pt2
var_pt2_ratio

View File

@ -16,6 +16,7 @@ Needed Modules
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
@ -77,6 +78,31 @@ h_apply_fci_monoexc
Assume N_int is already provided.
h_apply_fci_no_selection
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_selection_diexc
Undocumented
h_apply_fci_no_selection_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection_diexcp
Undocumented
h_apply_fci_no_selection_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
@ -144,118 +170,6 @@ h_apply_fci_pt2_slave_tcp
Computes a buffer over the network
h_apply_pt2_mono_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_pt2_mono_delta_rho_diexc
Undocumented
h_apply_pt2_mono_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_delta_rho_diexcp
Undocumented
h_apply_pt2_mono_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_di_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_pt2_mono_di_delta_rho_diexc
Undocumented
h_apply_pt2_mono_di_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_pt2_mono_di_delta_rho_diexcp
Undocumented
h_apply_pt2_mono_di_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_select_mono_delta_rho_diexc
Undocumented
h_apply_select_mono_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_delta_rho_diexcp
Undocumented
h_apply_select_mono_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_di_delta_rho
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_select_mono_di_delta_rho_diexc
Undocumented
h_apply_select_mono_di_delta_rho_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_select_mono_di_delta_rho_diexcp
Undocumented
h_apply_select_mono_di_delta_rho_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
`micro_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L1>`_
Helper program to compute the PT2 in distributed mode.
`provide_everything <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L15>`_
Undocumented
`run_wf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/micro_pt2.irp.f#L19>`_
Undocumented
`var_pt2_ratio_run <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI/var_pt2_ratio.irp.f#L1>`_
Undocumented

5
plugins/Full_CI_ZMQ/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
IRPF90_temp/
IRPF90_man/
irpf90.make
irpf90_entities
tags

View File

@ -0,0 +1,461 @@
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `ZMQ <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ>`_
* `Full_CI <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`add_task_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L677>`_
Get a task from the task server
`add_to_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L19>`_
Undocumented
`assert <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L25>`_
Undocumented
`connect_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L594>`_
Connect to the task server and obtain the worker ID
`create_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L2>`_
Undocumented
`disconnect_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L637>`_
Disconnect from the task server
`end_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L559>`_
End a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`end_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L419>`_
Terminate socket on which the results are sent.
`end_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L437>`_
Terminate socket on which the results are sent.
`end_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L456>`_
Terminate socket on which the results are sent.
`end_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L401>`_
Terminate socket on which the results are sent.
`end_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L790>`_
Terminate the socket from the application to qp_run
`fci_zmq <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L1>`_
Undocumented
`fill_buffer_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L156>`_
Undocumented
`fill_buffer_single <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L60>`_
Undocumented
`full_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/full_ci_no_skip.irp.f#L1>`_
Undocumented
`get_d0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L582>`_
Undocumented
`get_d1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L413>`_
Undocumented
`get_d2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L295>`_
Undocumented
`get_m0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L279>`_
Undocumented
`get_m1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L217>`_
Undocumented
`get_m2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L158>`_
Undocumented
`get_mask_phase <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L36>`_
Undocumented
`get_phase_bi <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L87>`_
Undocumented
`get_task_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L737>`_
Get a task from the task server
h_apply_fci
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_diexc
Undocumented
h_apply_fci_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_diexcp
Undocumented
h_apply_fci_mono
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_mono_diexc
Undocumented
h_apply_fci_mono_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_mono_diexcp
Undocumented
h_apply_fci_mono_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_selection_diexc
Undocumented
h_apply_fci_no_selection_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_selection_diexcp
Undocumented
h_apply_fci_no_selection_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_no_skip_diexc
Undocumented
h_apply_fci_no_skip_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_no_skip_diexcp
Undocumented
h_apply_fci_no_skip_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_pt2_collector
Collects results from the selection in an array of generators
h_apply_fci_pt2_diexc
Undocumented
h_apply_fci_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2_diexcp
Undocumented
h_apply_fci_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_fci_pt2_slave
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_fci_pt2_slave_inproc
Computes a buffer using threads
h_apply_fci_pt2_slave_tcp
Computes a buffer over the network
`integral8 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L4>`_
Undocumented
`new_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L490>`_
Start a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`new_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L164>`_
Socket on which the collector and the main communicate
`new_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L224>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L300>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L360>`_
Socket to read the state published by the Task server
`new_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L126>`_
Socket on which the qp_run process replies
`past_d1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L642>`_
Undocumented
`past_d2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L658>`_
Undocumented
`provide_everything <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L14>`_
Undocumented
`psi_phasemask <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L14>`_
Undocumented
`pull_selection_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L122>`_
Undocumented
`push_selection_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L87>`_
Undocumented
`qp_run_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L19>`_
Address of the qp_run socket
Example : tcp://130.120.229.139:12345
`reset_zmq_addresses <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L67>`_
Socket which pulls the results (2)
`run_selection_slave <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/run_selection_slave.irp.f#L2>`_
Undocumented
`run_wf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L19>`_
Undocumented
`select_connected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection.irp.f#L58>`_
Undocumented
`select_doubles <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L2>`_
Undocumented
`select_singles <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L3>`_
Select determinants connected to i_det by H
`selection_collector <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L167>`_
Undocumented
`selection_slave <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L1>`_
Helper program to compute the PT2 in distributed mode.
`selection_slave_inproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L160>`_
Undocumented
`selection_slave_tcp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L86>`_
Undocumented
`sort_selection_buffer <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_buffer.irp.f#L39>`_
Undocumented
`splash_p <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L107>`_
Undocumented
`splash_pq <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L221>`_
Undocumented
`spot_hasbeen <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_single.irp.f#L305>`_
Undocumented
`spot_isinwf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_double.irp.f#L684>`_
Undocumented
`switch_qp_run_to_master <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L84>`_
Address of the master qp_run socket
Example : tcp://130.120.229.139:12345
`task_done_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L708>`_
Get a task from the task server
`update_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/selection_slave.irp.f#L63>`_
Update energy when it is received from ZMQ
`var_pt2_ratio_run <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/var_pt2_ratio.irp.f#L1>`_
Undocumented
`wait_for_next_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L855>`_
Undocumented
`wait_for_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L879>`_
Wait for the ZMQ state to be ready
`wait_for_states <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L907>`_
Wait for the ZMQ state to be ready
`zmq_context <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L8>`_
Context for the ZeroMQ library
`zmq_delete_task <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L813>`_
When a task is done, it has to be removed from the list of tasks on the qp_run
queue. This guarantees that the results have been received in the pull.
`zmq_port <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L113>`_
Return the value of the ZMQ port from the corresponding integer
`zmq_port_start <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L20>`_
Address of the qp_run socket
Example : tcp://130.120.229.139:12345
`zmq_selection <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/fci_zmq.irp.f#L109>`_
Undocumented
`zmq_set_running <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L530>`_
Set the job to Running in QP-run
`zmq_socket_pair_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L45>`_
Socket which pulls the results (2)
`zmq_socket_pull_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L47>`_
Socket which pulls the results (2)
`zmq_socket_pull_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L44>`_
Socket which pulls the results (2)
`zmq_socket_push_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L48>`_
Socket which pulls the results (2)
`zmq_socket_push_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L46>`_
Socket which pulls the results (2)
`zmq_socket_sub_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L49>`_
Socket which pulls the results (2)
`zmq_state <http://github.com/LCPQ/quantum_package/tree/master/plugins/Full_CI_ZMQ/utils.irp.f#L482>`_
Threads executing work through the ZeroMQ interface

View File

@ -11,10 +11,9 @@ program fci_zmq
allocate (pt2(N_states))
pt2 = 1.d0
diag_algorithm = "Lapack"
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
threshold_davidson = 1.d-4
if (N_det > N_det_max) then
call diagonalize_CI
@ -43,31 +42,6 @@ program fci_zmq
n_det_before = 0
do while ( (N_det < N_det_max) .and. (maxval(abs(pt2(1:N_states))) > pt2_max) )
n_det_before = N_det
to_select = 3*N_det
to_select = max(1024-to_select, to_select)
to_select = min(to_select, N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det == N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
endif
call diagonalize_CI
call save_wavefunction
! if (N_det > N_det_max) then
! psi_det = psi_det_sorted
! psi_coef = psi_coef_sorted
! N_det = N_det_max
! soft_touch N_det psi_det psi_coef
! call diagonalize_CI
! call save_wavefunction
! endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
@ -91,9 +65,35 @@ program fci_zmq
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_zmq_energy(CI_energy)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = 2*N_det
to_select = max(64-to_select, to_select)
to_select = min(to_select, N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det == N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
endif
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
SOFT_TOUCH threshold_davidson
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
endif
if(do_pt2_end)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
@ -111,9 +111,11 @@ program fci_zmq
print *, 'E+PT2 = ', E_CI_before+pt2
print *, '-----'
enddo
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before+pt2)
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
endif
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

@ -112,7 +112,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2)
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1_1
get_phase_bi = res(iand(np,1_1))
end subroutine
end function

View File

View File

@ -33,7 +33,7 @@ Documentation
.. by the `update_README.py` script.
`degree_max_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L43>`_
`degree_max_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L45>`_
Max degree of excitation (respect to HF) of the generators
@ -52,10 +52,10 @@ Documentation
Hartree-Fock determinant
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L66>`_
`select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L68>`_
Memo to skip useless selectors
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L58>`_
`size_select_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full/generators.irp.f#L60>`_
Size of the select_max array

View File

@ -67,11 +67,11 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L268>`_
`fock_matrix_alpha_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L269>`_
Fock matrix on the MO basis
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L326>`_
`fock_matrix_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L327>`_
Fock matrix in AO basis set
@ -79,7 +79,7 @@ Documentation
Alpha Fock matrix in AO basis set
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L288>`_
`fock_matrix_beta_mo <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L289>`_
Fock matrix on the MO basis
@ -115,7 +115,7 @@ Documentation
.br
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L388>`_
`fock_mo_to_ao <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L389>`_
Undocumented
@ -135,7 +135,7 @@ Documentation
S^-1 Beta density matrix in the AO basis x S^-1
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L307>`_
`hf_energy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock/Fock_matrix.irp.f#L308>`_
Hartree-Fock energy

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files

View File

@ -36,11 +36,19 @@ Documentation
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L283>`_
`apply_hole_local <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1282>`_
Undocumented
`apply_particle_local <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1319>`_
Undocumented
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L320>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L382>`_
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L371>`_
Undocumented
@ -63,23 +71,23 @@ Documentation
Binomial coefficients
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L105>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L120>`_
Eigenvectors/values of the dressed CI matrix
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L106>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L121>`_
Eigenvectors/values of the dressed CI matrix
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L104>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L119>`_
Eigenvectors/values of the dressed CI matrix
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L171>`_
`ci_energy_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L247>`_
N_states lowest eigenvalues of the dressed CI matrix
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L59>`_
`davidson_diag_hjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L57>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
@ -95,12 +103,39 @@ Documentation
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L4>`_
`davidson_diag_hjj_sjj_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L610>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
S2_jj : specific diagonal S^2 matrix elements
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized. Assumed > sze
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L1>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
@ -119,19 +154,38 @@ Documentation
Initial guess vectors are not necessarily orthonormal
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L138>`_
`davidson_diag_mrcc_hs2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L552>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L136>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L155>`_
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L153>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L176>`_
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L197>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L210>`_
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L231>`_
n!!
@ -139,19 +193,23 @@ Documentation
Undocumented
`delta_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L68>`_
Dressing matrix in N_det basis
`dec_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L532>`_
Undocumented
`delta_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L67>`_
Dressing matrix in N_det basis
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L186>`_
`diagonalize_ci_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L265>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`dij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1092>`_
Undocumented
`dij_unique <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L617>`_
Undocumented
`dset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L27>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
@ -170,10 +228,26 @@ Documentation
contains the new order of the elements.
`dtranspose <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/transpose.irp.f#L41>`_
Transpose input matrix A into output matrix B
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/need.irp.f#L105>`_
Undocumented
`exc_inf <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L479>`_
Undocumented
`exccmp <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1265>`_
Undocumented
`exceq <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1253>`_
Undocumented
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L408>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
@ -183,19 +257,19 @@ Documentation
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L125>`_
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L123>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L264>`_
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L301>`_
Find A.C = B
`find_triples_and_quadruples <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L315>`_
`find_triples_and_quadruples <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L286>`_
Undocumented
`find_triples_and_quadruples_micro <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L375>`_
`find_triples_and_quadruples_micro <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L346>`_
Undocumented
@ -221,7 +295,15 @@ Documentation
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L210>`_
`get_dij <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1129>`_
Undocumented
`get_dij_index <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1113>`_
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L247>`_
Find C = A^-1
@ -306,11 +388,63 @@ h_apply_mrcc_pt2_monoexc
Assume N_int is already provided.
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L79>`_
h_apply_mrcepa_pt2
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_mrcepa_pt2_collector
Collects results from the selection in an array of generators
h_apply_mrcepa_pt2_diexc
Undocumented
h_apply_mrcepa_pt2_diexcorg
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_mrcepa_pt2_diexcp
Undocumented
h_apply_mrcepa_pt2_monoexc
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
h_apply_mrcepa_pt2_slave
Calls H_apply on the HF determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
h_apply_mrcepa_pt2_slave_inproc
Computes a buffer using threads
h_apply_mrcepa_pt2_slave_tcp
Computes a buffer over the network
`h_matrix_dressed <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L94>`_
Dressed H with Delta_ij
`h_u_0_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L367>`_
`h_s2_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L997>`_
Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
.br
S2_jj : array of <j|S^2|j>
`h_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L409>`_
Computes v_0 = H|u_0>
.br
n : number of determinants
@ -392,7 +526,15 @@ h_apply_mrcc_pt2_monoexc
Hermite polynomial
`hij_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L53>`_
`hh_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1181>`_
Undocumented
`hh_shortcut <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1182>`_
Undocumented
`hij_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L66>`_
< ref | H | Non-ref > matrix
@ -523,7 +665,7 @@ h_apply_mrcc_pt2_monoexc
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L257>`_
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L278>`_
1/i
@ -541,6 +683,10 @@ h_apply_mrcc_pt2_monoexc
iradix should be -1 in input.
`is_generable <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L284>`_
Undocumented
`iset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/sort.irp.f_template_216#L52>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
@ -559,15 +705,19 @@ h_apply_mrcc_pt2_monoexc
contains the new order of the elements.
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1>`_
`lambda_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L8>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lambda_mrcc_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L2>`_
`lambda_mrcc_kept <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L10>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L362>`_
`lambda_mrcc_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L9>`_
cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L399>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -578,7 +728,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L425>`_
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L462>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -589,7 +739,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L295>`_
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L332>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -600,7 +750,7 @@ h_apply_mrcc_pt2_monoexc
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L491>`_
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L528>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -611,19 +761,27 @@ h_apply_mrcc_pt2_monoexc
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L93>`_
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L91>`_
n!
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L406>`_
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L395>`_
Transform to lower case
`map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/map_functions.irp.f#L70>`_
Undocumented
`map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/map_functions.irp.f#L1>`_
Undocumented
`mrcc_dress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L17>`_
Undocumented
`mrcc_iterations <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L7>`_
`mrmode <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L3>`_
Undocumented
@ -632,12 +790,24 @@ h_apply_mrcc_pt2_monoexc
D(t) =! D(t) +( B(t)*C(t))
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L358>`_
`n_ex_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L575>`_
Undocumented
`n_hh_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L573>`_
Undocumented
`n_pp_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L574>`_
Undocumented
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L348>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L283>`_
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L304>`_
Number of current OpenMP threads
@ -659,7 +829,7 @@ h_apply_mrcc_pt2_monoexc
.br
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L128>`_
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L162>`_
Compute C_new=C_old.S^-1/2 orthogonalization.
.br
overlap : overlap matrix
@ -677,6 +847,19 @@ h_apply_mrcc_pt2_monoexc
.br
`ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L128>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/one_e_integration.irp.f#L35>`_
Undocumented
@ -707,6 +890,10 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`pp_exists <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L1183>`_
Undocumented
`progress_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L29>`_
Current status for displaying progress bars. Global variable.
@ -727,6 +914,14 @@ h_apply_mrcc_pt2_monoexc
Current status for displaying progress bars. Global variable.
`psi_non_ref_sorted <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L609>`_
Undocumented
`psi_non_ref_sorted_idx <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L610>`_
Undocumented
`psi_ref_lock <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_dress.irp.f#L4>`_
Locks on ref determinants to fill delta_ij
@ -735,6 +930,10 @@ h_apply_mrcc_pt2_monoexc
Recenter two polynomials
`rho_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L618>`_
Undocumented
`rint <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/integration.irp.f#L436>`_
.. math::
.br
@ -762,10 +961,6 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`run_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L1>`_
Undocumented
`run_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L45>`_
Display a progress bar with documentation of what is happening
@ -774,7 +969,15 @@ h_apply_mrcc_pt2_monoexc
Undocumented
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L59>`_
`searchdet <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L337>`_
Undocumented
`searchexc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L388>`_
Undocumented
`set_generators_bitmasks_as_holes_and_particles <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_general.irp.f#L2>`_
Undocumented
@ -790,7 +993,7 @@ h_apply_mrcc_pt2_monoexc
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L548>`_
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/LinearAlgebra.irp.f#L585>`_
Undocumented
@ -800,6 +1003,14 @@ h_apply_mrcc_pt2_monoexc
contains the new order of the elements.
`sort_det <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L417>`_
Undocumented
`sort_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L453>`_
Undocumented
`start_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/progress.irp.f#L1>`_
Starts the progress bar
@ -817,18 +1028,37 @@ h_apply_mrcc_pt2_monoexc
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L326>`_
`tamise_exc <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L495>`_
Uncodumented : TODO
`transpose <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/transpose.irp.f#L2>`_
Transpose input matrix A into output matrix B
`u_0_h_u_0_mrcc_nstates <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/davidson.irp.f#L374>`_
Computes e_0 = <u_0|H|u_0>/<u_0|u_0>
.br
n : number of determinants
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L334>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L299>`_
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L320>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L268>`_
`unsortedsearchdet <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/mrcc_utils.irp.f#L368>`_
Undocumented
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L289>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L243>`_
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils/util.irp.f#L264>`_
Write the last git commit in file iunit.

View File

@ -66,9 +66,18 @@
END_PROVIDER
BEGIN_PROVIDER [ integer, n_exc_active_sze ]
implicit none
BEGIN_DOC
! Dimension of arrays to avoid zero-sized arrays
END_DOC
n_exc_active_sze = max(n_exc_active,1)
END_PROVIDER
BEGIN_PROVIDER [ integer, active_excitation_to_determinants_idx, (0:N_det_ref+1, n_exc_active) ]
&BEGIN_PROVIDER [ double precision, active_excitation_to_determinants_val, (N_states,N_det_ref+1, n_exc_active) ]
BEGIN_PROVIDER [ integer, active_excitation_to_determinants_idx, (0:N_det_ref+1, n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, active_excitation_to_determinants_val, (N_states,N_det_ref+1, n_exc_active_sze) ]
implicit none
BEGIN_DOC
! Sparse matrix A containing the matrix to transform the active excitations to
@ -80,7 +89,8 @@ END_PROVIDER
double precision :: phase
logical :: ok
integer, external :: searchDet
PROVIDE psi_non_ref_sorted_idx psi_ref_coef
!$OMP PARALLEL default(none) shared(psi_non_ref, hh_exists, pp_exists, N_int,&
!$OMP active_excitation_to_determinants_val, active_excitation_to_determinants_idx)&
@ -117,6 +127,7 @@ END_PROVIDER
wk += 1
do s=1,N_states
active_excitation_to_determinants_val(s,wk, ppp) = psi_ref_coef(lref(i), s)
enddo
active_excitation_to_determinants_idx(wk, ppp) = i
else if(lref(i) < 0) then
@ -136,10 +147,10 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ integer, mrcc_AtA_ind, (N_det_ref * n_exc_active) ]
&BEGIN_PROVIDER [ double precision, mrcc_AtA_val, (N_states, N_det_ref * n_exc_active) ]
&BEGIN_PROVIDER [ integer, mrcc_col_shortcut, (n_exc_active) ]
&BEGIN_PROVIDER [ integer, mrcc_N_col, (n_exc_active) ]
BEGIN_PROVIDER [ integer, mrcc_AtA_ind, (N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, mrcc_AtA_val, (N_states, N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_col_shortcut, (n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_N_col, (n_exc_active_sze) ]
implicit none
BEGIN_DOC
! A is active_excitation_to_determinants in At.A
@ -149,7 +160,7 @@ END_PROVIDER
double precision, allocatable :: t(:), A_val_mwen(:,:), As2_val_mwen(:,:)
integer, allocatable :: A_ind_mwen(:)
double precision :: sij
PROVIDE psi_non_ref
PROVIDE psi_non_ref active_excitation_to_determinants_val
mrcc_AtA_ind(:) = 0
mrcc_AtA_val(:,:) = 0.d0
@ -157,7 +168,6 @@ END_PROVIDER
mrcc_N_col(:) = 0
AtA_size = 0
!$OMP PARALLEL default(none) shared(k, active_excitation_to_determinants_idx,&
!$OMP active_excitation_to_determinants_val, hh_nex) &
!$OMP private(at_row, a_col, t, i, r1, r2, wk, A_ind_mwen, A_val_mwen,&
@ -170,7 +180,6 @@ END_PROVIDER
do at_roww = 1, n_exc_active ! hh_nex
at_row = active_pp_idx(at_roww)
wk = 0
if(mod(at_roww, 100) == 0) print *, "AtA", at_row, "/", hh_nex
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
@ -224,7 +233,7 @@ END_PROVIDER
deallocate (A_ind_mwen, A_val_mwen, As2_val_mwen, t)
!$OMP END PARALLEL
print *, "ATA SIZE", ata_size
print *, "At.A SIZE", ata_size
END_PROVIDER

View File

@ -807,7 +807,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! Diagonalize h
! -------------
call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector
! -------------------------------
@ -829,7 +829,9 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
state_ok(k) = .True.
do k=1,size(state_ok)
state_ok(k) = .True.
enddo
endif
do k=1,shift2
@ -908,30 +910,30 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! -----------------------
do k=1,N_st_diag
if (state_ok(k)) then
! if (state_ok(k)) then
do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
! else
! ! Randomize components with bad <S2>
! do i=1,sze-2,2
! call random_number(r1)
! call random_number(r2)
! r1 = dsqrt(-2.d0*dlog(r1))
! r2 = dtwo_pi*r2
! U(i,shift2+k) = r1*dcos(r2)
! U(i+1,shift2+k) = r1*dsin(r2)
! enddo
! do i=sze-2+1,sze
! call random_number(r1)
! call random_number(r2)
! r1 = dsqrt(-2.d0*dlog(r1))
! r2 = dtwo_pi*r2
! U(i,shift2+k) = r1*dcos(r2)
! enddo
! endif
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
@ -1040,6 +1042,7 @@ subroutine H_S2_u_0_mrcc_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,istate_i
call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint)
call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint)
PROVIDE delta_ij_s2
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,hij,s2,j,k,jj,vt,st,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)&
!$OMP SHARED(n,keys_tmp,ut,Nint,v_0,s_0,sorted,shortcut,sort_idx,version,N_st,N_st_8, &

View File

@ -33,6 +33,7 @@ END_PROVIDER
if (ihpsi_current(k) == 0.d0) then
ihpsi_current(k) = 1.d-32
endif
! lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
lambda_mrcc(k,i) = min(-1.d-32,psi_non_ref_coef(i,k)/ihpsi_current(k) )
lambda_pert = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
if (lambda_pert / lambda_mrcc(k,i) < 0.5d0) then
@ -77,19 +78,6 @@ BEGIN_PROVIDER [ double precision, hij_mrcc, (N_det_non_ref,N_det_ref) ]
END_PROVIDER
! BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ]
!&BEGIN_PROVIDER [ double precision, delta_ii, (N_states,N_det_ref) ]
! implicit none
! BEGIN_DOC
! ! Dressing matrix in N_det basis
! END_DOC
! integer :: i,j,m
! delta_ij = 0.d0
! delta_ii = 0.d0
! call H_apply_mrcc(delta_ij,delta_ii,N_states,N_det_non_ref,N_det_ref)
!
!END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
implicit none
@ -173,8 +161,8 @@ END_PROVIDER
enddo
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
N_states_diag,size(CI_eigenvectors_dressed,1))
deallocate (eigenvectors,eigenvalues)
deallocate (eigenvectors,eigenvalues)
else if (diag_algorithm == "Lapack") then
@ -699,14 +687,12 @@ END_PROVIDER
allocate(rho_mrcc_init(N_det_non_ref))
allocate(x_new(hh_nex))
allocate(x(hh_nex), AtB(hh_nex))
x = 0d0
do s=1,N_states
AtB(:) = 0.d0
!$OMP PARALLEL default(none) shared(k, psi_non_ref_coef, active_excitation_to_determinants_idx,&
!$OMP active_excitation_to_determinants_val, x, N_det_ref, hh_nex, N_det_non_ref) &
!$OMP active_excitation_to_determinants_val, N_det_ref, hh_nex, N_det_non_ref) &
!$OMP private(at_row, a_col, i, j, r1, r2, wk, A_ind_mwen, A_val_mwen, a_coll, at_roww)&
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtB, mrcc_AtA_val, mrcc_AtA_ind, s, n_exc_active, active_pp_idx)
@ -762,21 +748,19 @@ END_PROVIDER
end do
deallocate(lref)
do i=1,N_det_non_ref
rho_mrcc(i,s) = rho_mrcc_init(i)
enddo
x_new = x
double precision :: factor, resold
factor = 1.d0
resold = huge(1.d0)
do k=0,hh_nex*hh_nex
!$OMP PARALLEL default(shared) private(cx, i, a_col, a_coll)
!$OMP DO
do i=1,N_det_non_ref
rho_mrcc(i,s) = rho_mrcc_init(i)
enddo
!$OMP END DO NOWAIT
do k=0,10*hh_nex
res = 0.d0
!$OMP PARALLEL default(shared) private(cx, i, a_col, a_coll) reduction(+:res)
!$OMP DO
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
@ -785,23 +769,12 @@ END_PROVIDER
cx = cx + x(mrcc_AtA_ind(i)) * mrcc_AtA_val(s,i)
end do
x_new(a_col) = AtB(a_col) + cx * factor
end do
!$OMP END DO
!$OMP END PARALLEL
res = 0.d0
do a_coll=1,n_exc_active
a_col = active_pp_idx(a_coll)
do j=1,N_det_non_ref
i = active_excitation_to_determinants_idx(j,a_coll)
if (i==0) exit
rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * X_new(a_col)
enddo
res = res + (X_new(a_col) - X(a_col))*(X_new(a_col) - X(a_col))
X(a_col) = X_new(a_col)
end do
!$OMP END DO
!$OMP END PARALLEL
if (res > resold) then
factor = factor * 0.5d0
endif
@ -811,9 +784,23 @@ END_PROVIDER
print *, "res ", k, res
end if
if(res < 1d-12) exit
if(res < 1d-10) exit
end do
dIj_unique(1:size(X), s) = X(1:size(X))
enddo
do s=1,N_states
do a_coll=1,n_exc_active
a_col = active_pp_idx(a_coll)
do j=1,N_det_non_ref
i = active_excitation_to_determinants_idx(j,a_coll)
if (i==0) exit
rho_mrcc(i,s) = rho_mrcc(i,s) + active_excitation_to_determinants_val(s,j,a_coll) * dIj_unique(a_col,s)
enddo
end do
norm = 0.d0
do i=1,N_det_non_ref
norm = norm + rho_mrcc(i,s)*rho_mrcc(i,s)
@ -825,122 +812,11 @@ END_PROVIDER
enddo
! Norm now contains the norm of Psi + A.X
print *, k, "res : ", res, "norm : ", sqrt(norm)
!---------------
! double precision :: e_0, overlap
! double precision, allocatable :: u_0(:)
! integer(bit_kind), allocatable :: keys_tmp(:,:,:)
! allocate (u_0(N_det), keys_tmp(N_int,2,N_det) )
! k=0
! overlap = 0.d0
! do i=1,N_det_ref
! k = k+1
! u_0(k) = psi_ref_coef(i,1)
! keys_tmp(:,:,k) = psi_ref(:,:,i)
! overlap += u_0(k)*psi_ref_coef(i,1)
! enddo
! norm = 0.d0
! do i=1,N_det_non_ref
! k = k+1
! u_0(k) = psi_non_ref_coef(i,1)
! keys_tmp(:,:,k) = psi_non_ref(:,:,i)
! overlap += u_0(k)*psi_non_ref_coef(i,1)
! enddo
!
! call u_0_H_u_0(e_0,u_0,N_det,keys_tmp,N_int,1,N_det)
! print *, 'Energy of |Psi_CASSD> : ', e_0 + nuclear_repulsion, overlap
!
! k=0
! overlap = 0.d0
! do i=1,N_det_ref
! k = k+1
! u_0(k) = psi_ref_coef(i,1)
! keys_tmp(:,:,k) = psi_ref(:,:,i)
! overlap += u_0(k)*psi_ref_coef(i,1)
! enddo
! norm = 0.d0
! do i=1,N_det_non_ref
! k = k+1
! ! f is such that f.\tilde{c_i} = c_i
! f = psi_non_ref_coef(i,1) / rho_mrcc(i,1)
!
! ! Avoid numerical instabilities
! f = min(f,2.d0)
! f = max(f,-2.d0)
!
! f = 1.d0
!
! u_0(k) = rho_mrcc(i,1)*f
! keys_tmp(:,:,k) = psi_non_ref(:,:,i)
! norm += u_0(k)**2
! overlap += u_0(k)*psi_non_ref_coef(i,1)
! enddo
!
! call u_0_H_u_0(e_0,u_0,N_det,keys_tmp,N_int,1,N_det)
! print *, 'Energy of |(1+T)Psi_0> : ', e_0 + nuclear_repulsion, overlap
!
! f = 1.d0/norm
! norm = 1.d0
! do i=1,N_det_ref
! norm = norm - psi_ref_coef(i,s)*psi_ref_coef(i,s)
! enddo
! f = dsqrt(f*norm)
! overlap = norm
! do i=1,N_det_non_ref
! u_0(k) = rho_mrcc(i,1)*f
! overlap += u_0(k)*psi_non_ref_coef(i,1)
! enddo
!
! call u_0_H_u_0(e_0,u_0,N_det,keys_tmp,N_int,1,N_det)
! print *, 'Energy of |(1+T)Psi_0> (normalized) : ', e_0 + nuclear_repulsion, overlap
!
! k=0
! overlap = 0.d0
! do i=1,N_det_ref
! k = k+1
! u_0(k) = psi_ref_coef(i,1)
! keys_tmp(:,:,k) = psi_ref(:,:,i)
! overlap += u_0(k)*psi_ref_coef(i,1)
! enddo
! norm = 0.d0
! do i=1,N_det_non_ref
! k = k+1
! ! f is such that f.\tilde{c_i} = c_i
! f = psi_non_ref_coef(i,1) / rho_mrcc(i,1)
!
! ! Avoid numerical instabilities
! f = min(f,2.d0)
! f = max(f,-2.d0)
!
! u_0(k) = rho_mrcc(i,1)*f
! keys_tmp(:,:,k) = psi_non_ref(:,:,i)
! norm += u_0(k)**2
! overlap += u_0(k)*psi_non_ref_coef(i,1)
! enddo
!
! call u_0_H_u_0(e_0,u_0,N_det,keys_tmp,N_int,1,N_det)
! print *, 'Energy of |(1+T)Psi_0> (mu_i): ', e_0 + nuclear_repulsion, overlap
!
! f = 1.d0/norm
! norm = 1.d0
! do i=1,N_det_ref
! norm = norm - psi_ref_coef(i,s)*psi_ref_coef(i,s)
! enddo
! overlap = norm
! f = dsqrt(f*norm)
! do i=1,N_det_non_ref
! u_0(k) = rho_mrcc(i,1)*f
! overlap += u_0(k)*psi_non_ref_coef(i,1)
! enddo
!
! call u_0_H_u_0(e_0,u_0,N_det,keys_tmp,N_int,1,N_det)
! print *, 'Energy of |(1+T)Psi_0> (normalized mu_i) : ', e_0 + nuclear_repulsion, overlap
!
! deallocate(u_0, keys_tmp)
!
!---------------
print *, "norm : ", sqrt(norm)
enddo
do s=1,N_states
norm = 0.d0
double precision :: f
do i=1,N_det_non_ref
@ -948,12 +824,16 @@ END_PROVIDER
rho_mrcc(i,s) = 1.d-32
endif
! f is such that f.\tilde{c_i} = c_i
f = psi_non_ref_coef(i,s) / rho_mrcc(i,s)
if (lambda_type == 2) then
f = 1.d0
else
! f is such that f.\tilde{c_i} = c_i
f = psi_non_ref_coef(i,s) / rho_mrcc(i,s)
! Avoid numerical instabilities
f = min(f,2.d0)
f = max(f,-2.d0)
! Avoid numerical instabilities
f = min(f,2.d0)
f = max(f,-2.d0)
endif
norm = norm + f*f *rho_mrcc(i,s)*rho_mrcc(i,s)
rho_mrcc(i,s) = f
@ -988,7 +868,6 @@ END_PROVIDER
! rho_mrcc now contains the product of the scaling factors and the
! normalization constant
dIj_unique(1:size(X), s) = X(1:size(X))
end do
END_PROVIDER

View File

@ -0,0 +1,101 @@
subroutine multi_state(CI_electronic_energy_dressed_,CI_eigenvectors_dressed_,LDA)
implicit none
BEGIN_DOC
! Multi-state mixing
END_DOC
integer, intent(in) :: LDA
double precision, intent(inout) :: CI_electronic_energy_dressed_(N_states)
double precision, intent(inout) :: CI_eigenvectors_dressed_(LDA,N_states)
double precision, allocatable :: h(:,:,:), s(:,:), Psi(:,:), H_Psi(:,:,:), H_jj(:)
allocate( h(N_states,N_states,0:N_states), s(N_states,N_states) )
allocate( Psi(LDA,N_states), H_Psi(LDA,N_states,0:N_states) )
allocate (H_jj(LDA) )
! e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
integer :: i,j,k,istate
double precision :: U(N_states,N_states), Vt(N_states,N_states), D(N_states)
double precision, external :: diag_H_mat_elem
do istate=1,N_states
do i=1,N_det
H_jj(i) = diag_H_mat_elem(psi_det(1,1,i),N_int)
enddo
do i=1,N_det_ref
H_jj(idx_ref(i)) += delta_ii(istate,i)
enddo
do k=1,N_states
do i=1,N_det
Psi(i,k) = CI_eigenvectors_dressed_(i,k)
enddo
enddo
call H_u_0_mrcc_nstates(H_Psi(1,1,istate),Psi,H_jj,N_det,psi_det,N_int,istate,N_states,LDA)
do k=1,N_states
do i=1,N_states
double precision, external :: u_dot_v
h(i,k,istate) = u_dot_v(Psi(1,i), H_Psi(1,k,istate), N_det)
enddo
enddo
enddo
do k=1,N_states
do i=1,N_states
s(i,k) = u_dot_v(Psi(1,i), Psi(1,k), N_det)
enddo
enddo
print *, s(:,:)
print *, ''
h(:,:,0) = h(:,:,1)
do istate=2,N_states
U(:,:) = h(:,:,0)
call dgemm('N','N',N_states,N_states,N_states,1.d0,&
U, size(U,1), h(1,1,istate), size(h,1), 0.d0, &
h(1,1,0), size(Vt,1))
enddo
call svd(h(1,1,0), size(h,1), U, size(U,1), D, Vt, size(Vt,1), N_states, N_states)
do k=1,N_states
D(k) = D(k)**(1./dble(N_states))
if (D(k) > 0.d0) then
D(k) = -D(k)
endif
enddo
do j=1,N_states
do i=1,N_states
h(i,j,0) = 0.d0
do k=1,N_states
h(i,j,0) += U(i,k) * D(k) * Vt(k,j)
enddo
enddo
enddo
print *, h(:,:,0)
print *,''
integer :: LWORK, INFO
double precision, allocatable :: WORK(:)
LWORK=3*N_states
allocate (WORK(LWORK))
call dsygv(1, 'V', 'U', N_states, h(1,1,0), size(h,1), s, size(s,1), D, WORK, LWORK, INFO)
deallocate(WORK)
do j=1,N_states
do i=1,N_det
CI_eigenvectors_dressed_(i,j) = 0.d0
do k=1,N_states
CI_eigenvectors_dressed_(i,j) += Psi(i,k) * h(k,j,0)
enddo
enddo
CI_electronic_energy_dressed_(j) = D(j)
enddo
deallocate (h,s, H_jj)
deallocate( Psi, H_Psi )
end

View File

@ -5,23 +5,3 @@ interface: ezfio,provider,ocaml
default: True
[save_heff_eigenvectors]
type: logical
doc: If true, you save the eigenvectors of the effective hamiltonian
interface: ezfio,provider,ocaml
default: False
[pure_state_specific_mrpt2]
type: logical
doc: If true, diagonalize the dressed matrix for each state and do a state following of the initial states
interface: ezfio,provider,ocaml
default: True
[N_states_diag_heff]
type: States_number
doc: Number of eigenvectors obtained with the effective hamiltonian
interface: ezfio,provider,ocaml
default: 1

View File

@ -1,6 +1,10 @@
! DO NOT MODIFY BY HAND
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
<<<<<<< HEAD
! from file /home/giner/qp_fork/quantum_package/src/MRPT_Utils/EZFIO.cfg
=======
! from file /home/scemama/quantum_package/src/MRPT_Utils/EZFIO.cfg
>>>>>>> 4a552cc8fe36ae7c8c86eb714c2f032b44330ea0
BEGIN_PROVIDER [ logical, do_third_order_1h1p ]
@ -21,6 +25,7 @@ BEGIN_PROVIDER [ logical, do_third_order_1h1p ]
endif
END_PROVIDER
<<<<<<< HEAD
BEGIN_PROVIDER [ logical, save_heff_eigenvectors ]
implicit none
@ -78,3 +83,5 @@ BEGIN_PROVIDER [ logical, pure_state_specific_mrpt2 ]
endif
END_PROVIDER
=======
>>>>>>> 4a552cc8fe36ae7c8c86eb714c2f032b44330ea0

View File

@ -1,5 +1,5 @@
BEGIN_PROVIDER [ double precision, delta_ij, (N_det_ref,N_det_ref,N_states) ]
BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1h, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1p, (N_states) ]
@ -11,7 +11,7 @@
&BEGIN_PROVIDER [ double precision, second_order_pt_new_2h2p, (N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det_ref basis
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
integer :: i_state
@ -21,18 +21,17 @@
delta_ij = 0.d0
allocate (delta_ij_tmp(N_det_ref,N_det_ref,N_states))
allocate (delta_ij_tmp(N_det,N_det,N_states))
! 1h
delta_ij_tmp = 0.d0
call H_apply_mrpt_1h(delta_ij_tmp,N_det_ref)
call H_apply_mrpt_1h(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
@ -40,243 +39,169 @@
enddo
print*, '1h = ',accu
! 1p
delta_ij_tmp = 0.d0
call H_apply_mrpt_1p(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
! print*, accu
! print*,delta_ij_tmp(j,i,i_state) , psi_ref_coef(i,i_state) , psi_ref_coef(j,i_state)
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1p(i_state) = accu(i_state)
enddo
print*, '1p = ',accu
! 1h1p
delta_ij_tmp = 0.d0
call H_apply_mrpt_1h1p(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
double precision :: accu_diag,accu_non_diag
accu_diag = 0.d0
accu_non_diag = 0.d0
do i = 1, N_det_ref
accu_diag += delta_ij_tmp(i,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(i,i_state)
do j = 1, N_det_ref
if(i == j)cycle
accu_non_diag += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
!double precision :: neutral, ionic
!neutral = 0.d0
!do i = 1, 2
! do j = 1, N_det_ref
! neutral += psi_ref_coef(j,1) * delta_ij_tmp(j,i,1) * psi_ref_coef(i,1)
! enddo
!enddo
!do i = 3, 4
! do j = 1, N_det_ref
! ionic += psi_ref_coef(j,1) * delta_ij_tmp(j,i,1) * psi_ref_coef(i,1)
! enddo
!enddo
!neutral = delta_ij_tmp(1,1,1) * psi_ref_coef(1,1)**2 + delta_ij_tmp(2,2,1) * psi_ref_coef(2,1)**2 &
! + delta_ij_tmp(1,2,1) * psi_ref_coef(1,1)* psi_ref_coef(2,1) + delta_ij_tmp(2,1,1) * psi_ref_coef(1,1)* psi_ref_coef(2,1)
!ionic = delta_ij_tmp(3,3,1) * psi_ref_coef(3,1)**2 + delta_ij_tmp(4,4,1) * psi_ref_coef(4,1)**2 &
! + delta_ij_tmp(3,4,1) * psi_ref_coef(3,1)* psi_ref_coef(4,1) + delta_ij_tmp(4,3,1) * psi_ref_coef(3,1)* psi_ref_coef(4,1)
!neutral = delta_ij_tmp(1,1,1)
!ionic = delta_ij_tmp(3,3,1)
!print*, 'neutral = ',neutral
!print*, 'ionic = ',ionic
print*, '1h1p = ',accu
!! 1h1p third order
!if(do_third_order_1h1p)then
! delta_ij_tmp = 0.d0
! call give_1h1p_sec_order_singles_contrib(delta_ij_tmp)
! accu = 0.d0
! do i_state = 1, N_states
! do i = 1, N_det_ref
! write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
! do j = 1, N_det_ref
! accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
! delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
! enddo
! enddo
! second_order_pt_new_1h1p(i_state) = accu(i_state)
! enddo
! print*, '1h1p(3)',accu
!endif
! 2h
delta_ij_tmp = 0.d0
call H_apply_mrpt_2h(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2h(i_state) = accu(i_state)
enddo
print*, '2h = ',accu
! 2p
delta_ij_tmp = 0.d0
call H_apply_mrpt_2p(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2p(i_state) = accu(i_state)
enddo
print*, '2p = ',accu
! 1h2p
delta_ij_tmp = 0.d0
call give_1h2p_contrib(delta_ij_tmp)
!!!call H_apply_mrpt_1h2p(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1h2p(i_state) = accu(i_state)
enddo
print*, '1h2p = ',accu
! 2h1p
delta_ij_tmp = 0.d0
call give_2h1p_contrib(delta_ij_tmp)
!!!!call H_apply_mrpt_2h1p(delta_ij_tmp,N_det_ref)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2h1p(i_state) = accu(i_state)
enddo
print*, '2h1p = ',accu
! 2h2p
double precision :: contrib_2h2p(N_states)
call give_2h2p(contrib_2h2p)
do i_state = 1, N_states
do i = 1, N_det_ref
delta_ij(i,i,i_state) += contrib_2h2p(i_state)
enddo
second_order_pt_new_2h2p(i_state) = contrib_2h2p(i_state)
enddo
print*, '2h2p = ',contrib_2h2p
! 1p
delta_ij_tmp = 0.d0
call H_apply_mrpt_1p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1p(i_state) = accu(i_state)
enddo
print*, '1p = ',accu
! ! 2h2p old fashion
! delta_ij_tmp = 0.d0
! call H_apply_mrpt_2h2p(delta_ij_tmp,N_det_ref)
! accu = 0.d0
! do i_state = 1, N_states
! do i = 1, N_det_ref
! write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
! do j = 1, N_det_ref
! accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
! delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
! enddo
! enddo
! second_order_pt_new_2h2p(i_state) = accu(i_state)
! enddo
! print*, '2h2p = ',accu
! 1h1p
delta_ij_tmp = 0.d0
call H_apply_mrpt_1h1p(delta_ij_tmp,N_det)
double precision :: e_corr_from_1h1p_singles(N_states)
!call give_singles_and_partial_doubles_1h1p_contrib(delta_ij_tmp,e_corr_from_1h1p_singles)
!call give_1h1p_only_doubles_spin_cross(delta_ij_tmp)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
print*, '1h1p = ',accu
! 1h1p third order
if(do_third_order_1h1p)then
delta_ij_tmp = 0.d0
call give_1h1p_sec_order_singles_contrib(delta_ij_tmp)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
print*, '1h1p(3)',accu
endif
! 2h
delta_ij_tmp = 0.d0
call H_apply_mrpt_2h(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2h(i_state) = accu(i_state)
enddo
print*, '2h = ',accu
! 2p
delta_ij_tmp = 0.d0
call H_apply_mrpt_2p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2p(i_state) = accu(i_state)
enddo
print*, '2p = ',accu
! 1h2p
delta_ij_tmp = 0.d0
!call give_1h2p_contrib(delta_ij_tmp)
call H_apply_mrpt_1h2p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1h2p(i_state) = accu(i_state)
enddo
print*, '1h2p = ',accu
! 2h1p
delta_ij_tmp = 0.d0
!call give_2h1p_contrib(delta_ij_tmp)
call H_apply_mrpt_2h1p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_2h1p(i_state) = accu(i_state)
enddo
print*, '2h1p = ',accu
! 2h2p
!delta_ij_tmp = 0.d0
!call H_apply_mrpt_2h2p(delta_ij_tmp,N_det)
!accu = 0.d0
!do i_state = 1, N_states
!do i = 1, N_det
! do j = 1, N_det
! accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
! delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
! enddo
!enddo
!second_order_pt_new_2h2p(i_state) = accu(i_state)
!enddo
!print*, '2h2p = ',accu
double precision :: contrib_2h2p(N_states)
call give_2h2p(contrib_2h2p)
do i_state = 1, N_states
do i = 1, N_det
delta_ij(i,i,i_state) += contrib_2h2p(i_state)
enddo
second_order_pt_new_2h2p(i_state) = contrib_2h2p(i_state)
enddo
print*, '2h2p = ',contrib_2h2p(1)
! total
accu = 0.d0
print*, 'naked matrix'
double precision, allocatable :: hmatrix(:,:)
double precision:: hij,h00
allocate(hmatrix(N_det_ref, N_det_ref))
call i_h_j(psi_ref(1,1,1),psi_ref(1,1,1),N_int,h00)
do i = 1, N_det_ref
do j = 1, N_det_Ref
call i_h_j(psi_ref(1,1,i),psi_ref(1,1,j),N_int,hij)
hmatrix(i,j) = hij
enddo
hmatrix(i,i) += - h00
enddo
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')hmatrix(i,:)
enddo
print*, ''
print*, ''
print*, ''
do i_state = 1, N_states
print*,'state ',i_state
do i = 1, N_det_ref
do j = 1, N_det_Ref
call i_h_j(psi_ref(1,1,i),psi_ref(1,1,j),N_int,hij)
hmatrix(i,j) = hij
enddo
hmatrix(i,i) += - h00
do i = 1, N_det
! write(*,'(1000(F16.10,x))')delta_ij(i,:,:)
do j = i_state, N_det
accu(i_state) += delta_ij(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
enddo
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij(i,:,i_state)
do j = 1 , N_det_ref
accu(i_state) += delta_ij(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
hmatrix(i,j) += delta_ij(j,i,i_state)
enddo
enddo
second_order_pt_new(i_state) = accu(i_state)
print*, 'total= ',accu(i_state)
do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')hmatrix(i,:)
enddo
enddo
deallocate(hmatrix)
second_order_pt_new(i_state) = accu(i_state)
print*, 'total= ',accu(i_state)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new, (N_det_ref,N_det_ref,N_states)]
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new, (N_det,N_det,N_states)]
implicit none
integer :: i,j,i_state
double precision :: hij
do i_state = 1, N_states
do i = 1,N_det_ref
do j = 1,N_det_ref
call i_h_j(psi_ref(1,1,j),psi_ref(1,1,i),N_int,hij)
Hmatrix_dressed_pt2_new(j,i,i_state) = hij + delta_ij(j,i,i_state)
do i = 1,N_det
do j = 1,N_det
Hmatrix_dressed_pt2_new(j,i,i_state) = H_matrix_all_dets(j,i) + delta_ij(j,i,i_state)
enddo
enddo
enddo
@ -284,29 +209,23 @@ END_PROVIDER
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new_symmetrized, (N_det_ref,N_det_ref,N_states)]
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new_symmetrized, (N_det,N_det,N_states)]
implicit none
integer :: i,j,i_state
double precision :: hij
double precision :: accu(N_states)
accu = 0.d0
do i_state = 1, N_states
do i = 1,N_det_ref
do j = 1,N_det_ref
call i_h_j(psi_ref(1,1,j),psi_ref(1,1,i),N_int,hij)
Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) = hij &
do i = 1,N_det
do j = i,N_det
Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) = H_matrix_all_dets(j,i) &
+ 0.5d0 * ( delta_ij(j,i,i_state) + delta_ij(i,j,i_state) )
! Hmatrix_dressed_pt2_new_symmetrized(i,j,i_state) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
accu(i_State) += psi_ref_coef(i,i_State) * Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) * psi_ref_coef(j,i_State)
Hmatrix_dressed_pt2_new_symmetrized(i,j,i_state) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
enddo
enddo
enddo
print*, 'accu = ',accu + nuclear_repulsion
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states_diag_heff) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states) ]
BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states_diag) ]
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
@ -317,25 +236,23 @@ END_PROVIDER
logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:), hmatrix_tmp(:,:)
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
integer :: i_state
double precision :: s2,e_0
integer :: i,j,k
double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
double precision :: overlap(N_det_ref)
double precision, allocatable :: psi_tmp(:)
! Guess values for the "N_states_diag_heff" states of the CI_dressed_pt2_new_eigenvectors
do j=1,min(N_states,N_det_ref)
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = psi_ref_coef(i,j)
! Guess values for the "N_states_diag" states of the CI_dressed_pt2_new_eigenvectors
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do j=min(N_states,N_det_ref)+1,N_states_diag_heff
do i=1,N_det_ref
do j=N_det+1,N_states_diag
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = 0.d0
enddo
enddo
@ -345,165 +262,93 @@ END_PROVIDER
print*, 'Davidson not yet implemented for the dressing ... '
stop
else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(N_det_ref,N_det_ref))
allocate (eigenvalues(N_det_ref))
if(pure_state_specific_mrpt2)then
allocate (hmatrix_tmp(N_det_ref,N_det_ref))
allocate (iorder(N_det_ref))
allocate (psi_tmp(N_det_ref))
print*,''
print*,'***************************'
do i_state = 1, N_states !! Big loop over states
print*,''
print*,'Diagonalizing with the dressing for state',i_state
do i = 1, N_det_ref
do j = 1, N_det_ref
hmatrix_tmp(j,i) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
enddo
! print*,i,hmatrix_tmp(i,i)+nuclear_repulsion
enddo
call lapack_diag(eigenvalues,eigenvectors,hmatrix_tmp,N_det_ref,N_det_ref)
write(*,'(A86)')'Looking for the most overlapping state within all eigenvectors of the dressed matrix'
print*,''
print*,'Calculating the overlap for ...'
do i = 1, N_det_ref
overlap(i) = 0.d0
iorder(i) = i
print*,'eigenvector',i
do j = 1, N_det_ref
overlap(i)+= psi_ref_coef(j,i_state) * eigenvectors(j,i)
enddo
overlap(i) = -dabs(overlap(i))
print*,'energy = ',eigenvalues(i) + nuclear_repulsion
print*,'overlap = ',dabs(overlap(i))
enddo
print*,''
print*,'Sorting the eigenvectors per overlap'
call dsort(overlap,iorder,n_det_ref)
do j = 1, N_det_ref
print*,overlap(j),iorder(j)
enddo
print*,''
print*,'The most overlapping state is the ',iorder(1)
print*,'with the overlap of ',dabs(overlap(1))
print*,'and an energy of ',eigenvalues(iorder(1)) + nuclear_repulsion
print*,'Calculating the S^2 value ...'
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,i_state) = eigenvectors(i,iorder(1))
psi_tmp(i) = eigenvectors(i,iorder(1))
enddo
CI_electronic_dressed_pt2_new_energy(i_state) = eigenvalues(iorder(1))
print*, 'CI_electronic_dressed_pt2_new_energy',CI_electronic_dressed_pt2_new_energy(i_state)
call u_0_S2_u_0(CI_dressed_pt2_new_eigenvectors_s2(i_state),psi_tmp,N_det_ref,psi_det,N_int,1,N_det_ref)
print*,'S^2 = ', CI_dressed_pt2_new_eigenvectors_s2(i_state)
enddo
!else if(state_average)then
! print*,''
! print*,'***************************'
! print*,''
! print*,'Doing state average dressings'
! allocate (hmatrix_tmp(N_det_ref,N_det_ref))
! hmatrix_tmp = 0.d0
! do i_state = 1, N_states !! Big loop over states
! do i = 1, N_det_ref
! do j = 1, N_det_ref
! hmatrix_tmp(j,i) += Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
! enddo
! enddo
! enddo
else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
! deallocate(hmatrix_tmp)
else
call lapack_diag(eigenvalues,eigenvectors, &
Hmatrix_dressed_pt2_new_symmetrized(1,1,1),N_det_ref,N_det_ref)
CI_electronic_dressed_pt2_new_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det_ref))
allocate(index_good_state_array(N_det_ref),good_state_array(N_det_ref))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det_ref,psi_det,N_int,&
N_det_ref,size(eigenvectors,1))
do j=1,N_det_ref
! Select at least n_states states with S^2 values closed to "expected_s2"
print*, eigenvalues(j)+nuclear_repulsion, s2_eigvalues(j)
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state += 1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if (i_state==N_states) then
exit
endif
enddo
if (i_state /= 0) then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(index_good_state_array(j))
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det_ref
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states)then
exit
endif
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(i_state+i_other_state) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det_ref,'determinants selected'
print*,' and the ',N_states_diag_heff,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_dressed_pt2_new_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag_heff,N_det_ref)
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0(CI_dressed_pt2_new_eigenvectors_s2,eigenvectors,N_det_ref,psi_det,N_int,&
min(N_det_ref,N_states_diag_heff),size(eigenvectors,1))
! Select the "N_states_diag_heff" states of lowest energy
do j=1,min(N_det_ref,N_states)
do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
enddo
endif
deallocate(eigenvectors,eigenvalues)
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0(CI_eigenvectors_s2,eigenvectors,N_det,psi_det,N_int,&
min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
enddo
endif
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states) ]
BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix
@ -512,11 +357,11 @@ BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states) ]
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,N_states
do j=1,N_states_diag
CI_dressed_pt2_new_energy(j) = CI_electronic_dressed_pt2_new_energy(j) + nuclear_repulsion
write(st,'(I4)') j
call write_double(output_determinants,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st))
call write_double(output_determinants, CI_dressed_pt2_new_eigenvectors_s2(j) ,'S^2 of state '//trim(st))
call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st))
enddo
END_PROVIDER

View File

@ -9,12 +9,11 @@ BEGIN_PROVIDER [integer(bit_kind), psi_active, (N_int,2,psi_det_size)]
integer :: i,j,k,l
provide cas_bitmask
!print*, 'psi_active '
do i = 1, N_det_ref
do i = 1, N_det
do j = 1, N_int
psi_active(j,1,i) = iand(psi_ref(j,1,i),cas_bitmask(j,1,1))
psi_active(j,2,i) = iand(psi_ref(j,2,i),cas_bitmask(j,1,1))
psi_active(j,1,i) = iand(psi_det(j,1,i),cas_bitmask(j,1,1))
psi_active(j,2,i) = iand(psi_det(j,2,i),cas_bitmask(j,1,1))
enddo
! call debug_det(psi_active(1,1,i),N_int)
enddo
END_PROVIDER
@ -181,35 +180,25 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
double precision :: delta_e_inactive(N_states)
integer :: i_hole_inact, list_holes_inact(n_inact_orb,2)
integer :: i_hole_inact
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree>2)then
do i_state = 1, N_States
delta_e_final(i_state) = -1.d+10
enddo
delta_e_final = -1.d+10
return
endif
call give_holes_in_inactive_space(det_2,n_holes_spin,n_holes,holes_list)
delta_e_inactive = 0.d0
integer :: n_holes_total
n_holes_total = 0
do i = 1, n_holes_spin(1)
i_hole_inact = holes_list(i,1)
n_holes_total +=1
list_holes_inact(n_holes_total,1) = i_hole_inact
list_holes_inact(n_holes_total,2) = 1
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
delta_e_inactive += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
do i = 1, n_holes_spin(2)
i_hole_inact = holes_list(i,2)
n_holes_total +=1
list_holes_inact(n_holes_total,1) = i_hole_inact
list_holes_inact(n_holes_total,2) = 2
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
@ -226,14 +215,14 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
do i = 1, n_particles_spin(1)
i_part_virt = particles_list(i,1)
do i_state = 1, N_states
delta_e_virt(i_state) += fock_virt_total_spin_trace(i_part_virt,i_state)
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
do i = 1, n_particles_spin(2)
i_part_virt = particles_list(i,2)
do i_state = 1, N_states
delta_e_virt(i_state) += fock_virt_total_spin_trace(i_part_virt,i_state)
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
@ -304,39 +293,27 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
if (n_holes_act == 0 .and. n_particles_act == 1) then
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_act_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_inact(i_hole,i_part,i_state)
enddo
else if (degree == 2)then
! call get_excitation_degree(det_1,det_2,degree,N_int)
! if(degree == 1)then
! call get_excitation(det_1,det_2,exc,degree,phase,N_int)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! i_hole = list_inact_reverse(h1)
! i_part = list_act_reverse(p1)
! do i_state = 1, N_states
! delta_e_act(i_state) += one_anhil_inact(i_hole,i_part,i_state)
! enddo
! else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act,ispin,i_state)
enddo
endif
! endif
else if (n_holes_act == 1 .and. n_particles_act == 0) then
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_act_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_creat_virt(i_hole,i_part,i_state)
! delta_e_act += 1.d12
enddo
else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
endif
else if (n_holes_act == 1 .and. n_particles_act == 1) then
! first hole
@ -385,44 +362,17 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! first particle
kspin = particle_list_practical(1,1)
! first particle
jspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
! first particle
jspin = particle_list_practical(1,2)
! second particle
kspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_creat_one_anhil(i_particle_act,j_particle_act,i_hole_act,kspin,jspin,ispin,i_state)
delta_e_act(i_state) += two_creat_one_anhil(i_particle_act,j_particle_act,i_hole_act,jspin,kspin,ispin,i_state)
enddo
! ! First find the particle that has been added from the inactive
! !
! integer :: spin_hole_inact, spin_hole_part_act
! spin_hole_inact = list_holes_inact(1,2)
!
! ! by convention, you first make a movement in the cas
! ! first hole
! i_hole_act = hole_list_practical(2,1)
! if(particle_list_practical(1,1) == spin_hole_inact)then
! ! first particle
! i_particle_act = particle_list_practical(1,2)
! ! second particle
! j_particle_act = particle_list_practical(2,2)
! else if (particle_list_practical(1,2) == spin_hole_inact)then
! ! first particle
! i_particle_act = particle_list_practical(2,2)
! ! second particle
! j_particle_act = particle_list_practical(1,2)
! else
! print*, 'pb in n_holes_act == 1 .and. n_particles_act == 2 !!'
! stop
! endif
! do i_state = 1, N_states
! delta_e_act(i_state) += two_creat_one_anhil(i_particle_act,j_particle_act,i_hole_act,i_state)
! enddo
else if (n_holes_act == 3 .and. n_particles_act == 0) then
! first hole
ispin = hole_list_practical(1,1)
@ -469,9 +419,7 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
enddo
endif
else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then
do i = 1, N_states
delta_e_act(i_state) = -1.d12
enddo
delta_e_act = -10000000.d0
endif
!print*, 'one_anhil_spin_trace'
@ -482,312 +430,6 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
delta_e_final(i_state) = delta_e_act(i_state) + delta_e_inactive(i_state) - delta_e_virt(i_state)
enddo
!write(*,'(100(f16.10,X))'), delta_e_final(1) , delta_e_act(1) , delta_e_inactive(1) , delta_e_virt(1)
!write(*,'(100(f16.10,X))'), delta_e_final(2) , delta_e_act(2) , delta_e_inactive(2) , delta_e_virt(2)
end
subroutine get_delta_e_dyall_fast(det_1,det_2,delta_e_final)
BEGIN_DOC
! routine that returns the delta_e with the Moller Plesset and Dyall operators
!
! with det_1 being a determinant from the cas, and det_2 being a perturber
!
! Delta_e(det_1,det_2) = sum (hole) epsilon(hole) + sum(part) espilon(part) + delta_e(act)
!
! where hole is necessary in the inactive, part necessary in the virtuals
!
! and delta_e(act) is obtained from the contracted application of the excitation
!
! operator in the active space that lead from det_1 to det_2
END_DOC
implicit none
use bitmasks
double precision, intent(out) :: delta_e_final(N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer :: i,j,k,l
integer :: i_state
integer :: n_holes_spin(2)
integer :: n_holes
integer :: holes_list(N_int*bit_kind_size,2)
double precision :: delta_e_inactive(N_states)
integer :: i_hole_inact, list_holes_inact(n_inact_orb,2)
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree>2)then
do i_state = 1, N_States
delta_e_final(i_state) = -1.d+10
enddo
return
endif
call give_holes_in_inactive_space(det_2,n_holes_spin,n_holes,holes_list)
delta_e_inactive = 0.d0
integer :: n_holes_total
n_holes_total = 0
do i = 1, n_holes_spin(1)
i_hole_inact = holes_list(i,1)
n_holes_total +=1
list_holes_inact(n_holes_total,1) = i_hole_inact
list_holes_inact(n_holes_total,2) = 1
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
do i = 1, n_holes_spin(2)
i_hole_inact = holes_list(i,2)
n_holes_total +=1
list_holes_inact(n_holes_total,1) = i_hole_inact
list_holes_inact(n_holes_total,2) = 2
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
double precision :: delta_e_virt(N_states)
integer :: i_part_virt
integer :: n_particles_spin(2)
integer :: n_particles
integer :: particles_list(N_int*bit_kind_size,2)
call give_particles_in_virt_space(det_2,n_particles_spin,n_particles,particles_list)
delta_e_virt = 0.d0
do i = 1, n_particles_spin(1)
i_part_virt = particles_list(i,1)
do i_state = 1, N_states
delta_e_virt(i_state) += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
do i = 1, n_particles_spin(2)
i_part_virt = particles_list(i,2)
do i_state = 1, N_states
delta_e_virt(i_state) += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
integer :: n_holes_spin_act(2),n_particles_spin_act(2)
integer :: n_holes_act,n_particles_act
integer :: holes_active_list(2*n_act_orb,2)
integer :: holes_active_list_spin_traced(4*n_act_orb)
integer :: particles_active_list(2*n_act_orb,2)
integer :: particles_active_list_spin_traced(4*n_act_orb)
double precision :: delta_e_act(N_states)
delta_e_act = 0.d0
call give_holes_and_particles_in_active_space(det_1,det_2,n_holes_spin_act,n_particles_spin_act, &
n_holes_act,n_particles_act,holes_active_list,particles_active_list)
integer :: icount,icountbis
integer :: hole_list_practical(2,elec_num_tab(1)+elec_num_tab(2)), particle_list_practical(2,elec_num_tab(1)+elec_num_tab(2))
icount = 0
icountbis = 0
do i = 1, n_holes_spin_act(1)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 1
hole_list_practical(2,icountbis) = holes_active_list(i,1)
holes_active_list_spin_traced(icount) = holes_active_list(i,1)
enddo
do i = 1, n_holes_spin_act(2)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 2
hole_list_practical(2,icountbis) = holes_active_list(i,2)
holes_active_list_spin_traced(icount) = holes_active_list(i,2)
enddo
if(icount .ne. n_holes_act) then
print*,''
print*, icount, n_holes_act
print * , 'pb in holes_active_list_spin_traced !!'
stop
endif
icount = 0
icountbis = 0
do i = 1, n_particles_spin_act(1)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 1
particle_list_practical(2,icountbis) = particles_active_list(i,1)
particles_active_list_spin_traced(icount) = particles_active_list(i,1)
enddo
do i = 1, n_particles_spin_act(2)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 2
particle_list_practical(2,icountbis) = particles_active_list(i,2)
particles_active_list_spin_traced(icount) = particles_active_list(i,2)
enddo
if(icount .ne. n_particles_act) then
print*, icount, n_particles_act
print * , 'pb in particles_active_list_spin_traced !!'
stop
endif
integer :: i_hole_act, j_hole_act, k_hole_act
integer :: i_particle_act, j_particle_act, k_particle_act
integer :: ispin,jspin,kspin
if (n_holes_act == 0 .and. n_particles_act == 1) then
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_act_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_inact(i_hole,i_part,i_state)
enddo
else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act,ispin,i_state)
enddo
endif
else if (n_holes_act == 1 .and. n_particles_act == 0) then
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_act_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_creat_virt(i_hole,i_part,i_state)
enddo
else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
endif
else if (n_holes_act == 1 .and. n_particles_act == 1) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! first particle
jspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_one_creat(i_particle_act,i_hole_act,jspin,ispin,i_state)
enddo
else if (n_holes_act == 2 .and. n_particles_act == 0) then
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_anhil(i_hole_act,j_hole_act,ispin,jspin,i_state)
enddo
else if (n_holes_act == 0 .and. n_particles_act == 2) then
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
jspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_creat(i_particle_act,j_particle_act,ispin,jspin,i_state)
enddo
else if (n_holes_act == 2 .and. n_particles_act == 1) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! second hole
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
! first particle
kspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += two_anhil_one_creat(i_particle_act,i_hole_act,j_hole_act,kspin,ispin,jspin,i_state)
enddo
else if (n_holes_act == 1 .and. n_particles_act == 2) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! first particle
kspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
! first particle
jspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_creat_one_anhil(i_particle_act,j_particle_act,i_hole_act,kspin,jspin,ispin,i_state)
enddo
else if (n_holes_act == 3 .and. n_particles_act == 0) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! second hole
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
! third hole
kspin = hole_list_practical(1,3)
k_hole_act = hole_list_practical(2,3)
do i_state = 1, N_states
delta_e_act(i_state) += three_anhil(i_hole_act,j_hole_act,k_hole_act,ispin,jspin,kspin,i_state)
enddo
else if (n_holes_act == 0 .and. n_particles_act == 3) then
! first particle
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
! second particle
jspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
! second particle
kspin = particle_list_practical(1,3)
k_particle_act = particle_list_practical(2,3)
do i_state = 1, N_states
delta_e_act(i_state) += three_creat(i_particle_act,j_particle_act,k_particle_act,ispin,jspin,kspin,i_state)
enddo
else if (n_holes_act .eq. 0 .and. n_particles_act .eq.0)then
integer :: degree
integer(bit_kind) :: det_1_active(N_int,2)
integer :: h1,h2,p1,p2,s1,s2
integer :: exc(0:2,2,2)
integer :: i_hole, i_part
double precision :: phase
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_one_creat_inact_virt(i_hole,i_part,i_state)
enddo
endif
else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then
do i = 1, N_states
delta_e_act(i_state) = -10000000.d0
enddo
endif
!print*, 'one_anhil_spin_trace'
!print*, one_anhil_spin_trace(1), one_anhil_spin_trace(2)
do i_state = 1, n_states
delta_e_final(i_state) = delta_e_act(i_state) + delta_e_inactive(i_state) - delta_e_virt(i_state)
enddo
!write(*,'(100(f16.10,X))'), delta_e_final(2) , delta_e_act(2) , delta_e_inactive(2) , delta_e_virt(2)
end

View File

@ -88,6 +88,7 @@ Needed Modules
* `Properties <http://github.com/LCPQ/quantum_package/tree/master/plugins/Properties>`_
* `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/plugins/Hartree_Fock>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============
@ -107,13 +108,13 @@ Documentation
Undocumented
perturb_buffer_by_mono_delta_rho_one_point
Applly pertubration ``delta_rho_one_point`` to the buffer of determinants generated in the H_apply
perturb_buffer_by_mono_dipole_moment_z
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
routine.
perturb_buffer_by_mono_dipole_moment_z
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
perturb_buffer_by_mono_dummy
Applly pertubration ``dummy`` to the buffer of determinants generated in the H_apply
routine.
@ -152,13 +153,13 @@ perturb_buffer_by_mono_moller_plesset
routine.
perturb_buffer_delta_rho_one_point
Applly pertubration ``delta_rho_one_point`` to the buffer of determinants generated in the H_apply
perturb_buffer_dipole_moment_z
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
routine.
perturb_buffer_dipole_moment_z
Applly pertubration ``dipole_moment_z`` to the buffer of determinants generated in the H_apply
perturb_buffer_dummy
Applly pertubration ``dummy`` to the buffer of determinants generated in the H_apply
routine.
@ -197,27 +198,6 @@ perturb_buffer_moller_plesset
routine.
`pt2_delta_rho_one_point <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/delta_rho_perturbation.irp.f#L1>`_
compute the perturbatibe contribution to the Integrated Spin density at z = z_one point of one determinant
.br
for the various n_st states, at various level of theory.
.br
c_pert(i) = <psi(i)|H|det_pert>/(<psi(i)|H|psi(i)> - <det_pert|H|det_pert>)
.br
e_2_pert(i) = c_pert(i) * <det_pert|O|psi(i)>
.br
H_pert_diag(i) = c_pert(i)^2 * <det_pert|O|det_pert>
.br
To get the contribution of the first order :
.br
<O_1> = sum(over i) e_2_pert(i)
.br
To get the contribution of the diagonal elements of the second order :
.br
[ <O_0> + <O_1> + sum(over i) H_pert_diag(i) ] / [1. + sum(over i) c_pert(i) **2]
.br
`pt2_dipole_moment_z <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/dipole_moment.irp.f#L1>`_
compute the perturbatibe contribution to the dipole moment of one determinant
.br
@ -239,7 +219,11 @@ perturb_buffer_moller_plesset
.br
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L3>`_
`pt2_dummy <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L420>`_
Dummy perturbation to add all connected determinants.
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L3>`_
compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states.
@ -250,7 +234,7 @@ perturb_buffer_moller_plesset
.br
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L60>`_
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L60>`_
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
.br
for the various N_st states.
@ -261,7 +245,7 @@ perturb_buffer_moller_plesset
.br
`pt2_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L364>`_
`pt2_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L364>`_
compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states, but with the CISD_SC2 energies and coefficients
@ -272,7 +256,7 @@ perturb_buffer_moller_plesset
.br
`pt2_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L285>`_
`pt2_epstein_nesbet_sc2_no_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L285>`_
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states,
@ -296,7 +280,7 @@ perturb_buffer_moller_plesset
H_pert_diag = <HF|H|det_pert> c_pert
`pt2_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L190>`_
`pt2_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L190>`_
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various N_st states,
@ -331,12 +315,12 @@ perturb_buffer_moller_plesset
.br
`pt2_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/ezfio_interface.irp.f#L28>`_
`pt2_max <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/ezfio_interface.irp.f#L25>`_
The selection process stops when the largest PT2 (for all the state) is lower
than pt2_max in absolute value
`pt2_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_370#L121>`_
`pt2_moller_plesset <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/pt2_equations.irp.f_template_401#L121>`_
compute the standard Moller-Plesset perturbative first order coefficient and second order energetic contribution
.br
for the various n_st states.
@ -368,7 +352,7 @@ perturb_buffer_moller_plesset
Threshold to select determinants. Set by selection routines.
`var_pt2_ratio <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/ezfio_interface.irp.f#L51>`_
`var_pt2_ratio <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation/ezfio_interface.irp.f#L45>`_
The selection process stops when the energy ratio variational/(variational+PT2)
is equal to var_pt2_ratio

View File

@ -3,6 +3,7 @@
.ninja_log
AO_Basis
Bitmask
Davidson
Determinants
Electrons
Ezfio_files

View File

@ -58,6 +58,7 @@ Needed Modules
.. image:: tree_dependency.png
* `Psiref_Utils <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils>`_
* `Davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson>`_
Documentation
=============

View File

@ -154,11 +154,11 @@ Documentation
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L283>`_
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L320>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L382>`_
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L371>`_
Undocumented
@ -181,19 +181,19 @@ Documentation
Binomial coefficients
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L138>`_
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L136>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L155>`_
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L153>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L176>`_
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L197>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L210>`_
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L231>`_
n!!
@ -219,6 +219,10 @@ Documentation
contains the new order of the elements.
`dtranspose <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/transpose.irp.f#L41>`_
Transpose input matrix A into output matrix B
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/need.irp.f#L105>`_
Undocumented
@ -236,11 +240,11 @@ Documentation
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L125>`_
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L123>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L264>`_
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L301>`_
Find A.C = B
@ -270,7 +274,7 @@ Documentation
Returns the index of the determinant in the ``psi_ref_sorted_bit`` array
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L210>`_
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L247>`_
Find C = A^-1
@ -531,7 +535,7 @@ Documentation
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L257>`_
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L278>`_
1/i
@ -571,7 +575,7 @@ Documentation
contains the new order of the elements.
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L362>`_
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L399>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -582,7 +586,7 @@ Documentation
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L425>`_
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L462>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -593,7 +597,7 @@ Documentation
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L295>`_
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L332>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -604,7 +608,7 @@ Documentation
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L491>`_
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L528>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -615,14 +619,22 @@ Documentation
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L93>`_
`logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L91>`_
n!
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L406>`_
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L395>`_
Transform to lower case
`map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/map_functions.irp.f#L70>`_
Undocumented
`map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/map_functions.irp.f#L1>`_
Undocumented
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/integration.irp.f#L264>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
@ -635,12 +647,12 @@ Documentation
idx_non_ref_rev gives the reverse.
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L358>`_
`normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L348>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L283>`_
`nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L304>`_
Number of current OpenMP threads
@ -662,7 +674,7 @@ Documentation
.br
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L128>`_
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L162>`_
Compute C_new=C_old.S^-1/2 orthogonalization.
.br
overlap : overlap matrix
@ -680,6 +692,19 @@ Documentation
.br
`ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L128>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/one_e_integration.irp.f#L35>`_
Undocumented
@ -860,7 +885,7 @@ Documentation
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L548>`_
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/LinearAlgebra.irp.f#L585>`_
Undocumented
@ -887,18 +912,22 @@ Documentation
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L326>`_
`transpose <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/transpose.irp.f#L2>`_
Transpose input matrix A into output matrix B
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L334>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L299>`_
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L320>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L268>`_
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L289>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L243>`_
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_Utils/util.irp.f#L264>`_
Write the last git commit in file iunit.

View File

@ -6,19 +6,22 @@ use bitmasks
&BEGIN_PROVIDER [ integer, N_det_ref ]
implicit none
BEGIN_DOC
! Reference wave function, defined as determinants with coefficients > 0.05
! Reference wave function, defined as determinants with amplitudes > 0.05
! idx_ref gives the indice of the ref determinant in psi_det.
END_DOC
integer :: i, k, l
logical :: good
double precision, parameter :: threshold=0.05d0
double precision, parameter :: threshold=0.05d0
double precision :: t(N_states)
N_det_ref = 0
t = threshold * abs_psi_coef_max
do l = 1, N_states
t(l) = threshold * abs_psi_coef_max(l)
enddo
do i=1,N_det
good = .False.
do l = 1, N_states
do l=1, N_states
psi_ref_coef(i,l) = 0.d0
good = good.or.(dabs(psi_coef(i,l)) > t)
good = good.or.(dabs(psi_coef(i,l)) > t(l))
enddo
if (good) then
N_det_ref = N_det_ref+1

View File

@ -1,10 +1,12 @@
program e_curve
use bitmasks
implicit none
integer :: i,j,k, nab, m, l
integer :: i,j,k, kk, nab, m, l
double precision :: norm, E, hij, num, ci, cj
integer, allocatable :: iorder(:)
double precision , allocatable :: norm_sort(:)
PROVIDE mo_bielec_integrals_in_map
nab = n_det_alpha_unique+n_det_beta_unique
allocate ( norm_sort(0:nab), iorder(0:nab) )
@ -60,7 +62,7 @@ program e_curve
num = 0.d0
norm = 0.d0
m = 0
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,l,det_i,det_j,ci,cj,hij) REDUCTION(+:norm,m,num)
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,kk,l,det_i,det_j,ci,cj,hij) REDUCTION(+:norm,m,num)
allocate( det_i(N_int,2), det_j(N_int,2))
!$OMP DO SCHEDULE(guided)
do k=1,n_det
@ -68,15 +70,19 @@ program e_curve
cycle
endif
ci = psi_bilinear_matrix_values(k,1)
det_i(:,1) = psi_det_alpha_unique(:,psi_bilinear_matrix_rows(k))
det_i(:,2) = psi_det_beta_unique(:,psi_bilinear_matrix_columns(k))
do kk=1,N_int
det_i(kk,1) = psi_det_alpha_unique(kk,psi_bilinear_matrix_rows(k))
det_i(kk,2) = psi_det_beta_unique(kk,psi_bilinear_matrix_columns(k))
enddo
do l=1,n_det
if (psi_bilinear_matrix_values(l,1) == 0.d0) then
cycle
endif
cj = psi_bilinear_matrix_values(l,1)
det_j(:,1) = psi_det_alpha_unique(:,psi_bilinear_matrix_rows(l))
det_j(:,2) = psi_det_beta_unique(:,psi_bilinear_matrix_columns(l))
do kk=1,N_int
det_j(kk,1) = psi_det_alpha_unique(kk,psi_bilinear_matrix_rows(l))
det_j(kk,2) = psi_det_beta_unique(kk,psi_bilinear_matrix_columns(l))
enddo
call i_h_j(det_i, det_j, N_int, hij)
num = num + ci*cj*hij
enddo

View File

@ -161,15 +161,19 @@ Documentation
n_double_selectors = number of double excitations in the selectors determinants
`psi_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L30>`_
`psi_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L32>`_
Determinants on which we apply <i|H|psi> for perturbation.
`psi_selectors_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L31>`_
`psi_selectors_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L33>`_
Determinants on which we apply <i|H|psi> for perturbation.
`psi_selectors_diag_h_mat <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L51>`_
`psi_selectors_coef_transp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L53>`_
Transposed psi_selectors
`psi_selectors_diag_h_mat <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/selectors.irp.f#L67>`_
Diagonal elements of the H matrix for each selectors
@ -177,7 +181,7 @@ Documentation
Undocumented
`zmq_get_psi <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/zmq.irp.f#L43>`_
`zmq_get_psi <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full/zmq.irp.f#L51>`_
Get the wave function from the qp_run scheduler

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,601 @@
subroutine mrsc2_dressing_slave_tcp(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Task for parallel MR-SC2
END_DOC
call mrsc2_dressing_slave(0,i)
end
subroutine mrsc2_dressing_slave_inproc(i)
implicit none
integer, intent(in) :: i
BEGIN_DOC
! Task for parallel MR-SC2
END_DOC
call mrsc2_dressing_slave(1,i)
end
subroutine mrsc2_dressing_slave(thread,iproc)
use f77_zmq
implicit none
BEGIN_DOC
! Task for parallel MR-SC2
END_DOC
integer, intent(in) :: thread, iproc
! integer :: j,l
integer :: rc
integer :: worker_id, task_id
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
double precision, allocatable :: delta(:,:,:), delta_s2(:,:,:)
integer :: i_state, i, i_I, J, k, k2, k1, kk, ll, degree, degree2, m, l, deg, ni, m2
integer :: n(2)
integer :: p1,p2,h1,h2,s1,s2, blok, I_s, J_s, kn
logical :: ok
double precision :: phase_iI, phase_Ik, phase_Jl, phase_Ji, phase_al
double precision :: diI, hIi, hJi, delta_JI, dkI, HkI, ci_inv(N_states), cj_inv(N_states)
double precision :: contrib, contrib_s2, wall, iwall
double precision, allocatable :: dleat(:,:,:), dleat_s2(:,:,:)
integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ
integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2), inac, virt
integer, external :: get_index_in_psi_det_sorted_bit, searchDet, detCmp
logical, external :: is_in_wavefunction, isInCassd, detEq
integer,allocatable :: komon(:)
logical :: komoned
!double precision, external :: get_dij
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
allocate (dleat(N_states, N_det_non_ref, 2), delta(N_states,0:N_det_non_ref, 2))
allocate (dleat_s2(N_states, N_det_non_ref, 2), delta_s2(N_states,0:N_det_non_ref, 2))
allocate(komon(0:N_det_non_ref))
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task)
if (task_id == 0) exit
read (task,*) i_I, J, k1, k2
do i_state=1, N_states
ci_inv(i_state) = 1.d0 / psi_ref_coef(i_I,i_state)
cj_inv(i_state) = 1.d0 / psi_ref_coef(J,i_state)
end do
n = 0
delta(:,0,:) = 0d0
delta(:,:nlink(J),1) = 0d0
delta(:,:nlink(i_I),2) = 0d0
delta_s2(:,0,:) = 0d0
delta_s2(:,:nlink(J),1) = 0d0
delta_s2(:,:nlink(i_I),2) = 0d0
komon(0) = 0
komoned = .false.
do kk = k1, k2
k = det_cepa0_idx(linked(kk, i_I))
blok = blokMwen(kk, i_I)
call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,k),exc_Ik,degree,phase_Ik,N_int)
if(J /= i_I) then
call apply_excitation(psi_ref(1,1,J),exc_Ik,det_tmp2,ok,N_int)
if(.not. ok) cycle
l = searchDet(det_cepa0(1,1,cepa0_shortcut(blok)), det_tmp2, cepa0_shortcut(blok+1)-cepa0_shortcut(blok), N_int)
if(l == -1) cycle
ll = cepa0_shortcut(blok)-1+l
l = det_cepa0_idx(ll)
ll = child_num(ll, J)
else
l = k
ll = kk
end if
if(.not. komoned) then
m = 0
m2 = 0
do while(m < nlink(i_I) .and. m2 < nlink(J))
m += 1
m2 += 1
if(linked(m, i_I) < linked(m2, J)) then
m2 -= 1
cycle
else if(linked(m, i_I) > linked(m2, J)) then
m -= 1
cycle
end if
i = det_cepa0_idx(linked(m, i_I))
if(h_cache(J,i) == 0.d0) cycle
if(h_cache(i_I,i) == 0.d0) cycle
komon(0) += 1
kn = komon(0)
komon(kn) = i
do i_state = 1,N_states
dkI = h_cache(J,i) * dij(i_I, i, i_state)
dleat(i_state, kn, 1) = dkI
dleat(i_state, kn, 2) = dkI
dkI = s2_cache(J,i) * dij(i_I, i, i_state)
dleat_s2(i_state, kn, 1) = dkI
dleat_s2(i_state, kn, 2) = dkI
end do
end do
komoned = .true.
end if
integer :: hpmin(2)
hpmin(1) = 2 - HP(1,k)
hpmin(2) = 2 - HP(2,k)
do m = 1, komon(0)
i = komon(m)
if(HP(1,i) <= hpmin(1) .and. HP(2,i) <= hpmin(2) ) then
cycle
end if
call apply_excitation(psi_non_ref(1,1,i),exc_Ik,det_tmp,ok,N_int)
if(.not. ok) cycle
do i_state = 1, N_states
contrib = dij(i_I, k, i_state) * dleat(i_state, m, 2)
contrib_s2 = dij(i_I, k, i_state) * dleat_s2(i_state, m, 2)
delta(i_state,ll,1) += contrib
delta_s2(i_state,ll,1) += contrib_s2
if(dabs(psi_ref_coef(i_I,i_state)).ge.5.d-5) then
delta(i_state,0,1) -= contrib * ci_inv(i_state) * psi_non_ref_coef(l,i_state)
delta_s2(i_state,0,1) -= contrib_s2 * ci_inv(i_state) * psi_non_ref_coef(l,i_state)
endif
if(I_i == J) cycle
contrib = dij(J, l, i_state) * dleat(i_state, m, 1)
contrib_s2 = dij(J, l, i_state) * dleat_s2(i_state, m, 1)
delta(i_state,kk,2) += contrib
delta_s2(i_state,kk,2) += contrib_s2
if(dabs(psi_ref_coef(J,i_state)).ge.5.d-5) then
delta(i_state,0,2) -= contrib * cj_inv(i_state) * psi_non_ref_coef(k,i_state)
delta_s2(i_state,0,2) -= contrib_s2 * cj_inv(i_state) * psi_non_ref_coef(k,i_state)
end if
enddo !i_state
end do ! while
end do ! kk
call push_mrsc2_results(zmq_socket_push, I_i, J, delta, delta_s2, task_id)
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id)
! end if
enddo
deallocate(delta)
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end
subroutine push_mrsc2_results(zmq_socket_push, I_i, J, delta, delta_s2, task_id)
use f77_zmq
implicit none
BEGIN_DOC
! Push integrals in the push socket
END_DOC
integer, intent(in) :: i_I, J
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision,intent(inout) :: delta(N_states, 0:N_det_non_ref, 2)
double precision,intent(inout) :: delta_s2(N_states, 0:N_det_non_ref, 2)
integer, intent(in) :: task_id
integer :: rc , i_state, i, kk, li
integer,allocatable :: idx(:,:)
integer :: n(2)
logical :: ok
allocate(idx(N_det_non_ref,2))
rc = f77_zmq_send( zmq_socket_push, i_I, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, i_I, 4, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, J, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, J, 4, ZMQ_SNDMORE)'
stop 'error'
endif
do kk=1,2
n(kk)=0
if(kk == 1) li = nlink(j)
if(kk == 2) li = nlink(i_I)
do i=1, li
ok = .false.
do i_state=1,N_states
if(delta(i_state, i, kk) /= 0d0) then
ok = .true.
exit
end if
end do
if(ok) then
n(kk) += 1
! idx(n,kk) = i
if(kk == 1) then
idx(n(1),1) = det_cepa0_idx(linked(i, J))
else
idx(n(2),2) = det_cepa0_idx(linked(i, i_I))
end if
do i_state=1, N_states
delta(i_state, n(kk), kk) = delta(i_state, i, kk)
end do
end if
end do
rc = f77_zmq_send( zmq_socket_push, n(kk), 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, n, 4, ZMQ_SNDMORE)'
stop 'error'
endif
if(n(kk) /= 0) then
rc = f77_zmq_send( zmq_socket_push, delta(1,0,kk), (n(kk)+1)*8*N_states, ZMQ_SNDMORE) ! delta(1,0,1) = delta_I delta(1,0,2) = delta_J
if (rc /= (n(kk)+1)*8*N_states) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, delta, (n(kk)+1)*8*N_states, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, delta_s2(1,0,kk), (n(kk)+1)*8*N_states, ZMQ_SNDMORE) ! delta_s2(1,0,1) = delta_I delta_s2(1,0,2) = delta_J
if (rc /= (n(kk)+1)*8*N_states) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, delta_s2, (n(kk)+1)*8*N_states, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, idx(1,kk), n(kk)*4, ZMQ_SNDMORE)
if (rc /= n(kk)*4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, delta, 8*n(kk), ZMQ_SNDMORE)'
stop 'error'
endif
end if
end do
rc = f77_zmq_send( zmq_socket_push, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, task_id, 4, 0)'
stop 'error'
endif
! ! Activate is zmq_socket_push is a REQ
! integer :: idummy
! rc = f77_zmq_recv( zmq_socket_push, idummy, 4, 0)
! if (rc /= 4) then
! print *, irp_here, 'f77_zmq_send( zmq_socket_push, idummy, 4, 0)'
! stop 'error'
! endif
end
subroutine pull_mrsc2_results(zmq_socket_pull, I_i, J, n, idx, delta, delta_s2, task_id)
use f77_zmq
implicit none
BEGIN_DOC
! Push integrals in the push socket
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
integer, intent(out) :: i_I, J, n(2)
double precision, intent(inout) :: delta(N_states, 0:N_det_non_ref, 2)
double precision, intent(inout) :: delta_s2(N_states, 0:N_det_non_ref, 2)
integer, intent(out) :: task_id
integer :: rc , i, kk
integer,intent(inout) :: idx(N_det_non_ref,2)
logical :: ok
rc = f77_zmq_recv( zmq_socket_pull, i_I, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, i_I, 4, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, J, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, J, 4, ZMQ_SNDMORE)'
stop 'error'
endif
do kk = 1, 2
rc = f77_zmq_recv( zmq_socket_pull, n(kk), 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, n, 4, ZMQ_SNDMORE)'
stop 'error'
endif
if(n(kk) /= 0) then
rc = f77_zmq_recv( zmq_socket_pull, delta(1,0,kk), (n(kk)+1)*8*N_states, ZMQ_SNDMORE)
if (rc /= (n(kk)+1)*8*N_states) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, delta, (n(kk)+1)*8*N_states, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, delta_s2(1,0,kk), (n(kk)+1)*8*N_states, ZMQ_SNDMORE)
if (rc /= (n(kk)+1)*8*N_states) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, delta_s2, (n(kk)+1)*8*N_states, ZMQ_SNDMORE)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, idx(1,kk), n(kk)*4, ZMQ_SNDMORE)
if (rc /= n(kk)*4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, idx(1,kk), n(kk)*4, ZMQ_SNDMORE)'
stop 'error'
endif
end if
end do
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)'
stop 'error'
endif
! ! Activate is zmq_socket_pull is a REP
! integer :: idummy
! rc = f77_zmq_send( zmq_socket_pull, idummy, 4, 0)
! if (rc /= 4) then
! print *, irp_here, 'f77_zmq_send( zmq_socket_pull, idummy, 4, 0)'
! stop 'error'
! endif
end
subroutine mrsc2_dressing_collector(delta_ii_,delta_ij_,delta_ii_s2_,delta_ij_s2_)
use f77_zmq
implicit none
BEGIN_DOC
! Collects results from the AO integral calculation
END_DOC
double precision,intent(inout) :: delta_ij_(N_states,N_det_non_ref,N_det_ref)
double precision,intent(inout) :: delta_ii_(N_states,N_det_ref)
double precision,intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref,N_det_ref)
double precision,intent(inout) :: delta_ii_s2_(N_states,N_det_ref)
! integer :: j,l
integer :: rc
double precision, allocatable :: delta(:,:,:), delta_s2(:,:,:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer*8 :: control, accu
integer :: task_id, more
integer :: I_i, J, l, i_state, n(2), kk
integer,allocatable :: idx(:,:)
delta_ii_(:,:) = 0d0
delta_ij_(:,:,:) = 0d0
delta_ii_s2_(:,:) = 0d0
delta_ij_s2_(:,:,:) = 0d0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate ( delta(N_states,0:N_det_non_ref,2), delta_s2(N_states,0:N_det_non_ref,2) )
allocate(idx(N_det_non_ref,2))
more = 1
do while (more == 1)
call pull_mrsc2_results(zmq_socket_pull, I_i, J, n, idx, delta, delta_s2, task_id)
do l=1, n(1)
do i_state=1,N_states
delta_ij_(i_state,idx(l,1),i_I) += delta(i_state,l,1)
delta_ij_s2_(i_state,idx(l,1),i_I) += delta_s2(i_state,l,1)
end do
end do
do l=1, n(2)
do i_state=1,N_states
delta_ij_(i_state,idx(l,2),J) += delta(i_state,l,2)
delta_ij_s2_(i_state,idx(l,2),J) += delta_s2(i_state,l,2)
end do
end do
if(n(1) /= 0) then
do i_state=1,N_states
delta_ii_(i_state,i_I) += delta(i_state,0,1)
delta_ii_s2_(i_state,i_I) += delta_s2(i_state,0,1)
end do
end if
if(n(2) /= 0) then
do i_state=1,N_states
delta_ii_(i_state,J) += delta(i_state,0,2)
delta_ii_s2_(i_state,J) += delta_s2(i_state,0,2)
end do
end if
if (task_id /= 0) then
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
endif
enddo
deallocate( delta, delta_s2 )
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
end
BEGIN_PROVIDER [ double precision, delta_ij_old, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii_old, (N_states,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ij_s2_old, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii_s2_old, (N_states,N_det_ref) ]
implicit none
integer :: i_state, i, i_I, J, k, kk, degree, degree2, m, l, deg, ni, m2
integer :: p1,p2,h1,h2,s1,s2, blok, I_s, J_s, nex, nzer, ntot
! integer, allocatable :: linked(:,:), blokMwen(:, :), nlink(:)
logical :: ok
double precision :: phase_iI, phase_Ik, phase_Jl, phase_Ji, phase_al, diI, hIi, hJi, delta_JI, dkI(N_states), HkI, ci_inv(N_states), dia_hla(N_states)
double precision :: contrib, wall, iwall ! , searchance(N_det_ref)
integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ
integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2), inac, virt
integer, external :: get_index_in_psi_det_sorted_bit, searchDet, detCmp
logical, external :: is_in_wavefunction, isInCassd, detEq
character*(512) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer :: KKsize = 1000000
call new_parallel_job(zmq_to_qp_run_socket,'mrsc2')
call wall_time(iwall)
! allocate(linked(N_det_non_ref, N_det_ref), blokMwen(N_det_non_ref, N_det_ref), nlink(N_det_ref))
! searchance = 0d0
! do J = 1, N_det_ref
! nlink(J) = 0
! do blok=1,cepa0_shortcut(0)
! do k=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1
! call get_excitation_degree(psi_ref(1,1,J),det_cepa0(1,1,k),degree,N_int)
! if(degree <= 2) then
! nlink(J) += 1
! linked(nlink(J),J) = k
! blokMwen(nlink(J),J) = blok
! searchance(J) += 1d0 + log(dfloat(cepa0_shortcut(blok+1) - cepa0_shortcut(blok)))
! end if
! end do
! end do
! end do
! stop
nzer = 0
ntot = 0
do nex = 3, 0, -1
print *, "los ",nex
do I_s = N_det_ref, 1, -1
! if(mod(I_s,1) == 0) then
! call wall_time(wall)
! wall = wall-iwall
! print *, I_s, "/", N_det_ref, wall * (dfloat(N_det_ref) / dfloat(I_s)), wall, wall * (dfloat(N_det_ref) / dfloat(I_s))-wall
! end if
do J_s = 1, I_s
call get_excitation_degree(psi_ref(1,1,J_s), psi_ref(1,1,I_s), degree, N_int)
if(degree /= nex) cycle
if(nex == 3) nzer = nzer + 1
ntot += 1
! if(degree > 3) then
! deg += 1
! cycle
! else if(degree == -10) then
! KKsize = 100000
! else
! KKsize = 1000000
! end if
if(searchance(I_s) < searchance(J_s)) then
i_I = I_s
J = J_s
else
i_I = J_s
J = I_s
end if
KKsize = nlink(1)
if(nex == 0) KKsize = int(float(nlink(1)) / float(nlink(i_I)) * (float(nlink(1)) / 64d0))
!if(KKsize == 0) stop "ZZEO"
do kk = 1 , nlink(i_I), KKsize
write(task,*) I_i, J, kk, int(min(kk+KKsize-1, nlink(i_I)))
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
end do
! do kk = 1 , nlink(i_I)
! k = linked(kk,i_I)
! blok = blokMwen(kk,i_I)
! write(task,*) I_i, J, k, blok
! call add_task_to_taskserver(zmq_to_qp_run_socket,task)
!
! enddo !kk
enddo !J
enddo !I
end do ! nex
print *, "tasked"
! integer(ZMQ_PTR) collector_thread
! external ao_bielec_integrals_in_map_collector
! rc = pthread_create(collector_thread, mrsc2_dressing_collector)
print *, nzer, ntot, float(nzer) / float(ntot)
provide nproc
!$OMP PARALLEL DEFAULT(none) SHARED(delta_ii_old,delta_ij_old,delta_ii_s2_old,delta_ij_s2_old) PRIVATE(i) NUM_THREADS(nproc+1)
i = omp_get_thread_num()
if (i==0) then
call mrsc2_dressing_collector(delta_ii_old,delta_ij_old,delta_ii_s2_old,delta_ij_s2_old)
else
call mrsc2_dressing_slave_inproc(i)
endif
!$OMP END PARALLEL
! rc = pthread_join(collector_thread)
call end_parallel_job(zmq_to_qp_run_socket, 'mrsc2')
END_PROVIDER

View File

@ -0,0 +1,61 @@
! DO NOT MODIFY BY HAND
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
! from file /home/scemama/quantum_package/src/mrcc_selected/EZFIO.cfg
BEGIN_PROVIDER [ double precision, thresh_dressed_ci ]
implicit none
BEGIN_DOC
! Threshold on the convergence of the dressed CI energy
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_mrcc_selected_thresh_dressed_ci(has)
if (has) then
call ezfio_get_mrcc_selected_thresh_dressed_ci(thresh_dressed_ci)
else
print *, 'mrcc_selected/thresh_dressed_ci not found in EZFIO file'
stop 1
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, n_it_max_dressed_ci ]
implicit none
BEGIN_DOC
! Maximum number of dressed CI iterations
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_mrcc_selected_n_it_max_dressed_ci(has)
if (has) then
call ezfio_get_mrcc_selected_n_it_max_dressed_ci(n_it_max_dressed_ci)
else
print *, 'mrcc_selected/n_it_max_dressed_ci not found in EZFIO file'
stop 1
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, lambda_type ]
implicit none
BEGIN_DOC
! lambda type
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_mrcc_selected_lambda_type(has)
if (has) then
call ezfio_get_mrcc_selected_lambda_type(lambda_type)
else
print *, 'mrcc_selected/lambda_type not found in EZFIO file'
stop 1
endif
END_PROVIDER

View File

@ -0,0 +1,19 @@
program mrsc2sub
implicit none
double precision, allocatable :: energy(:)
allocate (energy(N_states))
!mrmode : 1=mrcepa0, 2=mrsc2 add, 3=mrcc
mrmode = 3
read_wf = .True.
SOFT_TOUCH read_wf
call print_cas_coefs
call set_generators_bitmasks_as_holes_and_particles
call run(N_states,energy)
if(do_pt2_end)then
call run_pt2(N_states,energy)
endif
deallocate(energy)
end

View File

@ -0,0 +1,245 @@
subroutine run(N_st,energy)
implicit none
integer, intent(in) :: N_st
double precision, intent(out) :: energy(N_st)
integer :: i,j
double precision :: E_new, E_old, delta_e
integer :: iteration
double precision :: E_past(4)
integer :: n_it_mrcc_max
double precision :: thresh_mrcc
double precision, allocatable :: lambda(:)
allocate (lambda(N_states))
thresh_mrcc = thresh_dressed_ci
n_it_mrcc_max = n_it_max_dressed_ci
if(n_it_mrcc_max == 1) then
do j=1,N_states_diag
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
enddo
enddo
SOFT_TOUCH psi_coef ci_energy_dressed
call write_double(6,ci_energy_dressed(1),"Final MRCC energy")
call ezfio_set_mrcepa0_energy(ci_energy_dressed(1))
call save_wavefunction
energy(:) = ci_energy_dressed(:)
else
E_new = 0.d0
delta_E = 1.d0
iteration = 0
lambda = 1.d0
do while (delta_E > thresh_mrcc)
iteration += 1
print *, '==========================='
print *, 'MRCEPA0 Iteration', iteration
print *, '==========================='
print *, ''
E_old = sum(ci_energy_dressed)
call write_double(6,ci_energy_dressed(1),"MRCEPA0 energy")
call diagonalize_ci_dressed(lambda)
E_new = sum(ci_energy_dressed)
delta_E = dabs(E_new - E_old)
call save_wavefunction
call ezfio_set_mrcepa0_energy(ci_energy_dressed(1))
if (iteration >= n_it_mrcc_max) then
exit
endif
enddo
call write_double(6,ci_energy_dressed(1),"Final MRCEPA0 energy")
energy(:) = ci_energy_dressed(:)
endif
end
subroutine print_cas_coefs
implicit none
integer :: i,j
print *, 'CAS'
print *, '==='
do i=1,N_det_cas
print *, (psi_cas_coef(i,j), j=1,N_states)
call debug_det(psi_cas(1,1,i),N_int)
enddo
call write_double(6,ci_energy(1),"Initial CI energy")
end
subroutine run_pt2_old(N_st,energy)
implicit none
integer :: i,j,k
integer, intent(in) :: N_st
double precision, intent(in) :: energy(N_st)
double precision :: pt2_redundant(N_st), pt2(N_st)
double precision :: norm_pert(N_st),H_pert_diag(N_st)
pt2_redundant = 0.d0
pt2 = 0d0
!if(lambda_mrcc_pt2(0) == 0) return
print*,'Last iteration only to compute the PT2'
print * ,'Computing the redundant PT2 contribution'
if (mrmode == 1) then
N_det_generators = lambda_mrcc_kept(0)
N_det_selectors = lambda_mrcc_kept(0)
do i=1,N_det_generators
j = lambda_mrcc_kept(i)
do k=1,N_int
psi_det_generators(k,1,i) = psi_non_ref(k,1,j)
psi_det_generators(k,2,i) = psi_non_ref(k,2,j)
psi_selectors(k,1,i) = psi_non_ref(k,1,j)
psi_selectors(k,2,i) = psi_non_ref(k,2,j)
enddo
do k=1,N_st
psi_coef_generators(i,k) = psi_non_ref_coef(j,k)
psi_selectors_coef(i,k) = psi_non_ref_coef(j,k)
enddo
enddo
else
N_det_generators = N_det_non_ref
N_det_selectors = N_det_non_ref
do i=1,N_det_generators
j = i
do k=1,N_int
psi_det_generators(k,1,i) = psi_non_ref(k,1,j)
psi_det_generators(k,2,i) = psi_non_ref(k,2,j)
psi_selectors(k,1,i) = psi_non_ref(k,1,j)
psi_selectors(k,2,i) = psi_non_ref(k,2,j)
enddo
do k=1,N_st
psi_coef_generators(i,k) = psi_non_ref_coef(j,k)
psi_selectors_coef(i,k) = psi_non_ref_coef(j,k)
enddo
enddo
endif
SOFT_TOUCH N_det_selectors psi_selectors_coef psi_selectors N_det_generators psi_det_generators psi_coef_generators ci_eigenvectors_dressed ci_eigenvectors_s2_dressed ci_electronic_energy_dressed
SOFT_TOUCH psi_ref_coef_diagonalized psi_ref_energy_diagonalized
call H_apply_mrcepa_PT2(pt2_redundant, norm_pert, H_pert_diag, N_st)
print * ,'Computing the remaining contribution'
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
N_det_generators = N_det_non_ref + N_det_ref
N_det_selectors = N_det_non_ref + N_det_ref
psi_det_generators(:,:,:N_det_ref) = psi_ref(:,:,:N_det_ref)
psi_selectors(:,:,:N_det_ref) = psi_ref(:,:,:N_det_ref)
psi_coef_generators(:N_det_ref,:) = psi_ref_coef(:N_det_ref,:)
psi_selectors_coef(:N_det_ref,:) = psi_ref_coef(:N_det_ref,:)
do i=N_det_ref+1,N_det_generators
j = i-N_det_ref
do k=1,N_int
psi_det_generators(k,1,i) = psi_non_ref(k,1,j)
psi_det_generators(k,2,i) = psi_non_ref(k,2,j)
psi_selectors(k,1,i) = psi_non_ref(k,1,j)
psi_selectors(k,2,i) = psi_non_ref(k,2,j)
enddo
do k=1,N_st
psi_coef_generators(i,k) = psi_non_ref_coef(j,k)
psi_selectors_coef(i,k) = psi_non_ref_coef(j,k)
enddo
enddo
SOFT_TOUCH N_det_selectors psi_selectors_coef psi_selectors N_det_generators psi_det_generators psi_coef_generators ci_eigenvectors_dressed ci_eigenvectors_s2_dressed ci_electronic_energy_dressed
SOFT_TOUCH psi_ref_coef_diagonalized psi_ref_energy_diagonalized
call H_apply_mrcepa_PT2(pt2, norm_pert, H_pert_diag, N_st)
print *, "Redundant PT2 :",pt2_redundant
print *, "Full PT2 :",pt2
print *, lambda_mrcc_kept(0), N_det, N_det_ref, psi_coef(1,1), psi_ref_coef(1,1)
pt2 = pt2 - pt2_redundant
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', energy
print *, 'E+PT2 = ', energy+pt2
print *, '-----'
call ezfio_set_mrcepa0_energy_pt2(energy(1)+pt2(1))
end
subroutine run_pt2(N_st,energy)
implicit none
integer :: i,j,k
integer, intent(in) :: N_st
double precision, intent(in) :: energy(N_st)
double precision :: pt2(N_st)
double precision :: norm_pert(N_st),H_pert_diag(N_st)
pt2 = 0d0
!if(lambda_mrcc_pt2(0) == 0) return
print*,'Last iteration only to compute the PT2'
N_det_generators = N_det_cas
N_det_selectors = N_det_non_ref
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_ref(k,1,i)
psi_det_generators(k,2,i) = psi_ref(k,2,i)
enddo
do k=1,N_st
psi_coef_generators(i,k) = psi_ref_coef(i,k)
enddo
enddo
do i=1,N_det
do k=1,N_int
psi_selectors(k,1,i) = psi_det_sorted(k,1,i)
psi_selectors(k,2,i) = psi_det_sorted(k,2,i)
enddo
do k=1,N_st
psi_selectors_coef(i,k) = psi_coef_sorted(i,k)
enddo
enddo
SOFT_TOUCH N_det_selectors psi_selectors_coef psi_selectors N_det_generators psi_det_generators psi_coef_generators ci_eigenvectors_dressed ci_eigenvectors_s2_dressed ci_electronic_energy_dressed
SOFT_TOUCH psi_ref_coef_diagonalized psi_ref_energy_diagonalized
call H_apply_mrcepa_PT2(pt2, norm_pert, H_pert_diag, N_st)
! call ezfio_set_full_ci_energy_pt2(energy+pt2)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', energy
print *, 'E+PT2 = ', energy+pt2
print *, '-----'
call ezfio_set_mrcepa0_energy_pt2(energy(1)+pt2(1))
end

5
plugins/mrcepa0/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
IRPF90_temp/
IRPF90_man/
irpf90.make
irpf90_entities
tags

View File

@ -6,7 +6,203 @@ Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Perturbation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Perturbation>`_
* `Selectors_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_full>`_
* `Generators_full <http://github.com/LCPQ/quantum_package/tree/master/plugins/Generators_full>`_
* `Psiref_CAS <http://github.com/LCPQ/quantum_package/tree/master/plugins/Psiref_CAS>`_
* `MRCC_Utils <http://github.com/LCPQ/quantum_package/tree/master/plugins/MRCC_Utils>`_
* `ZMQ <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`active_sorb <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L371>`_
Undocumented
`blokmwen <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L375>`_
Undocumented
`cepa0_shortcut <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L367>`_
Undocumented
`child_num <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L377>`_
Undocumented
`delta_cas <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L539>`_
Undocumented
`delta_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L317>`_
Undocumented
`delta_ii_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L6>`_
Undocumented
`delta_ii_old <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L468>`_
Undocumented
`delta_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L316>`_
Undocumented
`delta_ij_mrcc <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L5>`_
Undocumented
`delta_ij_old <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L467>`_
Undocumented
`delta_mrcepa0_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L641>`_
Undocumented
`delta_mrcepa0_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L640>`_
Undocumented
`delta_sub_ii <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L749>`_
Undocumented
`delta_sub_ij <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L748>`_
Undocumented
`det_cepa0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L372>`_
Undocumented
`det_cepa0_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L369>`_
Undocumented
`det_cepa0_idx <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L368>`_
Undocumented
`det_ref_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L370>`_
Undocumented
`filter_tq <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L875>`_
Undocumented
`filter_tq_micro <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L931>`_
Undocumented
`gethp <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L603>`_
Undocumented
`h_ <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L863>`_
Undocumented
`hp <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L360>`_
Undocumented
`isincassd <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L571>`_
Undocumented
`lambda_type <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/ezfio_interface.irp.f#L44>`_
lambda type
`linked <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L374>`_
Undocumented
`mrcc_part_dress <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L55>`_
Undocumented
`mrcepa0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcepa0.irp.f#L1>`_
Undocumented
`mrsc2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrsc2.irp.f#L1>`_
Undocumented
`mrsc2_dressing_collector <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L375>`_
Collects results from the AO integral calculation
`mrsc2_dressing_slave <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L20>`_
Task for parallel MR-SC2
`mrsc2_dressing_slave_inproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L11>`_
Task for parallel MR-SC2
`mrsc2_dressing_slave_tcp <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L1>`_
Task for parallel MR-SC2
`mrsc2sub <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcc.irp.f#L1>`_
Undocumented
`n_it_max_dressed_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/ezfio_interface.irp.f#L25>`_
Maximum number of dressed CI iterations
`nlink <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L373>`_
Undocumented
`print_cas_coefs <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcepa0_general.irp.f#L62>`_
Undocumented
`pull_mrsc2_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L308>`_
Push integrals in the push socket
`push_mrsc2_results <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing_slave.irp.f#L211>`_
Push integrals in the push socket
`run <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcepa0_general.irp.f#L3>`_
Undocumented
`run_pt2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcepa0_general.irp.f#L191>`_
Undocumented
`run_pt2_old <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/mrcepa0_general.irp.f#L79>`_
Undocumented
`searchance <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L376>`_
Undocumented
`set_det_bit <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/dressing.irp.f#L851>`_
Undocumented
`thresh_dressed_ci <http://github.com/LCPQ/quantum_package/tree/master/plugins/mrcepa0/ezfio_interface.irp.f#L6>`_
Threshold on the convergence of the dressed CI energy

View File

@ -300,22 +300,22 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
enddo
call omp_set_lock( psi_ref_lock(i_I) )
do i_state=1,N_states
! if(dabs(psi_ref_coef(i_I,i_state)).ge.5.d-5)then
! do l_sd=1,idx_alpha(0)
! k_sd = idx_alpha(l_sd)
! delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
! delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
! delta_ij_s2_(i_state,k_sd,i_I) = delta_ij_s2_(i_state,k_sd,i_I) + dIa_sla(i_state,k_sd)
! delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
! enddo
! else
if(dabs(psi_ref_coef(i_I,i_state)).ge.1.d-3)then
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
delta_ij_s2_(i_state,k_sd,i_I) = delta_ij_s2_(i_state,k_sd,i_I) + dIa_sla(i_state,k_sd)
delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
enddo
else
delta_ii_(i_state,i_I) = 0.d0
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0*dIa_hla(i_state,k_sd)
delta_ij_s2_(i_state,k_sd,i_I) = delta_ij_s2_(i_state,k_sd,i_I) + 0.5d0*dIa_sla(i_state,k_sd)
enddo
! endif
endif
enddo
call omp_unset_lock( psi_ref_lock(i_I) )
enddo
@ -691,7 +691,7 @@ subroutine getHP(a,h,p,Nint)
end do lh
h = deg
!isInCassd = .true.
end function
end subroutine
BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij, (N_det_ref,N_det_non_ref,N_states) ]
@ -716,6 +716,9 @@ end function
integer :: II, blok
integer*8, save :: notf = 0
PROVIDE psi_ref_coef psi_non_ref_coef
call wall_time(wall)
allocate(idx_sorted_bit(N_det), sortRef(N_int,2,N_det_ref))
@ -784,7 +787,7 @@ end function
contrib = delta_cas(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state)
contrib_s2 = delta_cas_s2(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state)
if(dabs(psi_ref_coef(J,i_state)).ge.5.d-5) then
if(dabs(psi_ref_coef(J,i_state)).ge.1.d-3) then
contrib2 = contrib / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
contrib2_s2 = contrib_s2 / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
!$OMP ATOMIC
@ -839,8 +842,7 @@ END_PROVIDER
delta_sub_ij(:,:,:) = 0d0
delta_sub_ii(:,:) = 0d0
provide mo_bielec_integrals_in_map
provide mo_bielec_integrals_in_map N_det_non_ref psi_ref_coef psi_non_ref_coef
!$OMP PARALLEL DO default(none) schedule(dynamic,10) shared(delta_sub_ij, delta_sub_ii) &
!$OMP private(i, J, k, degree, degree2, l, deg, ni) &
@ -895,7 +897,7 @@ END_PROVIDER
call apply_excitation(psi_non_ref(1,1,i),exc_Ik,det_tmp,ok,N_int)
if(ok) cycle
contrib = delta_IJk * HIl * lambda_mrcc(i_state,l)
if(dabs(psi_ref_coef(II,i_state)).ge.5.d-5) then
if(dabs(psi_ref_coef(II,i_state)).ge.1.d-3) then
contrib2 = contrib / psi_ref_coef(II, i_state) * psi_non_ref_coef(l,i_state)
!$OMP ATOMIC
delta_sub_ii(II,i_state) -= contrib2

View File

View File

@ -364,10 +364,6 @@ for line_raw in det_without_header.split("\n"):
try:
float(line)
except ValueError:
print line_raw.strip(), len(line_raw.strip())
print l_order_mo, len(l_order_mo)
line_order = [line_raw[i] for i in l_order_mo]
line= "".join([d_rep[x] if x in d_rep else x for x in line_raw])

View File

@ -476,7 +476,7 @@ def ninja_irpf90_make_build(path_module, l_needed_molule, d_irp):
# ~#~#~#~#~#~ #
l_creation = [join(path_module.abs, i)
for i in ["irpf90.make", "irpf90_entities", "tags",
for i in ["irpf90_entities", "tags",
"IRPF90_temp/build.ninja"]]
str_creation = " ".join(l_creation)

View File

@ -12,26 +12,25 @@ Option:
"""
import sys
import os
from functools import reduce
# ~#~#~#~#~#~#~#~ #
# Add to the path #
# ~#~#~#~#~#~#~#~ #
try:
QP_ROOT = os.environ["QP_ROOT"]
except:
print "Error: QP_ROOT environment variable not found."
sys.exit(1)
else:
sys.path = [QP_ROOT + "/install/EZFIO/Python",
QP_ROOT + "/resultsFile",
QP_ROOT + "/scripts"] + sys.path
sys.path = [ QP_ROOT + "/install/EZFIO/Python",
QP_ROOT + "/resultsFile",
QP_ROOT + "/scripts"] + sys.path
# ~#~#~#~#~#~ #
# I m p o r t #
@ -39,7 +38,6 @@ else:
from ezfio import ezfio
try:
from resultsFile import *
except:
@ -254,7 +252,7 @@ def write_ezfio(res, filename):
for coef in m.vector:
MoMatrix.append(coef)
while len(MoMatrix) < len(MOs[0].vector) ** 2:
while len(MoMatrix) < len(MOs[0].vector)**2:
MoMatrix.append(0.)
# ~#~#~#~#~ #
@ -273,7 +271,129 @@ def write_ezfio(res, filename):
# \_| |___/\___|\__,_|\__,_|\___/
#
ezfio.set_pseudo_do_pseudo(False)
# INPUT
# {% for lanel,zcore, l_block in l_atom $}
# #local l_block l=0}
# {label} GEN {zcore} {len(l_block)-1 #lmax_block}
# {% for l_param in l_block%}
# {len(l_param) # list of parameter aka n_max_bock_max(n)}
# {% for coef,n,zeta for l_param}
# {coef,n, zeta}
# OUTPUT
# Local are 1 array padded by max(n_max_block) when l == 0 (output:k_loc_max)
# v_k[n-2][atom] = value
#No Local are 2 array padded with max of lmax_block when l!=0 (output:lmax+1) and max(n_max_block)whem l !=0 (kmax)
# v_kl[l][n-2][atom] = value
def pad(array, size, value=0):
new_array = array
for add in xrange(len(array), size):
new_array.append(value)
return new_array
def parse_str(pseudo_str):
'''Return 4d array atom,l,n, attribute (attribute is coef, n, zeta)'''
matrix = []
array_l_max_block = []
array_z_remove = []
for block in [b for b in pseudo_str.split('\n\n') if b]:
#First element is header, the rest are l_param
array_party = [i for i in re.split(r"\n\d+\n", block) if i]
z_remove, l_max_block = map(int, array_party[0].split()[-2:])
array_l_max_block.append(l_max_block)
array_z_remove.append(z_remove)
matrix.append([[coef_n_zeta.split()[1:] for coef_n_zeta in l.split('\n')] for l in array_party[1:]])
return (matrix, array_l_max_block, array_z_remove)
def get_local_stuff(matrix):
matrix_local_unpad = [atom[0] for atom in matrix]
k_loc_max = max(len(i) for i in matrix_local_unpad)
matrix_local = [ pad(ll, k_loc_max, [0., 2, 0.]) for ll in matrix_local_unpad]
m_coef = [[float(i[0]) for i in atom] for atom in matrix_local]
m_n = [[int(i[1]) - 2 for i in atom] for atom in matrix_local]
m_zeta = [[float(i[2]) for i in atom] for atom in matrix_local]
return (k_loc_max, m_coef, m_n, m_zeta)
def get_non_local_stuff(matrix):
matrix_unlocal_unpad = [atom[1:] for atom in matrix]
l_max_block = max(len(i) for i in matrix_unlocal_unpad)
k_max = max([len(item) for row in matrix_unlocal_unpad for item in row])
matrix_unlocal_semipaded = [[pad(item, k_max, [0., 2, 0.]) for item in row] for row in matrix_unlocal_unpad]
empty_row = [[0., 2, 0.] for k in range(l_max_block)]
matrix_unlocal = [ pad(ll, l_max_block, empty_row) for ll in matrix_unlocal_semipaded ]
m_coef_noloc = [[[float(k[0]) for k in j] for j in i] for i in matrix_unlocal]
m_n_noloc = [[[int(k[1]) - 2 for k in j] for j in i] for i in matrix_unlocal]
m_zeta_noloc = [[[float(k[2]) for k in j] for j in i] for i in matrix_unlocal]
return (l_max_block, k_max, m_coef_noloc, m_n_noloc, m_zeta_noloc)
try:
pseudo_str = res_file.get_pseudo()
matrix, array_l_max_block, array_z_remove = parse_str(pseudo_str)
except:
ezfio.set_pseudo_do_pseudo(False)
else:
ezfio.set_pseudo_do_pseudo(True)
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
# Z _ e f f , a l p h a / b e t a _ e l e c #
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
ezfio.pseudo_charge_remove = array_z_remove
ezfio.nuclei_nucl_charge = [i - j for i, j in zip(ezfio.nuclei_nucl_charge, array_z_remove)]
import math
num_elec = sum(ezfio.nuclei_nucl_charge)
ezfio.electrons_elec_alpha_num = int(math.ceil(num_elec / 2.))
ezfio.electrons_elec_beta_num = int(math.floor(num_elec / 2.))
# Change all the array 'cause EZFIO
# v_kl (v, l) => v_kl(l,v)
# v_kl => zip(*_v_kl)
# [[7.0, 79.74474797, -49.45159098], [1.0, 5.41040609, -4.60151975]]
# [(7.0, 1.0), (79.74474797, 5.41040609), (-49.45159098, -4.60151975)]
# ~#~#~#~#~ #
# L o c a l #
# ~#~#~#~#~ #
klocmax, m_coef, m_n, m_zeta = get_local_stuff(matrix)
ezfio.pseudo_pseudo_klocmax = klocmax
ezfio.pseudo_pseudo_v_k = zip(*m_coef)
ezfio.pseudo_pseudo_n_k = zip(*m_n)
ezfio.pseudo_pseudo_dz_k = zip(*m_zeta)
# ~#~#~#~#~#~#~#~#~ #
# N o n _ L o c a l #
# ~#~#~#~#~#~#~#~#~ #
l_max_block, k_max, m_coef_noloc, m_n_noloc, m_zeta_noloc = get_non_local_stuff(
matrix)
ezfio.pseudo_pseudo_lmax = l_max_block - 1
ezfio.pseudo_pseudo_kmax = k_max
ezfio.pseudo_pseudo_v_kl = zip(*m_coef_noloc)
ezfio.pseudo_pseudo_n_kl = zip(*m_n_noloc)
ezfio.pseudo_pseudo_dz_kl = zip(*m_zeta_noloc)
def get_full_path(file_path):
@ -282,6 +402,7 @@ def get_full_path(file_path):
file_path = os.path.abspath(file_path)
return file_path
if __name__ == '__main__':
arguments = docopt(__doc__)

View File

@ -298,6 +298,7 @@ if __name__ == '__main__':
# Don't update if we are not in the main repository
from is_master_repository import is_master_repository
if not is_master_repository:
print >> sys.stderr, 'Not in the master repo'
sys.exit()
path = os.path.join(module_abs, ".gitignore")

View File

@ -133,7 +133,7 @@ Documentation
:math:`\int \chi_i(r) \chi_j(r) dr)`
`ao_overlap_abs <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L66>`_
`ao_overlap_abs <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L75>`_
Overlap between absolute value of atomic basis functions:
:math:`\int |\chi_i(r)| |\chi_j(r)| dr)`

322
src/Davidson/README.rst Normal file
View File

@ -0,0 +1,322 @@
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`ci_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI.irp.f#L23>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI_mono.irp.f#L2>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI.irp.f#L24>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI_mono.irp.f#L3>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI.irp.f#L22>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI_mono.irp.f#L1>`_
Eigenvectors/values of the CI matrix
`ci_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI.irp.f#L2>`_
N_states lowest eigenvalues of the CI matrix
`dav_det <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L540>`_
Temporary arrays for parallel davidson
.br
Touched in davidson_miniserver_get
`dav_size <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L554>`_
Size of the arrays for Davidson
.br
Touched in davidson_miniserver_get
`dav_ut <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L541>`_
Temporary arrays for parallel davidson
.br
Touched in davidson_miniserver_get
`davidson_add_task <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L175>`_
Undocumented
`davidson_collect <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L118>`_
Undocumented
`davidson_collector <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L365>`_
Undocumented
`davidson_converged <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/parameters.irp.f#L27>`_
True if the Davidson algorithm is converged
`davidson_criterion <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/parameters.irp.f#L19>`_
Can be : [ energy | residual | both | wall_time | cpu_time | iterations ]
`davidson_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L1>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_hjj <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L273>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_hjj_sjj <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization_hs2.irp.f#L56>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
S2_jj : specific diagonal S^2 matrix elements
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
N_st_diag : Number of states in which H is diagonalized. Assumed > sze
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_hs2 <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization_hs2.irp.f#L1>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_init <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L143>`_
Undocumented
`davidson_iter_max <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/parameters.irp.f#L1>`_
Max number of Davidson iterations
`davidson_miniserver_end <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L495>`_
Undocumented
`davidson_miniserver_get <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L514>`_
Undocumented
`davidson_miniserver_run <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L465>`_
Undocumented
`davidson_process <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L7>`_
Undocumented
`davidson_pull_results <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L327>`_
Undocumented
`davidson_push_results <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L289>`_
Undocumented
`davidson_run <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L420>`_
Undocumented
`davidson_run_slave <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L207>`_
Undocumented
`davidson_slave <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_slave.irp.f#L1>`_
Undocumented
`davidson_slave_inproc <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L190>`_
Undocumented
`davidson_slave_tcp <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L198>`_
Undocumented
`davidson_slave_work <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L242>`_
Undocumented
`davidson_sze_max <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/parameters.irp.f#L9>`_
Max number of Davidson sizes
`det_inf <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L52>`_
Ordering function for determinants
`diagonalize_ci <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI.irp.f#L154>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`diagonalize_ci_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalize_CI_mono.irp.f#L73>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`first_guess <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/guess_lowest_state.irp.f#L1>`_
Select all the determinants with the lowest energy as a starting point.
`h_s2_u_0_nstates <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/u0Hu0.irp.f#L180>`_
Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
.br
S2_jj : array of <j|S^2|j>
`h_u_0_nstates <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/u0Hu0.irp.f#L31>`_
Computes v_0 = H|u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
`max_blocksize <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L569>`_
Undocumented
`n_states_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/ezfio_interface.irp.f#L25>`_
n_states_diag
`provide_everything <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_slave.irp.f#L36>`_
Undocumented
`psi_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/u0Hu0.irp.f#L171>`_
Energy of the current wave function
`shortcut_ <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L565>`_
Undocumented
`sort_dets_ab <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L219>`_
Uncodumented : TODO
`sort_dets_ab_v <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L149>`_
Uncodumented : TODO
`sort_dets_ba_v <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L120>`_
Uncodumented : TODO
`sort_idx_ <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L568>`_
Undocumented
`sorted_ <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L567>`_
Undocumented
`tamiser <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/diagonalization.irp.f#L77>`_
Uncodumented : TODO
`threshold_davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/ezfio_interface.irp.f#L6>`_
Thresholds of Davidson's algorithm
`u_0_h_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/u0Hu0.irp.f#L1>`_
Computes e_0 = <u_0|H|u_0>/<u_0|u_0>
.br
n : number of determinants
.br
`version_ <http://github.com/LCPQ/quantum_package/tree/master/src/Davidson/davidson_parallel.irp.f#L566>`_
Undocumented

View File

@ -154,7 +154,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer, external :: align_double
sze_8 = align_double(sze)
itermax = min(davidson_sze_max, sze/N_st_diag)
itermax = max(3,min(davidson_sze_max, sze/N_st_diag))
allocate( &
W(sze_8,N_st_diag*itermax), &
U(sze_8,N_st_diag*itermax), &
@ -306,7 +306,9 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
state_ok(k) = .True.
do k=1,size(state_ok)
state_ok(k) = .True.
enddo
endif
do k=1,shift2
@ -383,30 +385,12 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
! -----------------------------------------
do k=1,N_st_diag
if (state_ok(k)) then
do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)

View File

@ -40,6 +40,7 @@ END_PROVIDER
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
PROVIDE threshold_davidson
! Guess values for the "N_states" states of the CI_eigenvectors
do j=1,min(N_states,N_det)
do i=1,N_det

View File

View File

@ -88,9 +88,12 @@ subroutine H_u_0_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,N_st,sze_8)
!$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0,1)
do sh2=sh,shortcut(0,1)
exa = 0
do ni=1,Nint
do sh2=1,shortcut(0,1)
exa = popcnt(xor(version(1,sh,1), version(1,sh2,1)))
if(exa > 2) then
cycle
end if
do ni=2,Nint
exa = exa + popcnt(xor(version(ni,sh,1), version(ni,sh2,1)))
end do
if(exa > 2) then
@ -99,29 +102,27 @@ subroutine H_u_0_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,N_st,sze_8)
do i=shortcut(sh,1),shortcut(sh+1,1)-1
org_i = sort_idx(i,1)
if(sh==sh2) then
endi = i-1
else
endi = shortcut(sh2+1,1)-1
end if
do ni=1,Nint
sorted_i(ni) = sorted(ni,i,1)
enddo
do j=shortcut(sh2,1),endi
jloop: do j=shortcut(sh2,1),shortcut(sh2+1,1)-1
org_j = sort_idx(j,1)
ext = exa
do ni=1,Nint
ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1)))
end do
if(ext <= 4) then
call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij)
do istate=1,N_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
vt (istate,org_j) = vt (istate,org_j) + hij*ut(istate,org_i)
enddo
ext = exa + popcnt(xor(sorted_i(1), sorted(1,j,1)))
if(ext > 4) then
cycle jloop
endif
enddo
do ni=2,Nint
ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1)))
if(ext > 4) then
cycle jloop
endif
end do
call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij)
do istate=1,N_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
enddo
enddo jloop
enddo
enddo
enddo
@ -131,19 +132,19 @@ subroutine H_u_0_nstates(v_0,u_0,H_jj,n,keys_tmp,Nint,N_st,sze_8)
do sh=1,shortcut(0,2)
do i=shortcut(sh,2),shortcut(sh+1,2)-1
org_i = sort_idx(i,2)
do j=shortcut(sh,2),i-1
do j=shortcut(sh,2),shortcut(sh+1,2)-1
org_j = sort_idx(j,2)
ext = 0
do ni=1,Nint
ext = popcnt(xor(sorted(1,i,2), sorted(1,j,2)))
do ni=2,Nint
ext = ext + popcnt(xor(sorted(ni,i,2), sorted(ni,j,2)))
end do
if(ext == 4) then
call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij)
do istate=1,N_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
vt (istate,org_j) = vt (istate,org_j) + hij*ut(istate,org_i)
enddo
end if
if(ext /= 4) then
cycle
endif
call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij)
do istate=1,N_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
enddo
end do
end do
enddo
@ -313,7 +314,7 @@ subroutine H_S2_u_0_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,N_st,sze_8)
integer :: blockb, blockb2, istep
double precision :: ave_workload, workload, target_workload_inv
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: vt, ut
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: vt, ut, st
N_st_8 = align_double(N_st)
@ -328,49 +329,62 @@ subroutine H_S2_u_0_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,N_st,sze_8)
v_0 = 0.d0
s_0 = 0.d0
do i=1,n
do istate=1,N_st
ut(istate,i) = u_0(i,istate)
enddo
enddo
call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint)
call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,hij,s2,j,k,jj,vt,st,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)&
!$OMP SHARED(n,keys_tmp,ut,Nint,v_0,s_0,sorted,shortcut,sort_idx,version,N_st,N_st_8)
!$OMP SHARED(n,keys_tmp,ut,Nint,u_0,v_0,s_0,sorted,shortcut,sort_idx,version,N_st,N_st_8)
allocate(vt(N_st_8,n),st(N_st_8,n))
Vt = 0.d0
St = 0.d0
!$OMP DO SCHEDULE(static,1)
!$OMP DO
do i=1,n
do istate=1,N_st
ut(istate,i) = u_0(sort_idx(i,2),istate)
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0,2)
do i=shortcut(sh,2),shortcut(sh+1,2)-1
org_i = sort_idx(i,2)
do j=shortcut(sh,2),i-1
do j=shortcut(sh,2),shortcut(sh+1,2)-1
org_j = sort_idx(j,2)
ext = 0
do ni=1,Nint
ext = popcnt(xor(sorted(1,i,2), sorted(1,j,2)))
if (ext > 4) cycle
do ni=2,Nint
ext = ext + popcnt(xor(sorted(ni,i,2), sorted(ni,j,2)))
if (ext > 4) exit
end do
if(ext == 4) then
call i_h_j (keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,hij)
call get_s2(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,s2)
do istate=1,n_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
vt (istate,org_j) = vt (istate,org_j) + hij*ut(istate,org_i)
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,org_j)
st (istate,org_j) = st (istate,org_j) + s2*ut(istate,org_i)
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,j)
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,j)
enddo
end if
end do
end do
enddo
!$OMP END DO NOWAIT
!$OMP END DO
!$OMP DO
do i=1,n
do istate=1,N_st
ut(istate,i) = u_0(sort_idx(i,1),istate)
enddo
enddo
!$OMP END DO
!$OMP DO SCHEDULE(dynamic)
do sh=1,shortcut(0,1)
!$OMP DO SCHEDULE(static,1)
do sh2=sh,shortcut(0,1)
do sh2=1,shortcut(0,1)
if (sh==sh2) cycle
exa = 0
do ni=1,Nint
exa = exa + popcnt(xor(version(ni,sh,1), version(ni,sh2,1)))
@ -381,44 +395,102 @@ subroutine H_S2_u_0_nstates(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,N_st,sze_8)
do i=shortcut(sh,1),shortcut(sh+1,1)-1
org_i = sort_idx(i,1)
if(sh==sh2) then
endi = i-1
else
endi = shortcut(sh2+1,1)-1
end if
do ni=1,Nint
sorted_i(ni) = sorted(ni,i,1)
enddo
do j=shortcut(sh2,1),endi
ext = exa
do ni=1,Nint
do j=shortcut(sh2,1),shortcut(sh2+1,1)-1
ext = exa + popcnt(xor(sorted_i(1), sorted(1,j,1)))
if (ext > 4) cycle
do ni=2,Nint
ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1)))
if (ext > 4) exit
end do
if(ext <= 4) then
org_j = sort_idx(j,1)
call i_h_j (keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,hij)
if (hij /= 0.d0) then
do istate=1,n_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,org_j)
vt (istate,org_j) = vt (istate,org_j) + hij*ut(istate,org_i)
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,j)
enddo
endif
if (ext /= 2) then
call get_s2(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,s2)
if (s2 /= 0.d0) then
do istate=1,n_st
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,org_j)
st (istate,org_j) = st (istate,org_j) + s2*ut(istate,org_i)
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,j)
enddo
endif
endif
endif
enddo
enddo
enddo
exa = 0
do i=shortcut(sh,1),shortcut(sh+1,1)-1
org_i = sort_idx(i,1)
do ni=1,Nint
sorted_i(ni) = sorted(ni,i,1)
enddo
do j=shortcut(sh,1),i-1
ext = exa + popcnt(xor(sorted_i(1), sorted(1,j,1)))
if (ext > 4) cycle
do ni=2,Nint
ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1)))
if (ext > 4) exit
end do
if(ext <= 4) then
org_j = sort_idx(j,1)
call i_h_j (keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,hij)
if (hij /= 0.d0) then
do istate=1,n_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,j)
enddo
endif
if (ext /= 2) then
call get_s2(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,s2)
if (s2 /= 0.d0) then
do istate=1,n_st
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,j)
enddo
endif
endif
endif
enddo
do j=i+1,shortcut(sh+1,1)-1
if (i==j) cycle
ext = exa + popcnt(xor(sorted_i(1), sorted(1,j,1)))
if (ext > 4) cycle
do ni=2,Nint
ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1)))
if (ext > 4) exit
end do
if(ext <= 4) then
org_j = sort_idx(j,1)
call i_h_j (keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,hij)
if (hij /= 0.d0) then
do istate=1,n_st
vt (istate,org_i) = vt (istate,org_i) + hij*ut(istate,j)
enddo
endif
if (ext /= 2) then
call get_s2(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),nint,s2)
if (s2 /= 0.d0) then
do istate=1,n_st
st (istate,org_i) = st (istate,org_i) + s2*ut(istate,j)
enddo
endif
endif
endif
enddo
enddo
!$OMP END DO NOWAIT
enddo
!$OMP END DO
!$OMP CRITICAL (u0Hu0)
do istate=1,N_st

View File

@ -15,23 +15,31 @@ Documentation
.. by the `update_README.py` script.
`a_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1458>`_
`a_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1421>`_
Needed for diag_H_mat_elem
`abs_psi_coef_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L392>`_
`abs_psi_coef_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L431>`_
Max and min values of the coefficients
`abs_psi_coef_min <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L393>`_
`abs_psi_coef_min <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L432>`_
Max and min values of the coefficients
`ac_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1504>`_
`ac_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1467>`_
Needed for diag_H_mat_elem
`apply_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1713>`_
`apply_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L747>`_
Undocumented
`apply_hole <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L877>`_
Undocumented
`apply_holes <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L827>`_
Undocumented
@ -39,16 +47,24 @@ Documentation
Undocumented
`apply_particle <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L855>`_
Undocumented
`apply_particles <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L798>`_
Undocumented
`bi_elec_ref_bitmask_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ref_bitmask.irp.f#L5>`_
Energy of the reference bitmask used in Slater rules
`bitstring_to_list_ab <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L356>`_
`bitstring_to_list_ab <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L422>`_
Gives the inidices(+1) of the bits set to 1 in the bit string
For alpha/beta determinants
`bitstring_to_list_ab_old <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L394>`_
`bitstring_to_list_ab_old <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L460>`_
Gives the inidices(+1) of the bits set to 1 in the bit string
For alpha/beta determinants
@ -58,72 +74,15 @@ Documentation
determinant. F_00 is <i|H|i> = E0.
`ci_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L37>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_mono.irp.f#L2>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L38>`_
Eigenvectors/values of the CI matrix
`ci_eigenvectors_s2_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_mono.irp.f#L3>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L36>`_
Eigenvectors/values of the CI matrix
`ci_electronic_energy_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_mono.irp.f#L1>`_
Eigenvectors/values of the CI matrix
`ci_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L18>`_
N_states lowest eigenvalues of the CI matrix
`ci_sc2_eigenvectors <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L28>`_
Eigenvectors/values of the CI matrix
`ci_sc2_electronic_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L27>`_
Eigenvectors/values of the CI matrix
`ci_sc2_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L1>`_
N_states_diag lowest eigenvalues of the CI matrix
`cisd <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/truncate_wf.irp.f#L1>`_
Undocumented
`cisd_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/SC2.irp.f#L1>`_
CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
Initial guess vectors are not necessarily orthonormal
`connected_to_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L226>`_
`connected_to_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L245>`_
Undocumented
`connected_to_ref_by_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L324>`_
`connected_to_ref_by_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L345>`_
Undocumented
@ -136,11 +95,11 @@ Documentation
Undocumented
`create_minilist <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L844>`_
`create_minilist <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L807>`_
Undocumented
`create_minilist_find_previous <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L899>`_
`create_minilist_find_previous <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L862>`_
Undocumented
@ -149,62 +108,6 @@ Documentation
of alpha and beta determinants
`davidson_converged <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L626>`_
True if the Davidson algorithm is converged
`davidson_criterion <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L618>`_
Can be : [ energy | residual | both | wall_time | cpu_time | iterations ]
`davidson_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L18>`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit number for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_diag_hjj <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L288>`_
Davidson diagonalization with specific diagonal elements of the H matrix
.br
H_jj : specific diagonal H matrix elements to diagonalize de Davidson
.br
dets_in : bitmasks corresponding to determinants
.br
u_in : guess coefficients on the various states. Overwritten
on exit
.br
dim_in : leftmost dimension of u_in
.br
sze : Number of determinants
.br
N_st : Number of eigenstates
.br
iunit : Unit for the I/O
.br
Initial guess vectors are not necessarily orthonormal
`davidson_iter_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L1>`_
Max number of Davidson iterations
`davidson_sze_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L9>`_
Max number of Davidson sizes
`decode_exc <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L76>`_
Decodes the exc arrays returned by get_excitation.
h1,h2 : Holes
@ -213,6 +116,14 @@ Documentation
degree : Degree of excitation
`decode_exc_int2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L142>`_
Decodes the exc arrays returned by get_excitation.
h1,h2 : Holes
p1,p2 : Particles
s1,s2 : Spins (1:alpha, 2:beta)
degree : Degree of excitation
`det_alpha_norm <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/spindeterminants.irp.f#L353>`_
Norm of the alpha and beta spin determinants in the wave function:
.br
@ -225,15 +136,11 @@ Documentation
||Da||_i \sum_j C_{ij}**2
`det_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L139>`_
`det_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L120>`_
det_coef
`det_inf <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L69>`_
Undocumented
`det_occ <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L235>`_
`det_occ <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L178>`_
det_occ
@ -245,44 +152,29 @@ Documentation
Transform a determinant to an occupation pattern
`diag_algorithm <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L1>`_
`detcmp <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L723>`_
Undocumented
`deteq <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L706>`_
Undocumented
`diag_algorithm <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L3>`_
Diagonalization algorithm (Davidson or Lapack)
`diag_h_elements_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L29>`_
Eigenvectors/values of the CI matrix
`diag_h_mat_elem <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1396>`_
`diag_h_mat_elem <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1359>`_
Computes <i|H|i>
`diag_h_mat_elem_fock <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1327>`_
`diag_h_mat_elem_fock <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1290>`_
Computes <i|H|i> when i is at most a double excitation from
a reference.
`diagonalize_ci <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI.irp.f#L258>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`diagonalize_ci_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_mono.irp.f#L73>`_
Replace the coefficients of the CI states by the coefficients of the
eigenstates of the CI matrix
`diagonalize_ci_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L48>`_
Replace the coefficients of the CI states_diag by the coefficients of the
eigenstates of the CI matrix
`diagonalize_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L120>`_
Diagonalize the S^2 operator within the n_states_diag states required. Notice : the vectors are sorted by increasing S^2 values.
`diagonalize_s2_betweenstates <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L268>`_
You enter with nstates vectors in psi_coefs_inout that may be coupled by S^2
`diagonalize_s2_betweenstates <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L302>`_
You enter with nstates vectors in u_0 that may be coupled by S^2
The subroutine diagonalize the S^2 operator in the basis of these states.
The vectors that you obtain in output are no more coupled by S^2,
which does not necessary mean that they are eigenfunction of S^2.
@ -349,7 +241,7 @@ Documentation
idx(0) is the number of determinants that interact with key1
`filter_connected_i_h_psi0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/filter_connected.irp.f#L231>`_
`filter_connected_i_h_psi0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/filter_connected.irp.f#L232>`_
returns the array idx which contains the index of the
.br
determinants in the array key1 that interact
@ -359,7 +251,7 @@ Documentation
idx(0) is the number of determinants that interact with key1
`filter_connected_i_h_psi0_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/filter_connected.irp.f#L327>`_
`filter_connected_i_h_psi0_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/filter_connected.irp.f#L326>`_
standard filter_connected_i_H_psi but returns in addition
.br
the array of the index of the non connected determinants to key1
@ -371,18 +263,22 @@ Documentation
to repeat the excitations
`first_guess <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/guess_lowest_state.irp.f#L1>`_
Select all the determinants with the lowest energy as a starting point.
`flip_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L354>`_
Undocumented
`generate_all_alpha_beta_det_products <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/spindeterminants.irp.f#L503>`_
Create a wave function from all possible alpha x beta determinants
`get_double_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L142>`_
`get_double_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L208>`_
Returns the two excitation operators between two doubly excited determinants and the phase
`get_double_excitation_phase <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1530>`_
Undocumented
`get_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L30>`_
Returns the excitation operators between two determinants and the phase
@ -391,7 +287,7 @@ Documentation
Returns the excitation degree between two determinants
`get_excitation_degree_vector <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1232>`_
`get_excitation_degree_vector <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1200>`_
Applies get_excitation_degree to an array of determinants
@ -407,27 +303,23 @@ Documentation
Returns the index of the determinant in the ``psi_det_sorted_bit`` array
`get_mono_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L277>`_
`get_mono_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L343>`_
Returns the excitation operator between two singly excited determinants and the phase
`get_occ_from_key <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1550>`_
`get_occ_from_key <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1513>`_
Returns a list of occupation numbers from a bitstring
`get_phase <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1627>`_
Returns the phase between key1 and key2
`get_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L1>`_
Returns <S^2>
`get_s2_u0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L109>`_
Undocumented
`get_s2_u0_old <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L82>`_
Undocumented
`get_uj_s2_ui <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L217>`_
`get_uj_s2_ui <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L253>`_
returns the matrix elements of S^2 "s2(i,j)" between the "nstates" states
psi_coefs_tmp(:,i) and psi_coefs_tmp(:,j)
@ -458,27 +350,19 @@ Documentation
Undocumented
`h_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1593>`_
Computes v_0 = H|u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
`i_h_j <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L434>`_
`i_h_j <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L500>`_
Returns <i|H|j> where i and j are determinants
`i_h_j_phase_out <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L570>`_
`i_h_j_phase_out <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L602>`_
Returns <i|H|j> where i and j are determinants
`i_h_j_verbose <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L706>`_
`i_h_j_verbose <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L704>`_
Returns <i|H|j> where i and j are determinants
`i_h_psi <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L971>`_
`i_h_psi <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L938>`_
Computes <i|H|Psi> = \sum_J c_J <i|H|J>.
.br
Uses filter_connected_i_H_psi0 to get all the |J> to which |i>
@ -487,14 +371,14 @@ Documentation
minilists
`i_h_psi_minilist <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1027>`_
`i_h_psi_minilist <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L994>`_
Computes <i|H|Psi> = \sum_J c_J <i|H|J>.
.br
Uses filter_connected_i_H_psi0 to get all the |J> to which |i>
is connected. The |J> are searched in short pre-computed lists.
`i_h_psi_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1129>`_
`i_h_psi_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1097>`_
<key|H|psi> for the various Nstate
.br
returns in addition
@ -508,7 +392,7 @@ Documentation
to repeat the excitations
`i_h_psi_sc2_verbose <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1176>`_
`i_h_psi_sc2_verbose <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1144>`_
<key|H|psi> for the various Nstate
.br
returns in addition
@ -522,10 +406,17 @@ Documentation
to repeat the excitations
`i_h_psi_sec_ord <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1082>`_
`i_h_psi_sec_ord <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1050>`_
<key|H|psi> for the various Nstates
`i_s2_psi_minilist <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L421>`_
Computes <i|S2|Psi> = \sum_J c_J <i|S2|J>.
.br
Uses filter_connected_i_H_psi0 to get all the |J> to which |i>
is connected. The |J> are searched in short pre-computed lists.
`idx_cas <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/psi_cas.irp.f#L5>`_
CAS wave function, defined from the application of the CAS bitmask on the
determinants. idx_cas gives the indice of the CAS determinant in psi_det.
@ -537,11 +428,15 @@ Documentation
idx_non_cas gives the indice of the determinant in psi_det.
`is_connected_to <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L159>`_
`is_connected_to <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L157>`_
Undocumented
`is_connected_to_by_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L192>`_
`is_connected_to_by_mono <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L212>`_
Undocumented
`is_generable_cassd <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/connected_to_ref.irp.f#L191>`_
Undocumented
@ -557,7 +452,7 @@ Documentation
Undocumented
`max_degree_exc <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L33>`_
`max_degree_exc <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L50>`_
Maximum degree of excitation in the wf
@ -573,7 +468,7 @@ Documentation
Undocumented
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L3>`_
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L20>`_
Number of determinants in the wave function
@ -598,7 +493,7 @@ Documentation
Maximum number of determinants diagonalized by Jacobi
`n_det_max_property <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L293>`_
`n_det_max_property <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L236>`_
Max number of determinants in the wave function when you select for a given property
@ -630,10 +525,6 @@ Documentation
Number of states to consider
`n_states_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/options.irp.f#L1>`_
Number of states to consider for the diagonalization
`neutral_no_hund_in_couple <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/usefull_for_ovb.irp.f#L220>`_
n_couples is the number of couples of orbitals to be checked
couples(i,1) = first orbital of the ith couple
@ -696,15 +587,15 @@ Documentation
rho(alpha) - rho(beta)
`only_single_double_dm <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L178>`_
`only_single_double_dm <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L159>`_
If true, The One body DM is calculated with ignoring the Double<->Doubles extra diag elements
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L274>`_
`psi_average_norm_contrib <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L292>`_
Contribution of determinants to the state-averaged density
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L304>`_
`psi_average_norm_contrib_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L326>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
@ -756,7 +647,7 @@ Documentation
function.
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L228>`_
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L246>`_
The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file
is empty
@ -765,26 +656,26 @@ Documentation
Undocumented
`psi_coef_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L390>`_
`psi_coef_max <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L429>`_
Max and min values of the coefficients
`psi_coef_min <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L391>`_
`psi_coef_min <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L430>`_
Max and min values of the coefficients
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L303>`_
`psi_coef_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L325>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
`psi_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L334>`_
`psi_coef_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L373>`_
Determinants on which we apply <i|H|psi> for perturbation.
They are sorted by determinants interpreted as integers. Useful
to accelerate the search of a random determinant in the wave
function.
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L66>`_
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L83>`_
The wave function determinants. Initialized with Hartree-Fock if the EZFIO file
is empty
@ -805,15 +696,15 @@ Documentation
Unique beta determinants
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L48>`_
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L65>`_
Size of the psi_det/psi_coef arrays
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L302>`_
`psi_det_sorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L324>`_
Wave function sorted by determinants contribution to the norm (state-averaged)
`psi_det_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L333>`_
`psi_det_sorted_bit <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L372>`_
Determinants on which we apply <i|H|psi> for perturbation.
They are sorted by determinants interpreted as integers. Useful
to accelerate the search of a random determinant in the wave
@ -860,7 +751,7 @@ Documentation
Undocumented
`read_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L415>`_
`read_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L454>`_
Reads the determinants from the EZFIO file
@ -885,11 +776,25 @@ Documentation
be set before calling this function.
`s2_eig <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L255>`_
`s2_eig <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L198>`_
Force the wave function to be an eigenfunction of S^2
`s2_values <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L67>`_
`s2_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L105>`_
Computes v_0 = S^2|u_0>
.br
n : number of determinants
.br
`s2_u_0_nstates <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L121>`_
Computes v_0 = S^2|u_0>
.br
n : number of determinants
.br
`s2_values <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L66>`_
array of the averaged values of the S^2 operator on the various states
@ -913,23 +818,23 @@ Documentation
Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
`save_ref_determinant <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L461>`_
`save_ref_determinant <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L500>`_
Undocumented
`save_wavefunction <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L472>`_
`save_wavefunction <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L511>`_
Save the wave function into the EZFIO file
`save_wavefunction_general <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L491>`_
`save_wavefunction_general <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L530>`_
Save the wave function into the EZFIO file
`save_wavefunction_specified <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L579>`_
`save_wavefunction_specified <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L618>`_
Save the wave function into the EZFIO file
`save_wavefunction_unsorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L482>`_
`save_wavefunction_unsorted <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L521>`_
Save the wave function into the EZFIO file
@ -947,49 +852,25 @@ Documentation
for a given couple of hole/particle excitations i.
`sort_dets_ab <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L234>`_
Uncodumented : TODO
`sort_dets_ab_v <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L164>`_
Uncodumented : TODO
`sort_dets_ba_v <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L135>`_
Uncodumented : TODO
`sort_dets_by_det_search_key <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L347>`_
`sort_dets_by_det_search_key <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/determinants.irp.f#L386>`_
Determinants are sorted are sorted according to their det_search_key.
Useful to accelerate the search of a random determinant in the wave
function.
`spin_det_search_key <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/spindeterminants.irp.f#L9>`_
Return an integer*8 corresponding to a determinant index for searching
Return an integer(8) corresponding to a determinant index for searching
`state_average_weight <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/density_matrix.irp.f#L201>`_
Weights in the state-average calculation of the density matrix
`tamiser <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/davidson.irp.f#L91>`_
Uncodumented : TODO
`target_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L159>`_
`target_energy <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L140>`_
Energy that should be obtained when truncating the wave function (optional)
`threshold_convergence_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/diagonalize_CI_SC2.irp.f#L18>`_
convergence of the correlation energy of SC2 iterations
`threshold_davidson <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L197>`_
Thresholds of Davidson's algorithm
`threshold_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L274>`_
`threshold_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/ezfio_interface.irp.f#L217>`_
Thresholds on generators (fraction of the norm)
@ -997,8 +878,8 @@ Documentation
Thresholds on selectors (fraction of the norm)
`u0_h_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/slater_rules.irp.f#L1566>`_
Computes e_0 = <u_0|H|u_0>/<u_0|u_0>
`u_0_s2_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants/s2.irp.f#L78>`_
Computes e_0 = <u_0|S2|u_0>/<u_0|u_0>
.br
n : number of determinants
.br

View File

@ -438,8 +438,12 @@ end
do i=1,N_states
psi_coef_min(i) = minval(psi_coef(:,i))
psi_coef_max(i) = maxval(psi_coef(:,i))
abs_psi_coef_min(i) = dabs(psi_coef_min(i))
abs_psi_coef_max(i) = dabs(psi_coef_max(i))
abs_psi_coef_min(i) = minval( dabs(psi_coef(:,i)) )
abs_psi_coef_max(i) = maxval( dabs(psi_coef(:,i)) )
call write_double(6,psi_coef_max(i), 'Max coef')
call write_double(6,psi_coef_min(i), 'Min coef')
call write_double(6,abs_psi_coef_max(i), 'Max abs coef')
call write_double(6,abs_psi_coef_min(i), 'Min abs coef')
enddo
END_PROVIDER
@ -760,37 +764,85 @@ subroutine apply_excitation(det, exc, res, ok, Nint)
ok = .false.
degree = exc(0,1,1) + exc(0,1,2)
if(.not. (degree > 0 .and. degree <= 2)) then
print *, degree
print *, "apply ex"
STOP
endif
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! INLINE
select case(degree)
case(2)
if (exc(0,1,1) == 2) then
h1 = exc(1,1,1)
h2 = exc(2,1,1)
p1 = exc(1,2,1)
p2 = exc(2,2,1)
s1 = 1
s2 = 1
else if (exc(0,1,2) == 2) then
h1 = exc(1,1,2)
h2 = exc(2,1,2)
p1 = exc(1,2,2)
p2 = exc(2,2,2)
s1 = 2
s2 = 2
else
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
s1 = 1
s2 = 2
endif
case(1)
if (exc(0,1,1) == 1) then
h1 = exc(1,1,1)
h2 = 0
p1 = exc(1,2,1)
p2 = 0
s1 = 1
s2 = 0
else
h1 = exc(1,1,2)
h2 = 0
p1 = exc(1,2,2)
p2 = 0
s1 = 2
s2 = 0
endif
case(0)
h1 = 0
p1 = 0
h2 = 0
p2 = 0
s1 = 0
s2 = 0
case default
print *, degree
print *, "apply ex"
STOP
end select
! END INLINE
res = det
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1) ! mod 64
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
ii = ishft(h1-1,-bit_kind_shift) + 1
pos = h1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ibset(0_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
ii = ishft(p1-1,-bit_kind_shift) + 1
pos = p1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
if(degree == 2) then
ii = (h2-1)/bit_kind_size + 1
pos = mod(h2-1, 64)!iand(h2-1,bit_kind_size-1)
ii = ishft(h2-1,-bit_kind_shift) + 1
pos = h2-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
ii = ishft(p2-1,-bit_kind_shift) + 1
pos = p2-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
endif
ok = .true.
end subroutine
@ -809,14 +861,14 @@ subroutine apply_particles(det, s1, p1, s2, p2, res, ok, Nint)
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
ii = ishft(p1-1,-bit_kind_shift) + 1
pos = p1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
ii = ishft(p2-1,-bit_kind_shift) + 1
pos = p2-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
@ -838,14 +890,14 @@ subroutine apply_holes(det, s1, h1, s2, h2, res, ok, Nint)
res = det
if(h1 /= 0) then
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1)
ii = ishft(h1-1,-bit_kind_shift) + 1
pos = h1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
end if
ii = (h2-1)/bit_kind_size + 1
pos = mod(h2-1, 64)!iand(h2-1,bit_kind_size-1)
ii = ishft(h2-1,-bit_kind_shift) + 1
pos = h2-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
@ -865,8 +917,8 @@ subroutine apply_particle(det, s1, p1, res, ok, Nint)
ok = .false.
res = det
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
ii = ishft(p1-1,-bit_kind_shift) + 1
pos = p1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
@ -887,8 +939,8 @@ subroutine apply_hole(det, s1, h1, res, ok, Nint)
ok = .false.
res = det
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1)
ii = ishft(h1-1,-bit_kind_shift) + 1
pos = h1-1-ishft(ii-1,bit_kind_shift)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)

View File

@ -44,7 +44,7 @@ Documentation
.. by the `update_README.py` script.
`elec_alpha_num <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons/ezfio_interface.irp.f#L28>`_
`elec_alpha_num <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons/ezfio_interface.irp.f#L25>`_
Numbers of electrons alpha ("up")

View File

@ -219,6 +219,10 @@ output_cas_sd
Initial CPU and wall times when printing in the output files
output_davidson
Output file for Davidson
output_determinants
Output file for Determinants
@ -235,6 +239,10 @@ output_full_ci
Output file for Full_CI
output_full_ci_zmq
Output file for Full_CI_ZMQ
output_generators_cas
Output file for Generators_CAS
@ -267,14 +275,14 @@ output_moguess
Output file for MOGuess
output_mrcc_cassd
Output file for MRCC_CASSD
output_mrcc_utils
Output file for MRCC_Utils
output_mrcepa0
Output file for mrcepa0
output_nuclei
Output file for Nuclei

View File

@ -45,7 +45,7 @@ Documentation
.. by the `update_README.py` script.
`add_integrals_to_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L42>`_
`add_integrals_to_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L40>`_
Adds integrals to tha MO map according to some bitmask
@ -54,7 +54,7 @@ Documentation
i(r1) j(r1) 1/r12 k(r2) l(r2)
`ao_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L412>`_
`ao_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L414>`_
Needed to compute Schwartz inequalities
@ -68,7 +68,7 @@ Documentation
i(r1) j(r2) 1/r12 k(r1) l(r2)
`ao_bielec_integrals_in_map_collector <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bielec_integrals_in_map_slave.irp.f#L181>`_
`ao_bielec_integrals_in_map_collector <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bielec_integrals_in_map_slave.irp.f#L123>`_
Collects results from the AO integral calculation
@ -84,11 +84,23 @@ Documentation
Computes a buffer of integrals. i is the ID of the current thread.
`ao_integrals_cache <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L123>`_
Cache of AO integrals for fast access
`ao_integrals_cache_max <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L113>`_
Min and max values of the AOs for which the integrals are in the cache
`ao_integrals_cache_min <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L112>`_
Min and max values of the AOs for which the integrals are in the cache
`ao_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L6>`_
AO integrals
`ao_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L46>`_
`ao_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L44>`_
If |<pq|rs>| < ao_integrals_threshold then <pq|rs> is zero
@ -108,11 +120,11 @@ Documentation
Undocumented
`clear_ao_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L223>`_
`clear_ao_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L273>`_
Frees the memory of the AO map
`clear_mo_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L490>`_
`clear_mo_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L514>`_
Frees the memory of the MO map
@ -120,15 +132,15 @@ Documentation
Compute AO 1/r12 integrals for all i and fixed j,k,l
`compute_ao_integrals_jl <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1172>`_
`compute_ao_integrals_jl <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1174>`_
Parallel client for AO integrals
`disk_access_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L28>`_
`disk_access_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L25>`_
Read/Write AO integrals from/to disk [ Write | Read | None ]
`disk_access_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L68>`_
`disk_access_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L63>`_
Read/Write MO integrals from/to disk [ Write | Read | None ]
@ -136,15 +148,15 @@ Documentation
Compute integrals on the fly
`dump_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_561#L3>`_
`dump_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_667#L3>`_
Save to disk the $ao integrals
`dump_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_561#L137>`_
`dump_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_667#L137>`_
Save to disk the $ao integrals
`eri <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L575>`_
`eri <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L577>`_
ATOMIC PRIMTIVE bielectronic integral between the 4 primitives ::
primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
@ -166,148 +178,156 @@ Documentation
t_w(i,2,k) = t(i)
`general_primitive_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L437>`_
`general_primitive_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L439>`_
Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
`get_ao_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L113>`_
`get_ao_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L155>`_
Gets one AO bi-electronic integral from the AO map
`get_ao_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L137>`_
`get_ao_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L194>`_
Gets multiple AO bi-electronic integral from the AO map .
All i are retrieved for j,k,l fixed.
`get_ao_bielec_integrals_non_zero <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L172>`_
`get_ao_bielec_integrals_non_zero <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L222>`_
Gets multiple AO bi-electronic integral from the AO map .
All non-zero i are retrieved for j,k,l fixed.
`get_ao_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L214>`_
`get_ao_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L264>`_
Returns the number of elements in the AO map
`get_mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L279>`_
`get_mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L374>`_
Returns one integral <ij|kl> in the MO basis
`get_mo_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L297>`_
`get_mo_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L405>`_
Returns one integral <ij|kl> in the MO basis
`get_mo_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L332>`_
`get_mo_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L438>`_
Returns multiple integrals <ij|kl> in the MO basis, all
i for j,k,l fixed.
`get_mo_bielec_integrals_ij <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L363>`_
`get_mo_bielec_integrals_ij <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L469>`_
Returns multiple integrals <ij|kl> in the MO basis, all
i(1)j(2) 1/r12 k(1)l(2)
i, j for k,l fixed.
`get_mo_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L417>`_
`get_mo_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L523>`_
Return the number of elements in the MO map
`give_polynom_mult_center_x <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L789>`_
`give_polynom_mult_center_x <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L791>`_
subroutine that returns the explicit polynom in term of the "t"
variable of the following polynomw :
I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q)
`i_x1_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L708>`_
`i_x1_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L710>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L852>`_
`i_x1_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L854>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_a1 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L972>`_
`i_x1_pol_mult_a1 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L974>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_a2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1026>`_
`i_x1_pol_mult_a2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1028>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_recurs <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L886>`_
`i_x1_pol_mult_recurs <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L888>`_
recursive function involved in the bielectronic integral
`i_x2_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L744>`_
`i_x2_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L746>`_
recursive function involved in the bielectronic integral
`i_x2_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1088>`_
`i_x2_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1090>`_
recursive function involved in the bielectronic integral
`insert_into_ao_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L249>`_
`insert_into_ao_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L299>`_
Create new entry into AO map
`insert_into_mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L263>`_
`insert_into_mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L313>`_
Create new entry into MO map, or accumulate in an existing entry
`integrale_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L632>`_
`integrale_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L634>`_
calculate the integral of the polynom ::
I_x1(a_x+b_x, c_x+d_x,p,q) * I_x1(a_y+b_y, c_y+d_y,p,q) * I_x1(a_z+b_z, c_z+d_z,p,q)
between ( 0 ; 1)
`load_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_561#L89>`_
`load_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_667#L89>`_
Read from disk the $ao integrals
`load_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_561#L223>`_
`load_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_667#L223>`_
Read from disk the $ao integrals
`mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L320>`_
`mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L425>`_
Returns one integral <ij|kl> in the MO basis
`mo_bielec_integral_jj <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L446>`_
`mo_bielec_integral_jj <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L445>`_
mo_bielec_integral_jj(i,j) = J_ij
mo_bielec_integral_jj_exchange(i,j) = K_ij
mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
`mo_bielec_integral_jj_anti <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L448>`_
`mo_bielec_integral_jj_anti <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L447>`_
mo_bielec_integral_jj(i,j) = J_ij
mo_bielec_integral_jj_exchange(i,j) = K_ij
mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
`mo_bielec_integral_jj_anti_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L314>`_
`mo_bielec_integral_jj_anti_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L313>`_
mo_bielec_integral_jj_from_ao(i,j) = J_ij
mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij
mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij
`mo_bielec_integral_jj_exchange <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L447>`_
`mo_bielec_integral_jj_exchange <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L446>`_
mo_bielec_integral_jj(i,j) = J_ij
mo_bielec_integral_jj_exchange(i,j) = K_ij
mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
`mo_bielec_integral_jj_exchange_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L313>`_
`mo_bielec_integral_jj_exchange_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L312>`_
mo_bielec_integral_jj_from_ao(i,j) = J_ij
mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij
mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij
`mo_bielec_integral_jj_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L312>`_
`mo_bielec_integral_jj_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L311>`_
mo_bielec_integral_jj_from_ao(i,j) = J_ij
mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij
mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij
`mo_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L473>`_
`mo_bielec_integral_mipi <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L472>`_
<mi|pi> and <mi|pi> - <mi|ip>. Indices are (i,m,p)
`mo_bielec_integral_mipi_anti <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L473>`_
<mi|pi> and <mi|pi> - <mi|ip>. Indices are (i,m,p)
`mo_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L497>`_
Needed to compute Schwartz inequalities
@ -319,11 +339,23 @@ Documentation
Computes an unique index for i,j,k,l integrals
`mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L236>`_
`mo_integrals_cache <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L340>`_
Cache of MO integrals for fast access
`mo_integrals_cache_max <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L330>`_
Min and max values of the MOs for which the integrals are in the cache
`mo_integrals_cache_min <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L329>`_
Min and max values of the MOs for which the integrals are in the cache
`mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L286>`_
MO integrals
`mo_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L86>`_
`mo_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L82>`_
If |<ij|kl>| < ao_integrals_threshold then <pq|rs> is zero
@ -331,20 +363,16 @@ Documentation
Aligned n_pt_max_integrals
`n_pt_sup <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L775>`_
`n_pt_sup <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L777>`_
Returns the upper boundary of the degree of the polynomial involved in the
bielctronic integral :
Ix(a_x,b_x,c_x,d_x) * Iy(a_y,b_y,c_y,d_y) * Iz(a_z,b_z,c_z,d_z)
`provide_all_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L502>`_
`provide_all_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L526>`_
Undocumented
`pull_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bielec_integrals_in_map_slave.irp.f#L125>`_
How the collector pulls the computed integrals
`push_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bielec_integrals_in_map_slave.irp.f#L21>`_
Push integrals in the push socket

View File

@ -102,7 +102,7 @@ Documentation
interaction nuclear electron
`ao_nucl_elec_integral_per_atom <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L85>`_
`ao_nucl_elec_integral_per_atom <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L83>`_
ao_nucl_elec_integral_per_atom(i,j,k) = -<AO(i)|1/|r-Rk|AO(j)>
where Rk is the geometry of the kth atom
@ -115,7 +115,7 @@ Documentation
Local pseudo-potential
`ao_pseudo_integral_non_local <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L130>`_
`ao_pseudo_integral_non_local <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L144>`_
Local pseudo-potential
@ -153,19 +153,19 @@ Documentation
Undocumented
`give_polynom_mult_center_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L230>`_
`give_polynom_mult_center_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L228>`_
Undocumented
`i_x1_pol_mult_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L358>`_
`i_x1_pol_mult_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L356>`_
Undocumented
`i_x2_pol_mult_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L429>`_
`i_x2_pol_mult_mono_elec <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L427>`_
Undocumented
`int_gaus_pol <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L500>`_
`int_gaus_pol <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L498>`_
Undocumented
@ -200,7 +200,7 @@ Documentation
interaction nuclear electron on the MO basis
`mo_nucl_elec_integral_per_atom <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_mo_ints.irp.f#L30>`_
`mo_nucl_elec_integral_per_atom <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_mo_ints.irp.f#L28>`_
mo_nucl_elec_integral_per_atom(i,j,k) = -<MO(i)|1/|r-Rk|MO(j)>
where Rk is the geometry of the kth atom
@ -227,7 +227,7 @@ Documentation
array of the integrals of MO_i * z^2 MO_j
`nai_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L150>`_
`nai_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L148>`_
Undocumented
@ -259,27 +259,27 @@ Documentation
Undocumented
`pseudo_dz_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L231>`_
`pseudo_dz_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L260>`_
Transposed arrays for pseudopotentials
`pseudo_dz_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L249>`_
`pseudo_dz_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L278>`_
Transposed arrays for pseudopotentials
`pseudo_n_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L230>`_
`pseudo_n_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L259>`_
Transposed arrays for pseudopotentials
`pseudo_n_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L248>`_
`pseudo_n_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L277>`_
Transposed arrays for pseudopotentials
`pseudo_v_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L229>`_
`pseudo_v_k_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L258>`_
Transposed arrays for pseudopotentials
`pseudo_v_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L247>`_
`pseudo_v_kl_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_pseudo_ints.irp.f#L276>`_
Transposed arrays for pseudopotentials
@ -299,23 +299,23 @@ Documentation
Undocumented
`v_e_n <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L481>`_
`v_e_n <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L479>`_
Undocumented
`v_phi <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L545>`_
`v_phi <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L543>`_
Undocumented
`v_r <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L529>`_
`v_r <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L527>`_
Undocumented
`v_theta <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L558>`_
`v_theta <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L556>`_
Undocumented
`wallis <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L574>`_
`wallis <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Monoelec/pot_ao_ints.irp.f#L572>`_
Undocumented

View File

@ -3,7 +3,7 @@ BEGIN_PROVIDER [ double precision, ao_pseudo_integral, (ao_num_align,ao_num)]
BEGIN_DOC
! Pseudo-potential integrals
END_DOC
if (read_ao_one_integrals) then
call read_one_e_integrals('ao_pseudo_integral', ao_pseudo_integral,&
size(ao_pseudo_integral,1), size(ao_pseudo_integral,2))
@ -53,13 +53,6 @@ BEGIN_PROVIDER [ double precision, ao_pseudo_integral_local, (ao_num_align,ao_nu
call wall_time(wall_1)
call cpu_time(cpu_1)
!write(33,*) 'xxxLOCxxx'
!write(33,*) 'pseudo_klocmax', pseudo_klocmax
!write(33,*) 'pseudo_v_k_transp ', pseudo_v_k_transp
!write(33,*) 'pseudo_n_k_transp ', pseudo_n_k_transp
!write(33,*) 'pseudo_dz_k_transp', pseudo_dz_k_transp
!write(33,*) 'xxxLOCxxx'
thread_num = 0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -109,14 +102,6 @@ BEGIN_PROVIDER [ double precision, ao_pseudo_integral_local, (ao_num_align,ao_nu
pseudo_n_k_transp (1,k), &
pseudo_dz_k_transp(1,k), &
A_center,power_A,alpha,B_center,power_B,beta,C_center)
! write(33,*) i,j,k
! write(33,*) A_center,power_A,alpha,B_center,power_B,beta,C_center, &
! Vloc(pseudo_klocmax, &
! pseudo_v_k_transp (1,k), &
! pseudo_n_k_transp (1,k), &
! pseudo_dz_k_transp(1,k), &
! A_center,power_A,alpha,B_center,power_B,beta,C_center)
! write(33,*)
enddo
ao_pseudo_integral_local(i,j) = ao_pseudo_integral_local(i,j) +&

View File

@ -38,7 +38,7 @@ Documentation
Array of the name of element, sorted by nuclear charge (integer)
`nucl_charge <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei/ezfio_interface.irp.f#L24>`_
`nucl_charge <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei/ezfio_interface.irp.f#L26>`_
Nuclear charges

View File

@ -86,4 +86,16 @@ doc: QMC grid
interface: ezfio
size: (ao_basis.ao_num,-pseudo.pseudo_lmax:pseudo.pseudo_lmax,0:pseudo.pseudo_lmax,nuclei.nucl_num,pseudo.pseudo_grid_size)
[disk_access_pseudo_local_integrals]
type: Disk_access
doc: Read/Write the local ntegrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[disk_access_pseudo_no_local_integrals]
type: Disk_access
doc: Read/Write the no-local ntegrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None

View File

@ -28,11 +28,11 @@ Documentation
Compute 1st dimension such that it is aligned for vectorization.
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L283>`_
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L320>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L382>`_
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L371>`_
Undocumented
@ -55,19 +55,19 @@ Documentation
Binomial coefficients
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L138>`_
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L136>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L155>`_
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L153>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L176>`_
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L197>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L210>`_
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L231>`_
n!!
@ -93,6 +93,10 @@ Documentation
contains the new order of the elements.
`dtranspose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L41>`_
Transpose input matrix A into output matrix B
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L105>`_
Undocumented
@ -106,11 +110,11 @@ Documentation
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L125>`_
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L123>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L264>`_
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L301>`_
Find A.C = B
@ -136,7 +140,7 @@ Documentation
Undocumented
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L210>`_
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L247>`_
Find C = A^-1
@ -372,7 +376,7 @@ Documentation
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L257>`_
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L278>`_
1/i
@ -408,7 +412,7 @@ Documentation
contains the new order of the elements.
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L362>`_
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L399>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -419,7 +423,7 @@ Documentation
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L425>`_
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L462>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -430,7 +434,7 @@ Documentation
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L295>`_
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L332>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -441,7 +445,7 @@ Documentation
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L491>`_
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L528>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
@ -452,25 +456,33 @@ Documentation
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L93>`_
`logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L91>`_
n!
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L406>`_
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L395>`_
Transform to lower case
`map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L70>`_
Undocumented
`map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L1>`_
Undocumented
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L264>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
`normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L358>`_
`normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L348>`_
Normalizes vector u
u is expected to be aligned in memory.
`nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L283>`_
`nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L304>`_
Number of current OpenMP threads
@ -492,7 +504,7 @@ Documentation
.br
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L128>`_
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L162>`_
Compute C_new=C_old.S^-1/2 orthogonalization.
.br
overlap : overlap matrix
@ -510,6 +522,19 @@ Documentation
.br
`ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L128>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L35>`_
Undocumented
@ -607,7 +632,7 @@ Documentation
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L548>`_
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L585>`_
Undocumented
@ -634,18 +659,22 @@ Documentation
.br
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L326>`_
`transpose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L2>`_
Transpose input matrix A into output matrix B
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L334>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L299>`_
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L320>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L268>`_
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L289>`_
The equivalent of cpu_time, but for the wall time.
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L243>`_
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L264>`_
Write the last git commit in file iunit.

View File

@ -156,7 +156,7 @@ BEGIN_TEMPLATE
iorder(i) = i0
enddo
end subroutine heap_$Xsort$big
end subroutine heap_$Xsort_big
subroutine $Xsort(x,iorder,isize)
implicit none
@ -248,7 +248,7 @@ BEGIN_TEMPLATE
iorder(j+1_8) = i0
enddo
end subroutine insertion_$Xsort
end subroutine insertion_$Xsort_big
subroutine $Xset_order_big(x,iorder,isize)
implicit none

View File

@ -21,59 +21,67 @@ Documentation
.. by the `update_README.py` script.
`add_task_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L577>`_
`add_task_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L677>`_
Get a task from the task server
`connect_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L500>`_
`connect_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L594>`_
Connect to the task server and obtain the worker ID
`disconnect_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L541>`_
`disconnect_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L637>`_
Disconnect from the task server
`end_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L465>`_
`end_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L559>`_
End a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`end_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L305>`_
`end_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L419>`_
Terminate socket on which the results are sent.
`end_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L335>`_
`end_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L437>`_
Terminate socket on which the results are sent.
`end_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L375>`_
`end_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L456>`_
Terminate socket on which the results are sent.
`end_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L687>`_
`end_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L401>`_
Terminate socket on which the results are sent.
`end_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L790>`_
Terminate the socket from the application to qp_run
`get_task_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L637>`_
`get_task_from_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L737>`_
Get a task from the task server
`new_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L424>`_
`new_parallel_job <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L490>`_
Start a new parallel job with name 'name'. The slave tasks execute subroutine 'slave'
`new_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L153>`_
`new_zmq_pair_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L164>`_
Socket on which the collector and the main communicate
`new_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L209>`_
`new_zmq_pull_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L224>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L253>`_
`new_zmq_push_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L300>`_
Socket on which the results are sent. If thread is 1, use inproc
`new_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L118>`_
`new_zmq_sub_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L360>`_
Socket to read the state published by the Task server
`new_zmq_to_qp_run_socket <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L126>`_
Socket on which the qp_run process replies
@ -82,29 +90,41 @@ Documentation
Example : tcp://130.120.229.139:12345
`reset_zmq_addresses <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L63>`_
Undocumented
`reset_zmq_addresses <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L67>`_
Socket which pulls the results (2)
`switch_qp_run_to_master <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L76>`_
`switch_qp_run_to_master <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L84>`_
Address of the master qp_run socket
Example : tcp://130.120.229.139:12345
`task_done_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L608>`_
`task_done_to_taskserver <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L708>`_
Get a task from the task server
`wait_for_next_state <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L855>`_
Undocumented
`wait_for_state <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L879>`_
Wait for the ZMQ state to be ready
`wait_for_states <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L907>`_
Wait for the ZMQ state to be ready
`zmq_context <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L8>`_
Context for the ZeroMQ library
`zmq_delete_task <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L716>`_
`zmq_delete_task <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L813>`_
When a task is done, it has to be removed from the list of tasks on the qp_run
queue. This guarantees that the results have been received in the pull.
`zmq_port <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L105>`_
`zmq_port <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L113>`_
Return the value of the ZMQ port from the corresponding integer
@ -113,6 +133,10 @@ Documentation
Example : tcp://130.120.229.139:12345
`zmq_set_running <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L530>`_
Set the job to Running in QP-run
`zmq_socket_pair_inproc_address <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L45>`_
Socket which pulls the results (2)
@ -133,6 +157,10 @@ Documentation
Socket which pulls the results (2)
`zmq_state <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L416>`_
`zmq_socket_sub_tcp_address <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L49>`_
Socket which pulls the results (2)
`zmq_state <http://github.com/LCPQ/quantum_package/tree/master/src/ZMQ/utils.irp.f#L482>`_
Threads executing work through the ZeroMQ interface

View File

View File

@ -13,7 +13,7 @@ source $QP_ROOT/tests/bats/common.bats.sh
qp_set_mo_class $INPUT -core "[1]" -inact "[2,5]" -act "[3,4,6,7]" -virt "[8-24]"
qp_run cassd_zmq $INPUT
energy="$(ezfio get cas_sd_zmq energy_pt2)"
eq $energy -76.23109 2.E-5
eq $energy -76.231084536315 5.E-5
ezfio set determinants n_det_max 2048
ezfio set determinants read_wf True
@ -21,6 +21,6 @@ source $QP_ROOT/tests/bats/common.bats.sh
qp_run cassd_zmq $INPUT
ezfio set determinants read_wf False
energy="$(ezfio get cas_sd_zmq energy)"
eq $energy -76.2300888408526 2.E-5
eq $energy -76.2300887947446 2.E-5
}

View File

@ -16,7 +16,7 @@ source $QP_ROOT/tests/bats/common.bats.sh
ezfio set mrcepa0 n_it_max_dressed_ci 3
qp_run $EXE $INPUT
energy="$(ezfio get mrcepa0 energy_pt2)"
eq $energy -76.238562120457431 1.e-4
eq $energy -76.23752746236 1.e-4
}
@test "MRCC H2O cc-pVDZ" {
@ -28,12 +28,11 @@ source $QP_ROOT/tests/bats/common.bats.sh
ezfio set determinants threshold_generators 1.
ezfio set determinants threshold_selectors 1.
ezfio set determinants read_wf True
ezfio set determinants read_wf True
ezfio set mrcepa0 lambda_type 0
ezfio set mrcepa0 n_it_max_dressed_ci 3
qp_run $EXE $INPUT
energy="$(ezfio get mrcepa0 energy_pt2)"
eq $energy -76.238527498388962 1.e-4
eq $energy -76.237469267705 2.e-4
}
@test "MRSC2 H2O cc-pVDZ" {
@ -45,11 +44,11 @@ source $QP_ROOT/tests/bats/common.bats.sh
ezfio set determinants threshold_generators 1.
ezfio set determinants threshold_selectors 1.
ezfio set determinants read_wf True
ezfio set mrcepa0 lambda_type 0
ezfio set mrcepa0 lambda_type 1
ezfio set mrcepa0 n_it_max_dressed_ci 3
qp_run $EXE $INPUT
energy="$(ezfio get mrcepa0 energy_pt2)"
eq $energy -76.235833732594187 1.e-4
eq $energy -76.2347764009137 2.e-4
}
@test "MRCEPA0 H2O cc-pVDZ" {
@ -61,10 +60,10 @@ source $QP_ROOT/tests/bats/common.bats.sh
ezfio set determinants threshold_generators 1.
ezfio set determinants threshold_selectors 1.
ezfio set determinants read_wf True
ezfio set mrcepa0 lambda_type 0
ezfio set mrcepa0 lambda_type 1
ezfio set mrcepa0 n_it_max_dressed_ci 3
qp_run $EXE $INPUT
energy="$(ezfio get mrcepa0 energy_pt2)"
eq $energy -76.2418799284763 1.e-4
eq $energy -76.2406942855164 2.e-4
}

View File

@ -48,6 +48,6 @@ function run_FCI_ZMQ() {
@test "FCI H2O VDZ pseudo" {
qp_set_mo_class h2o_pseudo.ezfio -core "[1]" -act "[2-12]" -del "[13-23]"
run_FCI_ZMQ h2o_pseudo.ezfio 2000 -0.170399597228904E+02 -0.170400168816800E+02
run_FCI_ZMQ h2o_pseudo.ezfio 2000 -17.0399584106077 -17.0400170044515
}

View File

@ -1,6 +1,6 @@
3
XYZ file: coordinates in Angstrom
H 0.7510000000 0.1940000000 0.0000000000
O 0.0000000000 -0.3880000000 0.0000000000
H 0.7510000000 0.1940000000 0.0000000000
H -0.7510000000 0.1940000000 0.0000000000

View File

@ -1,19 +1,17 @@
#!/bin/bash
#!/bin/bash -e
LIST="
convert.bats
hf.bats
foboci.bats
pseudo.bats
fci.bats
cassd.bats
mrcepa0.bats
"
#foboci.bats
export QP_PREFIX="timeout -s 9 300"
export QP_PREFIX="timeout -s 9 600"
#export QP_TASK_DEBUG=1
rm -rf work output
@ -30,10 +28,9 @@ do
if [[ "$1" == "-v" ]]
then
echo "Verbose mode"
./bats_to_sh.py $BATS_FILE | bash
./bats_to_sh.py $BATS_FILE | bash
else
bats $BATS_FILE
fi
done