10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-03 12:43:52 +01:00

merge with LCPQ

This commit is contained in:
Yann Garniron 2016-07-06 16:15:47 +02:00
parent 1bc8bb0a06
commit ee257c3d6f
90 changed files with 6161 additions and 1217 deletions

View File

@ -1,11 +1,7 @@
Quantum package
===============
![QP](https://raw.githubusercontent.com/LCPQ/quantum_package/master/data/qp.png)
[![Build Status](https://travis-ci.org/LCPQ/quantum_package.svg?branch=master)](https://travis-ci.org/LCPQ/quantum_package)
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Set of quantum chemistry programs and libraries.
(under GNU GENERAL PUBLIC LICENSE v2)

View File

@ -51,7 +51,7 @@ FCFLAGS : -xSSE4.2 -O2 -ip -ftz
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xAVX -C -fpe0
FCFLAGS : -xAVX -C -fpe0
IRPF90_FLAGS : --openmp
# OpenMP flags

4
configure vendored
View File

@ -142,7 +142,7 @@ ezfio = Info(
default_path=join(QP_ROOT_INSTALL, "EZFIO"))
zeromq = Info(
url='http://download.zeromq.org/zeromq-4.0.7.tar.gz',
url='https://github.com/zeromq/zeromq4-1/releases/download/v4.1.4/zeromq-4.1.4.tar.gz',
description=' ZeroMQ',
default_path=join(QP_ROOT_LIB, "libzmq.a"))
@ -166,7 +166,7 @@ d_info = dict()
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz",
"zeromq", "f77zmq","bats" ]:
"zeromq", "f77zmq","bats"]:
exec ("d_info['{0}']={0}".format(m))

785
data/pseudo/tn_df Normal file
View File

@ -0,0 +1,785 @@
H GEN 0 2
6
1.00000000 1 34.44662515
-0.89096601 2 40.13885591
-4.35250792 2 24.66307521
-11.58011743 2 20.49225491
12.58011743 2 30.23909011
34.44662515 3 22.28419700
6
-262.22422461 2 17.87367530
258.22981252 2 28.75598991
5613.63467960 2 19.10096571
-4192.30569417 2 18.88256059
-1341.04802395 2 20.95302325
-79.28421640 2 34.10653707
6
-199.48848662 2 37.85954681
197.31066276 2 28.79454664
4870247.22276531 2 40.22839783
-5277181.77014563 2 40.34690459
-196566.81095176 2 39.13989706
603502.35555458 2 40.91315002
He GEN 0 2
6
2.00000000 1 22.64777484
-0.00700692 2 23.54196640
-8.90169316 2 18.71556903
113.56926776 2 15.15150658
-112.56926776 2 13.80465850
45.29554968 3 12.54192267
6
747.63794984 2 13.33611411
-753.70091072 2 23.45392111
-397.08293819 2 12.23651194
10.35341837 2 14.87987639
-1430.53848568 2 18.32138342
1818.26602949 2 21.24054054
6
305.67933642 2 21.32319132
-307.98355807 2 12.22370696
5957.66379729 2 14.11720170
-6099.62872267 2 14.41269814
523.59639310 2 17.66028106
-380.63505659 2 21.52626637
Li GEN 2 2
6
1.00000000 1 0.78732101
-2.23999912 2 0.79224763
0.10376190 2 1.79622268
4.27489122 2 1.83637465
-3.27489122 2 1.91213904
0.78732101 3 0.79291624
6
256.80790655 2 1.78312879
-255.81956741 2 0.95553059
90.30361668 2 0.87617279
272.13155048 2 1.09621549
-180.73373018 2 1.43900642
-180.70146573 2 1.83085147
6
-4.80714862 2 1.53942961
3.36281864 2 0.84742021
-305.38012622 2 0.78976831
-509.40184487 2 0.98031681
436.16121675 2 0.81548364
379.61797456 2 1.02582853
Be GEN 2 2
6
2.00000000 1 1.20639978
-5.40313229 2 1.18425537
1.72394027 2 2.81826911
2.83884922 2 2.37513515
-1.83884922 2 2.82920954
2.41279956 3 1.18219335
6
-1045.63679908 2 2.59240356
1047.85482764 2 1.41685787
-1899.15859219 2 1.48536566
1398.06780686 2 1.70076501
-696.13481389 2 2.03898674
1198.22571139 2 2.57766211
6
630.90931326 2 1.84421403
-632.78437074 2 1.13419132
441.35012255 2 1.13393716
435.97021325 2 1.22419150
-353.63284449 2 1.39760436
-522.69065435 2 1.88595068
B GEN 2 2
6
3.00000000 1 2.72292969
-11.78419674 2 2.41356794
5.22993640 2 4.60628004
0.42834165 2 3.81569642
0.57165835 2 4.75281449
8.16878907 3 2.42655010
6
-260.26050710 2 2.55536939
265.37594882 2 4.54575013
76.89512909 2 2.14992133
-57.25691791 2 2.71845869
4293.37943873 2 3.54567059
-4312.01708538 2 3.65811356
6
236.98381086 2 3.86703012
-239.59777090 2 2.15409783
4347.09682018 2 2.51320631
-4637.07702775 2 2.58243237
786.10765740 2 3.15459528
-495.13181880 2 3.69673537
C GEN 2 2
6
4.00000000 1 6.85914037
-69.31783111 2 7.66877502
58.73619595 2 8.89164866
-5.11066199 2 4.63398124
6.11066199 2 5.40104250
27.43656147 3 6.79273179
6
430.61454744 2 8.62389774
-421.35054055 2 5.03244470
-33212.40034531 2 6.89861917
44.12655159 2 3.96628687
96.39927700 2 5.01313881
33072.87650778 2 6.85964729
6
-104389.58452246 2 4.75057662
104386.03365951 2 8.95366858
690570.92310077 2 7.84605551
105067.78650436 2 4.75435948
-142604.06718444 2 8.80450514
-653033.64724842 2 7.81116996
N GEN 2 2
6
5.00000000 1 11.01983025
-747.65378590 2 7.70260962
731.28815439 2 7.83791198
-3.54162255 2 8.41784728
4.54162255 2 12.53426384
55.09915125 3 6.76845507
6
189.29450948 2 10.95064006
-174.81483163 2 7.48980682
148422.74289741 2 6.18035270
-167161.90534269 2 6.21695388
34280.43140051 2 6.81408633
-15540.26812247 2 7.23413705
6
-5338.70218681 2 6.15987128
5334.35386770 2 7.49726635
-1839.21100223 2 8.80963870
16010.85000728 2 6.52067091
-16722.95522386 2 6.97790252
2552.31199840 2 8.37871646
O GEN 2 2
6
6.00000000 1 8.86932353
-28.04199287 2 6.05326172
11.15704031 2 5.51480979
180.82432510 2 10.77878397
-179.82432510 2 10.23693413
53.21594115 3 7.90462675
6
-9212.20980516 2 7.28893859
9226.86567950 2 6.05971190
58203.26727502 2 10.83143357
-5120.48607364 2 5.75281092
-93321.50266843 2 10.51155711
40239.72318888 2 9.72227746
6
10001.55649464 2 7.43321349
-10012.86801601 2 5.85047476
8554.95973537 2 5.79011164
-20342.33136146 2 8.08750969
11739.44079236 2 8.43229920
48.92837040 2 4.71055456
F GEN 2 2
6
7.00000000 1 16.52048840
-10.46754024 2 13.26693551
-11.21567917 2 18.77563836
-32.41582195 2 10.96778594
33.41582195 2 21.09729680
115.64341877 3 13.46927525
6
1201.43391413 2 19.92490215
-1182.60889584 2 11.77163137
-8770.99026936 2 12.30043337
5336.21358848 2 11.63810105
8729.77565724 2 14.12189391
-5293.99672165 2 16.53091209
6
92.58757506 2 8.66992000
-108.46085404 2 9.40009036
-319.30686222 2 9.08633595
524.57586653 2 9.90194004
-443.63347077 2 13.57164540
239.36118945 2 16.47995554
Ne GEN 2 2
6
8.00000000 1 21.64664513
1794.02959527 2 14.45731213
-1828.03241002 2 14.11697591
23.90491418 2 14.10774236
-22.90491418 2 20.42359560
173.17316107 3 11.93940404
6
-5911.13460210 2 12.24993716
5941.26076308 2 20.24332306
2840.09993994 2 12.20646543
1742.40556167 2 11.50431394
8834.09207695 2 16.82066882
-13415.59681607 2 18.72208419
6
53626.32637171 2 20.56468824
-53639.90888359 2 19.92390926
-576.65341012 2 13.02834964
1907.80575476 2 15.43385134
5623.71426075 2 18.06950435
-6953.86800222 2 22.66963993
K GEN 18 2
6
1.00000000 1 0.50008727
1416.76952428 2 0.63134777
-1419.89095139 2 0.60241926
-302.74307268 2 0.68724573
303.74307268 2 0.55624069
0.50008727 3 0.50008691
6
-854959.33457742 2 0.55297829
854960.96236303 2 0.59508099
-2735051.37932036 2 0.55136787
-797902.82136562 2 0.59254779
-90621.33409241 2 0.60683509
3623576.53510235 2 0.55188848
6
5366450.44923246 2 0.56834617
-5366449.39460951 2 0.57395202
506392.75510780 2 0.65188562
1065012.45735119 2 0.60395254
-764583.36396565 2 0.55451976
-806820.84832728 2 0.64359720
Ca GEN 18 2
6
2.00000000 1 0.74758765
308735.40641498 2 0.72269274
-308740.90975833 2 0.72197603
7202.81432103 2 0.70435779
-7201.81432103 2 0.73462875
1.49517531 3 0.98521314
6
3358.40551562 2 0.85820603
-3354.33378202 2 0.50055931
645.82930380 2 0.77593512
-4032.30085432 2 0.85197466
3315.68514964 2 0.50005881
71.78714429 2 1.01826143
6
3797.10880911 2 0.54666026
-3794.15970380 2 0.55760964
1988.78457523 2 0.66771019
13912.48066729 2 0.71662858
-408.96685813 2 0.50701325
-15491.29677996 2 0.71335086
Sc GEN 18 2
6
3.00000000 1 6.99258598
-124.50237230 2 4.24128187
97.21802227 2 1.68870852
-87.09390293 2 1.51321231
88.09390293 2 5.62659050
20.97775795 3 2.67617421
6
375.73920548 2 5.45654024
-350.54708476 2 5.82486421
-11.58800164 2 0.51173797
12.31935173 2 0.56805032
20.80334597 2 0.78399590
-20.53480959 2 1.25273408
6
6092.78689761 2 1.30970450
-6068.65474455 2 6.97688197
6074.16548241 2 6.96312742
-2.71306889 2 0.50000000
562.44223581 2 1.09627007
-6632.89448781 2 1.28901234
Ti GEN 18 2
6
4.00000000 1 4.58962911
29.78882355 2 12.99080675
-64.03604684 2 6.47044482
4.09908827 2 7.32890448
-3.09908827 2 0.86508310
18.35851644 3 11.66884823
6
204.54741131 2 6.98984163
-173.26765359 2 1.14387234
-179.62280834 2 7.98041969
81.98571631 2 1.30274954
-105.23530836 2 0.79373704
203.87378660 2 0.87617820
6
47.21398743 2 4.46327869
-17.03315162 2 12.03758238
-1.80345968 2 1.82986618
-67.65022794 2 0.85432599
83.23157126 2 0.75234069
-12.77614240 2 0.56466795
V GEN 18 2
6
5.00000000 1 4.80344323
22.35774108 2 18.78787979
-64.07198704 2 7.13216682
4.33388926 2 9.27213879
-3.33388926 2 0.97989891
24.01721615 3 16.08839186
6
180.61077610 2 8.25076842
-142.94184574 2 0.97905818
-150.64642751 2 9.92043295
-6.71407277 2 0.62363714
176.09329684 2 0.95148528
-17.73131270 2 1.07801133
6
57.45110361 2 5.32960287
-20.81111514 2 14.24980571
-8.29286428 2 1.85925508
-5.73287020 2 0.58593750
29.10022105 2 0.79878530
-14.07269455 2 1.00225258
Cr GEN 18 2
6
6.00000000 1 12.84308988
-3.09604991 2 0.99382054
-44.89504234 2 7.58819115
-170.55613293 2 14.51774012
171.55613293 2 16.43682827
77.05853926 3 12.82491986
6
-18202.34922306 2 1.98782159
18244.42867028 2 31.32646602
30868.09979612 2 30.37846452
17868.98085600 2 1.97809129
-49114.96837018 2 30.73273877
378.88775116 2 2.67913288
6
29.20236180 2 19.25203633
12.37319603 2 0.97567458
4072.48148684 2 17.43196546
-17623.52674725 2 16.30880219
0.00000000 2 1.00000000
13552.04578438 2 15.92770430
Mn GEN 18 2
6
7.00000000 1 15.05016398
76.06668034 2 15.84783194
-134.18719488 2 9.80426007
5.15310013 2 22.40715541
-4.15310013 2 1.28870598
105.35114786 3 9.24698903
6
5.29793560 2 36.81344701
46.23395617 2 10.22325416
-60.32817992 2 19.40077237
47.36691946 2 10.31192728
-593.48022661 2 0.82035751
607.44155846 2 0.82499832
6
43.56050065 2 39.11191097
6.67450664 2 5.89010993
273.74198710 2 12.39309544
-27.45450618 2 46.10455298
-256.40166892 2 15.13448958
11.11513392 2 0.96513012
Fe GEN 18 2
6
8.00000000 1 15.22430826
44.74166498 2 23.61492800
-111.48295214 2 10.92989564
4.87905385 2 34.25190536
-3.87905385 2 1.33822720
121.79446608 3 12.33553803
6
-19.50464924 2 30.77395752
78.13974335 2 10.21396062
-93.51149367 2 7.16717891
-5331.00729306 2 2.86167947
2973.12062964 2 2.65030718
2452.39961633 2 3.20024669
6
24692.89537881 2 35.68878072
-24635.37117467 2 1.90446408
67.20321584 2 9.50100295
-24719.85685234 2 35.67756831
155.45498669 2 2.48480944
24498.19947049 2 1.90126047
Co GEN 18 2
6
9.00000000 1 16.99448342
49.13807967 2 27.18614115
-125.28324533 2 12.21218102
5.11388765 2 39.14513799
-4.11388765 2 1.47717612
152.95035078 3 13.67966454
6
-14.42629264 2 42.14707531
80.80701231 2 9.38147677
-241.37463154 2 5.80599555
-2375.49390008 2 3.20236619
1470.87516654 2 3.85735739
1146.99509265 2 2.77670509
6
136.98013925 2 35.88691706
-71.59603354 2 2.32679268
69.29537053 2 14.47120857
-182.97334302 2 33.48566094
53.73921710 2 5.03596368
60.93980797 2 1.71252673
Ni GEN 18 2
6
10.00000000 1 22.08639324
-144.93688782 2 14.51813938
58.56151708 2 31.72005545
5.46467869 2 46.47610840
-4.46467869 2 1.64348434
220.86393239 3 17.23929992
6
-1037.96291767 2 23.63013626
1112.68285967 2 22.54579447
-202.88667032 2 10.67846148
-1992.46747856 2 2.78611652
261.70081349 2 7.26891690
1934.65478930 2 2.71695433
6
-53.30731307 2 26.78098186
127.09013633 2 3.54449677
-4806.85555998 2 9.97427088
4887.04372410 2 10.06368893
-212.17359382 2 2.46160888
132.98697057 2 1.97486742
Cu GEN 18 2
6
11.00000000 1 2.82733696
-34.48196386 2 1.92614044
-60.25585479 2 16.36117816
95.74606505 2 26.07073787
-94.74606505 2 15.23964803
31.10070652 3 2.17204001
6
-45.62927216 2 31.69953680
125.91417027 2 1.14930323
-14.54702824 2 1.62190112
4.20903863 2 5.04037704
108.15433753 2 13.02666762
-96.81611101 2 1.08245080
6
95.22440516 2 11.30741812
-15.05535618 2 0.88219501
50.51809351 2 1.10244974
-44.11033096 2 1.38963093
24.77977412 2 1.74927941
-30.18619193 2 36.48037929
Zn GEN 18 2
6
12.00000000 1 31.07239014
-200.01988966 2 17.28158695
92.10229536 2 34.39655496
5.98135501 2 49.89939973
-4.98135501 2 1.96865590
372.86868168 3 19.34259724
6
-36.14038802 2 38.52109994
128.37782465 2 12.00212013
-1.61496737 2 1.07625274
-1.83786181 2 49.67118376
65.46563590 2 2.17772473
-61.01291439 2 3.24812913
6
-65.64354860 2 18.09701361
156.02859885 2 36.00255883
172.20201747 2 14.96596000
-192.17040837 2 36.71242576
4.39165632 2 5.39429237
16.57829500 2 1.49031308
Ga GEN 28 2
6
3.00000000 1 1.13608798
164.07678897 2 1.26217688
-167.28328999 2 1.14858151
-669.79177234 2 1.15353581
670.79177234 2 1.12952095
3.40826394 3 1.10744970
6
2326.37321481 2 0.75031475
-2323.38047364 2 0.75000124
386.83516033 2 2.39556890
3373.92258044 2 1.92296729
-3444.97340674 2 2.01243025
-314.78429931 2 1.54022372
6
-49.00749762 2 0.97248539
49.23559677 2 1.12030491
13.15736344 2 1.17799318
125.85888665 2 1.43966818
-194.32447492 2 1.61975153
56.31063114 2 1.96345236
Ge GEN 28 2
6
4.00000000 1 1.37803409
19.62241898 2 1.39153725
-23.72148814 2 1.27769848
2.49161805 2 1.59279926
-1.49161805 2 0.64699203
5.51213636 3 0.92923210
6
-2.74466220 2 0.87224298
6.62035166 2 1.17293014
-2420.40847648 2 1.99495027
-82306.43955717 2 2.42954180
6740.23721390 2 2.16484262
77987.61073589 2 2.43883104
6
-2107.38453991 2 1.16911036
2108.21076604 2 1.46731756
1481.43044167 2 1.13494844
-5605.67944848 2 1.57427397
1698.46708565 2 1.69705377
2426.78290985 2 1.49642085
As GEN 28 2
6
5.00000000 1 1.43022249
-9.34297986 2 1.49610460
4.21498088 2 6.47107540
10.09813510 2 3.25241162
-9.09813510 2 5.07144325
7.15111245 3 1.33657021
6
13218.94379269 2 1.93743539
-13214.39886844 2 1.06114866
-12968.43207956 2 1.94924972
13915.97822491 2 1.06566409
-954.00698285 2 1.23265097
7.46088753 2 4.89271387
6
1464.46500602 2 1.99905491
-1463.07044815 2 1.47578217
368.93680276 2 1.30626554
-20015.22902646 2 1.76510607
-4931.41969774 2 1.62454622
24578.71284776 2 1.71245824
Se GEN 28 2
6
6.00000000 1 1.51096144
18985.66456772 2 2.92355341
-18994.15945825 2 2.92032845
-67662.27071451 2 3.11248219
67663.27071451 2 3.11189793
9.06576863 3 1.65761092
6
9.98441274 2 1.51889669
-2.50844675 2 1.97738476
-180236.05319146 2 2.70806322
388717.66809223 2 2.76186155
-395809.31847294 2 2.85646715
187328.70401255 2 2.90992434
6
-0.64003892 2 1.60286011
4.75615253 2 1.39335643
-1221.08696720 2 2.09669307
-10412.15615824 2 2.41527013
11345.50935270 2 2.36453165
288.73492615 2 3.03391531
Br GEN 28 2
6
7.00000000 1 1.41289916
-7.52651514 2 1.15658370
-0.55005317 2 2.42725255
32.50767838 2 2.88316202
-31.50767838 2 2.65601102
9.89029412 3 1.40346702
6
28526.73706896 2 2.34791729
-28520.73498833 2 2.45113975
-99003.29767895 2 2.50553756
749850.19071550 2 2.81179865
-1128475.81390516 2 2.78141408
477629.92118992 2 2.68265676
6
17.76908748 2 1.31119911
-15.01578842 2 1.60289186
-18723.09651802 2 2.55330648
-655.15159005 2 2.02749820
16349.83148583 2 2.49321553
3029.41777740 2 2.76331597
Kr GEN 28 2
6
8.00000000 1 8.52108317
-122698.81335772 2 3.24264497
122687.31930993 2 3.40822193
-118092.31104849 2 3.40804203
118093.31104849 2 3.23631062
68.16866536 3 4.68396906
6
-494.70169718 2 5.76331362
503.25343741 2 2.73098609
-367021.57369848 2 3.66759371
-1529686.47073208 2 3.83008505
1834642.13235417 2 3.78655002
62066.91317383 2 4.17980892
6
-73.83484449 2 5.20603747
79.00632901 2 4.70236432
1062.70264892 2 4.15470411
-40873.21549348 2 3.08586486
43280.45283221 2 3.10363880
-3468.93856436 2 3.63224008
Al GEN 10 2
6
3.00000000 1 0.91821413
-12.79791788 2 1.10715442
7.32796626 2 2.03989390
-52053.92058080 2 2.04204466
52054.92058080 2 2.04199047
2.75464240 3 0.94029840
6
-42.72903905 2 1.99445589
47.15203530 2 1.12469986
3231.39534748 2 1.72843552
-398.06113457 2 1.37872018
6652.21368423 2 1.92811339
-9484.54780105 2 1.87995009
6
830.07508675 2 1.87943518
-827.97758021 2 1.42508183
-1235.04705829 2 1.80941062
-21.40768628 2 0.95469299
154.21154335 2 1.20079877
1103.24388863 2 1.53169350
Si GEN 10 2
6
4.00000000 1 1.22418085
40.72596063 2 2.05337336
-48.11509746 2 1.71412850
-37.28006653 2 2.41395005
38.28006653 2 2.32084434
4.89672339 3 1.35299631
6
-7.68509694 2 1.13070385
13.98411213 2 1.16859753
-116498.38332824 2 2.36994226
-9121.48068622 2 2.16734100
31941.11999828 2 2.44879942
93679.74429067 2 2.32322104
6
41248.64599856 2 1.86811003
-41245.51022334 2 2.10179754
-60.37864776 2 1.33467919
4180.55486914 2 2.29835912
-142125.41164262 2 1.93345601
138006.23630568 2 1.99192523
P GEN 10 2
6
5.00000000 1 3.71332384
-13724.87406260 2 3.31759335
13714.20593187 2 3.65850189
-19470.81568886 2 3.61426447
19471.81568886 2 3.37579099
18.56661922 3 2.21831587
6
-1411.99322697 2 3.20289077
1421.31824558 2 2.14807352
576236.74902855 2 2.65372234
-397754.23263905 2 2.69778221
-194403.08693812 2 2.58386669
15921.57087605 2 2.99361065
6
64.03084909 2 2.59482433
-58.63734715 2 3.43313766
365.80442210 2 2.95557705
-12.13895471 2 1.75387879
158.27628825 2 3.69699906
-510.94109430 2 3.15077203
S GEN 10 2
6
6.00000000 1 2.51977085
-84.83332404 2 3.22007986
70.54487302 2 4.71655238
3581.56671658 2 4.39998291
-3580.56671658 2 4.41784559
15.11862509 3 2.54586294
6
-231.72652822 2 4.61819246
244.26248418 2 2.30938314
-920.53494189 2 2.65072450
2410.83323256 2 3.31119070
-2429.46016726 2 3.80226712
940.16251250 2 4.46824294
6
957.88712772 2 4.48874898
-950.12559451 2 3.37845034
6481.05990210 2 3.83307173
-157.23448173 2 1.92699416
186.18956071 2 1.98946862
-6509.01396292 2 3.99439281
Cl GEN 10 2
6
7.00000000 1 6.06473582
-454.17116717 2 5.57110302
436.13184861 2 5.26917938
-712.97599461 2 4.62455647
713.97599461 2 4.94326867
42.45315074 3 3.47635853
6
3561.38023524 2 4.48278574
-3545.84042135 2 3.43372818
-348465.51723117 2 3.74855830
12627.08188052 2 3.20650110
404246.19776785 2 3.70673786
-68406.76197098 2 3.45681590
6
19.30024745 2 3.79400952
-9.26766424 2 3.06020678
508.81151546 2 4.47438492
-7.59455659 2 2.43219723
-757.15587217 2 4.97983429
256.93953188 2 5.71145786
Ar GEN 10 2
6
8.00000000 1 3.61306766
326.13269394 2 4.01911273
-346.66642426 2 5.31624938
-7083.13498801 2 4.62848435
7084.13498801 2 4.70295676
28.90454131 3 3.84612203
6
323.59441180 2 3.28236424
-306.35028843 2 3.72212609
-6283.46399338 2 4.23452843
435312.63926384 2 4.90386840
20087.00527001 2 5.30220051
-449115.17955704 2 4.93088566
6
-2470.88386165 2 5.66191962
2481.68427537 2 4.62960722
48097.69821672 2 2.45115265
-48060.46858390 2 2.45082141
-1386.79918148 2 4.23753203
1350.57102634 2 6.12344921

292
data/pseudo/tn_df_sc Normal file
View File

@ -0,0 +1,292 @@
Sc GEN 12 2
8
9.00000000 1 18.44478556
-28.08765281 2 1.72227091
6.39250114 2 38.78217945
135.57316128 3 4.25767220
30.42990876 3 30.59237471
732.69856731 4 3.04901650
-839.18407578 4 3.26586693
306.02608763 4 19.55311974
8
-0.66275990 2 28.84167604
15.34001225 2 2.35022973
-2135.70086146 3 2.36887926
-272.32226474 3 1.53860208
2408.02312621 3 2.24659807
101.49528202 4 3.20659052
2308.19070504 4 1.65816906
-2392.74854053 4 1.70062176
8
253.56902450 2 1.38158346
-244.79525414 2 7.79906720
613.28437434 3 3.46268859
-167.40250936 3 1.44953060
-445.88186498 3 4.19986338
-558.92885001 4 2.84253773
-139.52186395 4 8.10103826
-860.39715397 4 5.29686620
Ti GEN 12 2
8
10.00000000 1 22.29649672
-72305.15340277 2 6.07562013
72279.39956641 2 7.08549167
-5.38004642 3 1.85317121
228.34501358 3 11.48488557
72347.84359974 4 6.58565089
-36.31015055 4 10.79509368
524.90430538 4 4.36759114
8
-1486.27686725 2 1.90199524
1504.05739312 2 3.17280244
-346.63236251 3 7.28185273
297.60206194 3 1.60782556
49.03030057 3 31.70876802
1363.17044217 4 2.57136209
173.13661454 4 15.10326471
408.87838151 4 10.51280239
8
770.58828172 2 4.79017059
-760.06500844 2 16.39428027
4131.47101858 3 2.73641831
-2.86068712 3 1.26533109
-4128.61033146 3 2.75566672
-4681.55429918 4 13.54811035
-216.64417046 4 3.18165696
-3871.27097394 4 7.38011991
V GEN 12 2
8
11.00000000 1 7.61152016
-2254.24090893 2 3.39807975
2224.02899636 2 6.97361870
-110446453.80565737 3 4.55862146
110446537.53237911 3 4.55862102
3279.23908558 4 3.96488312
110445429.80748074 4 5.79893896
-110440859.60674113 4 5.79892709
8
793493.20383269 2 1.90936932
-793472.27490442 2 1.96341714
-208.86387558 3 5.49944355
258.48298732 3 4.42141770
-49.61911175 3 2.27427679
-42873.55595686 4 1.93670396
-750668.26686351 4 13.81929388
750696.33209725 4 13.81951796
8
563.75098077 2 2.73920868
-551.25384718 2 8.34159772
565.60881231 3 6.86565518
-552.54712531 3 7.02672916
-13.06168700 3 1.72160118
766.15325384 4 5.21722741
-1341.96583800 4 3.64504781
-2478.29367021 4 6.45896159
Cr GEN 12 2
8
12.00000000 1 37.30558989
-31.65683900 2 2.72495980
-3.82112970 2 82.35078893
-1340.05228092 3 5.03605834
1787.71935961 3 8.49223479
1670.38275859 4 5.05934149
-297.67363866 4 11.22316422
-1773.64577915 4 12.78798168
8
1321.32584937 2 2.01494487
-1297.16280545 2 9.11769637
172456.79432585 3 2.74640213
-172130.54143941 3 2.73601029
-326.25288644 3 8.22966405
3318.19479259 4 8.93660753
-4964.77333719 4 4.18996691
-7518.15931266 4 8.08712175
8
426.08303476 2 2.13852920
-410.95463497 2 6.95873057
-26339.61341213 3 10.51865586
27348.01671881 3 10.59655900
-1008.40330668 3 12.57249470
-1190.97633771 4 3.81958382
-242.50982893 4 2.30397730
-515.04540222 4 8.50147041
Mn GEN 12 2
8
13.00000000 1 5.18371402
-578541.89058487 2 5.06065032
578503.38848415 2 6.70792867
-51913.84692424 3 6.17952209
51981.23520653 3 6.17539491
363344.02202434 4 6.42176078
267112.71548476 4 5.85884127
322304.52239107 4 5.30004030
8
1419.16815158 2 2.36735511
-1393.80593768 2 10.44777616
90835.30824196 3 3.38832573
-87236.54130341 3 3.33976449
-3598.76693855 3 4.59371397
-6244.54083570 4 4.53305698
1227.60592152 4 6.80451212
-6185.56255228 4 8.40561309
8
4024.75281098 2 2.94114594
-4009.68099577 2 7.86104996
6036.24229971 3 5.47734943
597.55987937 3 7.26632213
-6633.80217908 3 5.64966653
-8536.73955532 4 4.35053539
-2120.81538582 4 3.10976563
-9025.36229250 4 6.88076377
Fe GEN 12 2
8
14.00000000 1 5.12237041
-40.17016318 2 2.51511645
-1.31093574 2 68.88205922
233.53970769 3 8.04518971
-161.82652195 3 11.87602774
-1791.82033120 4 5.09693593
1599.45078669 4 4.72210640
1.03695301 4 1.70594204
8
26.70612465 2 1.98046097
0.57578912 2 129.99498266
3039.39666376 3 2.39996246
-3165.32503397 3 2.43500497
125.92837021 3 5.42607639
-291.65810402 4 8.00515516
391.88052787 4 5.38996549
27.51771082 4 21.57361672
8
624.99065580 2 2.73200743
-610.14663705 2 8.14205971
1017.89543597 3 6.81776145
-40.92293045 3 25.88593190
-976.97250552 3 5.88766735
-1433.26030940 4 3.94271278
-167.70300401 4 2.68547503
-1659.40792313 4 8.24853344
Co GEN 12 2
8
15.00000000 1 7.54679164
144513.79744165 2 3.67362404
-144558.25171900 2 4.84501436
107.53071842 3 2.40342575
5.67115611 3 26.17864786
-58433.23776581 4 3.80837544
-86187.09039425 4 4.51680318
-24877.11683436 4 4.40937071
8
95.23258759 2 2.24610518
-66.50913381 2 5.03497074
5039.10184384 3 3.22714612
106438.82887427 3 4.39051698
-111477.93071810 3 4.34028955
-3416.23892647 4 3.35420522
-108155.92422115 4 5.08283495
111451.19401338 4 5.04411598
8
595.60664332 2 4.48956443
-581.05689813 2 7.69628175
-1377.49199281 3 3.90883087
825.53641688 3 4.85597858
551.95557593 3 2.42496884
-403.44284159 4 2.48937518
360.79216631 4 7.08237042
-1755.31252545 4 7.01264199
Ni GEN 12 2
8
16.00000000 1 7.69817381
1050.11428773 2 7.53303210
-1144.28791364 2 25.60798551
13641.04856576 3 13.90272560
-13517.87778478 3 14.02243059
-99.93959073 4 5.40919366
-14590.22326277 4 19.39187326
-6702.20081903 4 10.04177364
8
-137324.04248861 2 3.00959957
137399.59146577 2 2.97820277
137895.50489379 3 3.20429852
-1036.38091066 3 8.22563766
-136859.12398313 3 3.17346613
1370.72380067 4 18.22958633
-904.80564965 4 6.63637638
-4552.45338879 4 4.01705177
8
-315.28909178 2 15.14825706
371.76324185 2 5.57172908
471.27416207 3 2.88437623
165.43855728 3 3.75784965
-636.71271936 3 3.41699124
-172.18113847 4 5.67830819
-148.24251004 4 2.70288433
-2384.29249546 4 8.91177457
Cu GEN 12 2
8
17.00000000 1 14.72121260
0.43564135 2 173.23217215
-51.26559465 2 2.58024469
3.82433122 3 80.09883693
246.43628291 3 9.08368916
6456.72306266 4 4.49885474
-6459.98303523 4 4.56436500
-53.55070822 4 20.14135032
8
-7.61322720 2 104.42478595
38.51618543 2 3.64199543
-12.00344193 3 52.46064977
288.99573247 3 4.33410703
-276.99229053 3 8.38373584
876.14551285 4 3.01347300
-1144.52462196 4 3.25680498
-386.35474053 4 59.52152812
8
142.97388030 2 48.08520852
-128.80933064 2 49.90034500
-186.15554307 3 11.18440029
180.45159943 3 5.04653753
5.70394364 3 85.01391269
101.90155258 4 3.06268644
-238.17133323 4 3.55821337
583.56858981 4 22.24622222
Zn GEN 12 2
8
18.00000000 1 16.25309578
-62.06001046 2 3.04359000
8.22443626 2 52.31604625
284.31836352 3 4.12635237
8.23736049 3 129.68855961
11442.99692797 4 7.94323624
-11664.25528103 4 7.74821809
462.64311342 4 34.44853266
8
140.30017448 2 3.16683649
-108.24959569 2 14.80839343
88.79372352 3 43.94225321
949.52154936 3 3.34122685
-1038.31527288 3 8.34153430
780.81282740 4 18.34782011
-1958.42831296 4 4.00418064
18.92059615 4 597.07325481
8
664.93623774 2 5.16678579
-651.12455824 2 11.88724380
930.96426186 3 7.96788974
-913.07841414 3 5.27302550
-17.88584772 3 127.63757255
3275.61040524 4 37.54266998
-3957.43240479 4 9.90068894
-3622.67126499 4 37.33250038

785
data/pseudo/tn_hf Normal file
View File

@ -0,0 +1,785 @@
H GEN 0 2
6
1.00000000 1 33.97261756
-5.73227574 2 41.31028903
-0.09126064 2 25.25940941
-20.89980944 2 22.55290552
21.89980945 2 32.44131356
33.97261756 3 21.12884239
6
-792.10375913 2 18.05333002
788.69064150 2 28.72271273
243.76232429 2 17.34000000
1971.45741618 2 20.31094085
-1795.56663560 2 22.08154655
-418.65661775 2 30.98799599
6
20.17177614 2 43.35000000
-21.74798121 2 30.58059209
81.48044293 2 43.35000000
-250.69197995 2 42.07548166
88.72115024 2 36.90496619
81.48044293 2 43.35000000
He GEN 0 2
6
2.00000000 1 20.98762121
-33.61186426 2 22.14709418
24.51669349 2 23.61790706
130.14113834 2 15.38761786
-129.14113834 2 14.22621787
41.97524242 3 12.59257273
6
1056.41263785 2 13.17618363
-1062.28560366 2 23.62254131
-463.87351954 2 12.04168890
-676.20404915 2 15.14280380
-595.21618656 2 19.81607243
1736.29130578 2 22.34342328
6
428.21432838 2 21.71652417
-430.31401911 2 12.32378638
7327.65357096 2 14.04426129
-7501.20178041 2 14.34477832
827.37705616 2 17.58948890
-652.83515208 2 21.22706329
Li GEN 2 2
6
1.00000000 1 0.78732101
-2.23995793 2 0.79224763
0.10336496 2 1.79622268
4.26591073 2 1.83637465
-3.26591073 2 1.91213904
0.78732101 3 0.79291624
6
256.06005883 2 1.78312879
-255.07112703 2 0.95553059
89.99417499 2 0.87617279
271.48958394 2 1.09621549
-180.35430387 2 1.43900642
-180.12948429 2 1.83085147
6
-6.15265886 2 1.51120608
4.70876577 2 0.76936375
-145.31681550 2 0.76874061
-238.21930857 2 0.99080928
219.67347903 2 0.80457655
164.85986038 2 1.07164892
Be GEN 2 2
6
2.00000000 1 1.20639978
-5.40210132 2 1.18425537
1.72285109 2 2.81826911
2.83477794 2 2.37513515
-1.83477794 2 2.82920954
2.41279956 3 1.18219335
6
-1045.56923435 2 2.59240549
1047.78889524 2 1.41686040
-1899.02207714 2 1.48536195
1398.02036098 2 1.70076266
-696.17508584 2 2.03898393
1198.17691383 2 2.57766021
6
630.77503458 2 1.84421403
-632.64959849 2 1.13419132
441.30858401 2 1.13393716
435.76647651 2 1.22419150
-353.48689426 2 1.39760436
-522.59133089 2 1.88595068
B GEN 2 2
6
3.00000000 1 2.72292969
-11.77602579 2 2.41356794
5.22133296 2 4.60628004
0.40709712 2 3.81569642
0.59290288 2 4.75281449
8.16878906 3 2.42655010
6
-259.65579181 2 2.54943794
264.77623108 2 4.54559309
79.19161122 2 2.15270531
-59.67150303 2 2.71820746
4276.39654293 2 3.54458188
-4294.91608677 2 3.65732479
6
236.40878048 2 3.85965228
-239.02058908 2 2.15130911
4065.68265375 2 2.50786619
-4354.92616892 2 2.58144728
782.08428825 2 3.14947869
-491.84514677 2 3.69136935
C GEN 2 2
6
4.00000000 1 6.85924392
-68.83281650 2 7.67473342
58.31001518 2 8.89832626
-5.23010100 2 4.63334409
6.23010100 2 5.40036758
27.43697568 3 6.78357071
6
15927.37261280 2 7.83879438
-15918.16480090 2 5.19308059
2266.75441213 2 7.53204263
199.75030501 2 9.76960112
15915.92435302 2 5.19521204
-18381.42723477 2 7.82847044
6
-153360.42295057 2 4.77965478
153356.81223147 2 7.75552602
-369415.66050006 2 7.39994991
152547.92039307 2 4.77641318
-50035.07991665 2 8.01352516
266903.80850142 2 7.30461659
N GEN 2 2
6
5.00000000 1 11.01983025
-745.67280403 2 7.70260962
729.30210222 2 7.83791198
-3.61639106 2 8.41784728
4.61639106 2 12.53426384
55.09915126 3 6.76845507
6
190.73305357 2 10.95092720
-176.25003778 2 7.48977970
138618.50426238 2 6.17989888
-156031.83911197 2 6.21713643
33624.66842989 2 6.84042808
-16210.33273520 2 7.23938652
6
-6963.78021671 2 6.00000000
6959.42174113 2 6.82157159
-1881.92821431 2 8.95497565
13576.39988827 2 6.21477468
-14307.35309373 2 6.69426410
2613.87687182 2 8.63240466
O GEN 2 2
6
6.00000000 1 8.86965578
-28.03502457 2 6.05347085
11.15565054 2 5.51487970
180.73182495 2 10.77996678
-179.73182495 2 10.23800841
53.21793471 3 7.90307811
6
-9301.89903913 2 7.28355994
9316.57793048 2 6.06026884
59864.04331135 2 10.82203807
-5153.55178109 2 5.75221581
-94673.29831259 2 10.51025188
39963.80850689 2 9.71187643
6
1682.75815189 2 6.93414347
-1694.05800561 2 5.70161443
848.47217112 2 5.90927487
-8787.11179775 2 8.69956320
7632.94108771 2 8.89513889
306.69604455 2 4.97067782
F GEN 2 2
6
7.00000000 1 16.52363418
-6.34751135 2 13.25777643
-15.15415075 2 18.76649923
-34.29784879 2 10.97564997
35.29784879 2 21.10568925
115.66543928 3 13.45706123
6
3851.10542697 2 18.85020393
-3832.40250429 2 12.48878559
-237433.87385812 2 13.23599298
4380.91891820 2 11.79852686
240164.95590264 2 13.28196243
-7110.99868861 2 17.38283172
6
-154.12048513 2 8.59949907
138.11297468 2 9.44224375
90.42851925 2 8.92886754
24.83173716 2 10.18592724
-424.59591732 2 14.47166344
310.33244840 2 16.45175456
Ne GEN 2 2
6
8.00000000 1 21.65168713
1792.30188007 2 14.45374325
-1826.14661180 2 14.11313946
24.26469360 2 14.10779016
-23.26469360 2 20.42281751
173.21349705 3 11.94458523
6
-3233.03788910 2 12.39056574
3263.09949012 2 20.60119535
1065.47298248 2 11.30677784
846.05067282 2 12.27737462
-34052.05079344 2 17.82669542
32141.52790433 2 17.34318949
6
64989.42116117 2 20.31242587
-65003.08394100 2 20.05277414
-486.55828399 2 12.87396775
2895.04182579 2 15.84533388
-261.91821074 2 19.42277681
-2145.56672184 2 23.82700477
K GEN 18 2
6
1.00000000 1 0.68724959
7665.13435390 2 0.62381187
-7668.26785841 2 0.59278246
-3877.60874288 2 0.63961163
3878.60874288 2 0.57860350
0.68724959 3 0.50008691
6
477943.00813868 2 0.60446875
-477941.36080643 2 0.55281419
-533027.54468668 2 0.57763214
644866.44840953 2 0.56624742
-347063.87255621 2 0.60823749
235225.96911606 2 0.54903924
6
5177368.01138896 2 0.56835236
-5177366.94506877 2 0.57395949
479730.23987439 2 0.65183506
1027151.48932830 2 0.60393420
-737636.25038898 2 0.55451546
-769244.47868615 2 0.64345811
Ca GEN 18 2
6
2.00000000 1 1.02097432
-10036.20006734 2 0.76570985
10030.67757963 2 0.83608195
-8136.00883920 2 0.84362927
8137.00883920 2 0.75729596
2.04194863 3 0.94514267
6
-34706.02643508 2 0.85912364
34710.12533681 2 0.50000000
860.68953329 2 0.79227941
33806.87817612 2 0.85997136
-34747.30927870 2 0.50004940
80.74228959 2 1.01833438
6
514.89542915 2 0.50045897
-511.93073005 2 0.57886998
-1374495660.24999190 2 0.50000000
687246875.87136328 2 0.50000000
595.96081232 2 0.56402502
687248189.41960287 2 0.50000000
Sc GEN 18 2
6
3.00000000 1 8.57059896
39.59298139 2 7.59719947
-67.37349200 2 5.06179469
3.54689568 2 11.85222547
-2.54689568 2 0.70815643
25.71179688 3 5.04858060
6
414.99811890 2 5.58945823
-389.30527335 2 5.93611719
8.74915776 2 0.56803113
-23.92388226 2 0.60868170
42.12589000 2 0.76957270
-25.95178014 2 1.21300456
6
87.05758924 2 1.12946939
-62.19670511 2 8.56362761
66.37833241 2 7.27494713
16.41391965 2 0.74327556
43.70031508 2 2.03252459
-125.49197853 2 1.19227023
Ti GEN 18 2
6
4.00000000 1 4.77516915
28.34758957 2 10.86929502
-63.21363466 2 5.37319310
5.17935660 2 6.86168513
-4.17935660 2 0.95669336
19.10067660 3 3.52162434
6
211.66189616 2 7.01854391
-179.82099411 2 1.03880358
-185.28466640 2 8.02474194
43.44334388 2 1.22490803
-44.06205312 2 0.73917909
186.90335758 2 0.89595855
6
49.26886952 2 4.65596397
-18.32131307 2 12.03001514
-5.50633295 2 2.16547114
-342.25486254 2 0.92182600
304.90681508 2 0.90099079
43.85505055 2 0.99684289
V GEN 18 2
6
5.00000000 1 7.54069430
35.58763613 2 13.63949328
-78.03044429 2 6.35551182
6.53716910 2 2.59423528
-5.53716910 2 1.16176108
37.70347150 3 6.00940761
6
194.57815114 2 8.18606241
-156.25972501 2 0.95585889
-162.29334861 2 9.81441300
-7.74379387 2 0.70017858
244.84040986 2 0.97854682
-73.80312462 2 1.14925292
6
58.91069981 2 5.48333809
-21.55840127 2 14.40777862
-10.12891199 2 2.12080402
2.52953175 2 0.69388688
109.28174657 2 1.01378564
-100.68144081 2 1.02780261
Cr GEN 18 2
6
6.00000000 1 5.86829616
-3.09900314 2 0.98487638
-44.94655388 2 6.96616660
135.46731129 2 13.59887742
-134.46731129 2 11.34882544
35.20977696 3 8.91110617
6
-526.12421414 2 1.73784849
568.24328209 2 32.55674074
-4019.88240027 2 29.55364033
495.64908693 2 1.64707294
3445.48735974 2 29.05037955
79.74580069 2 3.85284016
6
31.31844062 2 19.50625909
10.30743573 2 0.86978393
-81.88780266 2 15.20370471
461.22634080 2 10.28610919
1.00599253 2 29.84121604
-379.34381792 2 10.93761710
Mn GEN 18 2
6
7.00000000 1 15.05016398
76.91199595 2 15.84783194
-135.08366030 2 9.80426007
5.12036990 2 21.62193241
-4.12036990 2 1.26331891
105.35114786 3 9.24698903
6
4.45077705 2 37.07900996
46.93892122 2 10.09409180
-59.63952162 2 18.98557107
47.25376130 2 10.16267391
2270.38024432 2 0.79460121
-2256.99438460 2 0.79345224
6
43.65884288 2 39.18960573
6.58957965 2 5.88646925
273.41973132 2 12.35978155
-27.85882166 2 45.92825074
-255.64090683 2 15.10051906
11.08093098 2 0.96083847
Fe GEN 18 2
6
8.00000000 1 20.13246747
61.79343671 2 20.09868712
-128.55600523 2 10.70685691
4.84472314 2 28.79726611
-3.84472314 2 1.31374323
161.05973977 3 11.74858936
6
-20.21006220 2 30.42214774
78.68908034 2 10.18491881
-104.38370168 2 6.69228251
11879.61125830 2 2.98725076
4067.63536025 2 2.63900793
-15841.86182474 2 2.88538957
6
52.35701571 2 38.26448010
4.85142656 2 5.90250183
2169.08154283 2 14.09502191
-40.04038813 2 42.65213493
-2140.34005623 2 14.44188153
12.29991314 2 1.06050818
Co GEN 18 2
6
9.00000000 1 18.31609159
47.84627034 2 26.91264651
-123.98809879 2 11.91957078
5.09540361 2 38.50128360
-4.09540361 2 1.45636943
164.84482431 3 13.41744556
6
-22.55314559 2 34.07535172
88.75521276 2 10.45260699
-158.32924566 2 5.91087540
-53402.80058080 2 3.13684604
49767.17959800 2 3.16692544
3794.95155282 2 2.81533596
6
61.92019742 2 38.11279103
2.85881103 2 5.82898971
-387.27158530 2 15.59733227
-64.65478412 2 38.57519906
439.30094674 2 13.98109833
13.62664636 2 1.17046441
Ni GEN 18 2
6
10.00000000 1 19.84291404
-195.32353012 2 16.02128656
108.98533897 2 26.59513762
6.08469364 2 39.39261550
-5.08469364 2 1.73812596
198.42914037 3 16.63287860
6
636.14358475 2 21.00974643
-561.54325704 2 22.88188409
-146.65571659 2 11.08963477
1590.91833845 2 2.66405882
203.15470938 2 6.84512029
-1646.41568069 2 2.74451213
6
67.70992628 2 28.31556957
5.37743585 2 4.16521410
374.49405320 2 17.37825451
-389.83846114 2 21.96153313
1.91671522 2 49.74424984
14.42906054 2 1.27579002
Cu GEN 18 2
6
11.00000000 1 35.47715926
-18105.91023962 2 21.73013363
18011.23386368 2 21.83870561
6.01228206 2 18.42008793
-5.01228206 2 1.78198604
390.24875182 3 20.58922180
6
-51.41016015 2 31.92243640
131.47547623 2 14.07215286
-100490.54220540 2 4.21909683
20675.75763691 2 3.56801887
263590.56712535 2 4.06536588
-183774.78117039 2 3.92650866
6
68.62159615 2 31.47726702
10.70810140 2 4.95987737
233.01753836 2 17.95562228
-258.78181256 2 26.97191776
12.01106739 2 46.85069031
14.75422657 2 1.35614623
Zn GEN 18 2
6
12.00000000 1 26.60492300
-196.98442222 2 17.93401272
89.18558790 2 36.25784521
6.19159911 2 49.96784160
-5.19159911 2 1.99109193
319.25907600 3 19.77027094
6
-177.37971474 2 32.01501166
269.42130045 2 23.08836163
60361.29701582 2 4.67975974
1343973.13568915 2 5.29114502
-619902.07009680 2 5.11539109
-784431.36064381 2 5.38368747
6
46.22045015 2 19.08371294
43.98275320 2 50.00000000
103.59052598 2 16.88459979
-129.86700605 2 37.83300205
11.83058445 2 5.11918008
15.44716451 2 1.45112568
Ga GEN 28 2
6
3.00000000 1 1.29464779
1852.96920182 2 1.20541500
-1856.15440251 2 1.17879070
-513.51787928 2 1.21964580
514.51787928 2 1.12868888
3.88394338 3 1.06946118
6
-10.41248284 2 0.75266853
13.44253658 2 0.82344143
-163070.82529640 2 1.96346903
118782.06261627 2 1.90761481
72439.51450979 2 2.00432013
-28149.75180125 2 1.83309310
6
-55.43707314 2 0.98715132
55.68679311 2 1.18143237
95.35935510 2 1.24163917
-111.55606197 2 1.48647971
6.22134153 2 1.87957113
10.97737885 2 2.24689865
Ge GEN 28 2
6
4.00000000 1 0.64699203
1042.65966555 2 1.17600365
-1045.50742663 2 1.40672708
-522.21837337 2 1.06148136
523.21837337 2 1.52689039
2.58796812 3 0.70634661
6
298.52031462 2 1.37488700
-295.91758286 2 3.05395101
-65778.83466330 2 1.99750874
253302.61962618 2 2.10159773
25864.29161720 2 2.35028323
-213387.07659768 2 2.16152517
6
-1416.87913796 2 1.43279054
1416.49405157 2 1.27947333
-4677.12774504 2 1.39756889
6758.57740664 2 1.50728327
-2630.12555402 2 1.70834188
549.67778384 2 1.92912262
As GEN 28 2
6
5.00000000 1 1.90897798
-8.55267316 2 1.59326524
3.44617934 2 1.10844459
-8.94709126 2 1.02625257
9.94709126 2 1.90897549
9.54488990 3 1.18318262
6
-299.57003383 2 1.31601774
303.89084920 2 0.88992491
34018.91875930 2 0.82417957
-44808.38727678 2 0.87058735
19528.43031171 2 0.91644709
-8737.95845690 2 0.77833472
6
46094.50987530 2 1.90902784
-46093.10097169 2 1.56895782
-1934.82978262 2 1.41134047
-240427.05172601 2 1.84187044
36043.17172862 2 1.53235052
206319.71069040 2 1.81590910
Se GEN 28 2
6
6.00000000 1 1.73885845
-4868.76631948 2 3.10952817
4860.07291481 2 2.76656612
247376.94576273 2 2.93723435
-247375.94576273 2 2.93039894
10.43315069 3 1.80783830
6
43.48906338 2 1.54256367
-36.07303722 2 1.99876644
-1338.16209913 2 2.22244851
88855.15492433 2 3.01653570
-93322.17292948 2 3.00370283
5806.18068397 2 2.62760372
6
101.24952978 2 1.51703915
-96.89194467 2 1.50669503
-561.81915381 2 2.17759706
1474.30831735 2 2.47900419
-87533.83638244 2 3.02701983
86622.34849171 2 3.03071493
Br GEN 28 2
6
7.00000000 1 1.29861066
-8.22129971 2 1.15959643
0.21335410 2 2.29768788
-14617.16154553 2 2.88622041
14618.16154553 2 2.88664159
9.09027461 3 1.38987227
6
1993.56030565 2 1.99554365
-1988.14839885 2 2.18330258
62338.94920254 2 2.78298975
91516.94063906 2 2.50252605
-109846.25447802 2 2.70576408
-44008.63516555 2 2.38434210
6
17.36412726 2 1.29580803
-14.67327121 2 1.60078690
-6128.76923065 2 2.16344915
12563.02678529 2 2.26961184
757.63553722 2 2.83383736
-7190.89195704 2 2.41971949
Kr GEN 28 2
6
8.00000000 1 6.82429532
2245.94610147 2 4.82301962
-2257.24927570 2 3.38163452
1889.52842356 2 3.29088128
-1888.52842356 2 4.98656184
54.59436254 3 3.01373570
6
-2003.10975854 2 6.01573226
2010.79212346 2 4.07497664
13467772.94730707 2 4.47273823
-18464141.82809087 2 4.45030979
-2607955.84552628 2 4.28291762
7604325.72641131 2 4.35368575
6
-6512.57971257 2 5.33963561
6517.54562224 2 4.41831473
55170.14413687 2 3.66247372
-35314.20447418 2 3.56293692
-27094.88743738 2 3.99199621
7239.94695795 2 5.23539786
Al GEN 10 2
6
3.00000000 1 0.90167530
-12.07740634 2 1.08338853
6.60507677 2 2.07851308
-13877404.00590185 2 2.08053590
13877405.00590186 2 2.08053570
2.70502591 3 0.92748596
6
-41.26842670 2 2.04866185
45.70193781 2 1.11866688
2946.69575922 2 1.71721106
-376.01922297 2 1.36753958
4331.41613799 2 1.93292012
-6901.09265568 2 1.86705782
6
504.79904464 2 1.88548919
-502.69536383 2 1.42616967
-769.46860271 2 1.80548694
-17.66088618 2 0.95520911
101.43853505 2 1.20112583
686.69150206 2 1.52824179
Si GEN 10 2
6
4.00000000 1 2.54461774
-2902.58084906 2 2.24978528
2895.18838752 2 2.53789008
7161.72254279 2 2.34887222
-7160.72254279 2 2.46336277
10.17847098 3 1.52421025
6
4.24352962 2 1.08064949
2.05989979 2 1.33341749
88608.14855737 2 2.39993059
-849.93508619 2 1.92845396
-1434647.87047626 2 2.35634772
1346890.65714548 2 2.35320332
6
-15264.86061936 2 1.82998100
15267.99758945 2 1.91566514
-0.49522434 2 1.35066217
2807.17037795 2 2.16756956
6912.45723497 2 1.79762600
-9718.13169060 2 2.03990309
P GEN 10 2
6
5.00000000 1 2.20104239
-14571.76154266 2 3.30954781
14561.08785293 2 3.65491917
-21023.88213100 2 3.60582863
21024.88213100 2 3.36814532
11.00521195 3 2.06883762
6
-214.99423753 2 3.00175595
224.31212541 2 1.90508764
-1320.42895216 2 2.23252373
2262.27394007 2 2.56842585
-5217.11058123 2 3.22957222
4276.26614237 2 3.32169865
6
-4655.41288683 2 1.51251059
4660.80718311 2 1.51289861
-994.25816078 2 3.31761981
-19.30793578 2 2.04639527
311.57919748 2 3.70626860
702.98798215 2 3.09154453
S GEN 10 2
6
6.00000000 1 3.76431332
518.21506704 2 2.91975646
-532.35656437 2 2.26777538
14394.84387811 2 2.49556645
-14393.84387811 2 2.51698479
22.58587994 3 2.71241239
6
-104.19902150 2 4.55895180
116.57081427 2 2.10503756
-994.81335242 2 2.63814508
2203.13414043 2 3.11140569
-1617.61176296 2 3.62963239
410.29160018 2 4.55921172
6
723.09548214 2 4.48128068
-715.46568241 2 3.35956681
9063.41201304 2 3.83857196
-16.38228027 2 1.92699416
44.06704522 2 2.30670170
-9090.09577098 2 3.92706305
Cl GEN 10 2
6
7.00000000 1 4.77392870
719885.76609499 2 4.74019033
-719903.82223984 2 4.74189768
-37102.89380181 2 4.67979490
37103.89380181 2 4.71510215
33.41750090 3 3.29732864
6
959.05010082 2 5.01134618
-943.54843009 2 3.64529189
-6456.16063099 2 4.20510279
637.70704529 2 2.74283267
-1479.66774202 2 3.00605599
7299.12201388 2 3.90198120
6
-121.63220275 2 3.86324469
131.70125226 2 3.08695111
5447.27282828 2 5.92092153
-52.94814165 2 2.63467524
559.83762330 2 5.08437179
-5953.16139883 2 5.86183616
Ar GEN 10 2
6
8.00000000 1 5.17746158
-76.72264736 2 5.90884243
56.16280755 2 3.53735685
-660.63282107 2 4.53072721
661.63282107 2 4.90879705
41.41969264 3 3.95156133
6
496.48392385 2 3.21092458
-479.29969508 2 3.39224537
-12086.26924659 2 4.28061928
37151.97923364 2 4.62803105
496310.90908097 2 5.10487541
-521375.61810527 2 5.08995306
6
-1901.02320099 2 5.53714820
1911.87432982 2 4.52372637
-127.53875733 2 2.45115265
198.78501467 2 2.62001527
-976.26297293 2 3.97593759
906.01814260 2 6.12659776

BIN
data/qp.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

View File

@ -6,6 +6,7 @@ cd -
# Normal installation
PACKAGES="core cryptokit ocamlfind sexplib ZMQ"
#ppx_sexp_conv
# Needed for ZeroMQ
export C_INCLUDE_PATH="${QP_ROOT}"/lib:"${C_INCLUDE_PATH}"

View File

@ -15,14 +15,14 @@ function _install()
./configure --without-libsodium || exit 1
make -j 8 || exit 1
rm -f -- "${QP_ROOT}"/lib/libzmq.a "${QP_ROOT}"/lib/libzmq.so "${QP_ROOT}"/lib/libzmq.so.?
# cp .libs/libzmq.a "${QP_ROOT}"/lib
# cp .libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.5
cp src/.libs/libzmq.a "${QP_ROOT}"/lib
cp src/.libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.4
cp .libs/libzmq.a "${QP_ROOT}"/lib
cp .libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.5
# cp src/.libs/libzmq.a "${QP_ROOT}"/lib
# cp src/.libs/libzmq.so "${QP_ROOT}"/lib/libzmq.so.4
cp include/{zmq.h,zmq_utils.h} "${QP_ROOT}"/lib
cd "${QP_ROOT}"/lib
# ln -s libzmq.so.5 libzmq.so
ln -s libzmq.so.4 libzmq.so
ln -s libzmq.so.5 libzmq.so
# ln -s libzmq.so.4 libzmq.so
cd ${ORIG}
return 0
}

View File

@ -1,4 +1,4 @@
open Core.Std;;
open Core.Std
exception AtomError of string
@ -27,12 +27,18 @@ let of_string ~units s =
coord = Point3d.of_string ~units (String.concat [x; y; z] ~sep:" ")
}
| _ -> raise (AtomError s)
;;
let to_string ~units a =
[ Element.to_string a.element ;
Charge.to_string a.charge ;
Point3d.to_string ~units a.coord ]
|> String.concat ~sep:" "
;;
let to_xyz a =
Printf.sprintf "%-3s %s"
(Element.to_string a.element)
(Point3d.to_string ~units:Units.Angstrom a.coord)

View File

@ -7,3 +7,4 @@ val sexp_of_t : t -> Sexplib.Sexp.t
val of_string : units:Units.units -> string -> t
val to_string : units:Units.units -> t -> string
val to_xyz : t -> string

View File

@ -35,11 +35,11 @@ let read_element in_channel at_number element =
read in_channel at_number
let to_string b =
let to_string_general ~fmt ~atom_sep b =
let new_nucleus n =
Printf.sprintf "Atom %d" n
in
let rec do_work accu current_nucleus = function
| [] -> List.rev accu
| (g,n)::tail ->
@ -47,15 +47,27 @@ let to_string b =
in
let accu =
if (n <> current_nucleus) then
(new_nucleus n)::""::accu
(new_nucleus n)::atom_sep::accu
else
accu
in
do_work ((Gto.to_string g)::accu) n tail
do_work ((Gto.to_string ~fmt g)::accu) n tail
in
do_work [new_nucleus 1] 1 b
|> String.concat ~sep:"\n"
let to_string_gamess =
to_string_general ~fmt:Gto.Gamess ~atom_sep:""
let to_string_gaussian b =
String.concat ~sep:"\n"
[ to_string_general ~fmt:Gto.Gaussian ~atom_sep:"****" b ; "****" ]
let to_string ?(fmt=Gto.Gamess) =
match fmt with
| Gto.Gamess -> to_string_gamess
| Gto.Gaussian -> to_string_gaussian
include To_md5
let to_md5 = to_md5 sexp_of_t

View File

@ -14,7 +14,7 @@ val read_element :
in_channel -> Nucl_number.t -> Element.t -> (Gto.t * Nucl_number.t) list
(** Convert the basis to a string *)
val to_string : (Gto.t * Nucl_number.t) list -> string
val to_string : ?fmt:Gto.fmt -> (Gto.t * Nucl_number.t) list -> string
(** Convert the basis to an MD5 hash *)
val to_md5 : (Gto.t * Nucl_number.t) list -> MD5.t

View File

@ -4,6 +4,10 @@ open Qptypes
exception GTO_Read_Failure of string
exception End_Of_Basis
type fmt =
| Gamess
| Gaussian
type t =
{ sym : Symmetry.t ;
lc : ((Primitive.t * AO_coef.t) list)
@ -68,8 +72,8 @@ let read_one in_channel =
(** Transform the gto to a string *)
let to_string { sym = sym ; lc = lc } =
(** Write the GTO in Gamess format *)
let to_string_gamess { sym = sym ; lc = lc } =
let result =
Printf.sprintf "%s %3d" (Symmetry.to_string sym) (List.length lc)
in
@ -88,3 +92,30 @@ let to_string { sym = sym ; lc = lc } =
|> String.concat ~sep:"\n"
(** Write the GTO in Gaussian format *)
let to_string_gaussian { sym = sym ; lc = lc } =
let result =
Printf.sprintf "%s %3d 1.00" (Symmetry.to_string sym) (List.length lc)
in
let rec do_work accu i = function
| [] -> List.rev accu
| (p,c)::tail ->
let p = AO_expo.to_float p.Primitive.expo
and c = AO_coef.to_float c
in
let result =
Printf.sprintf "%15.7f %15.7f" p c
in
do_work (result::accu) (i+1) tail
in
(do_work [result] 1 lc)
|> String.concat ~sep:"\n"
(** Transform the gto to a string *)
let to_string ?(fmt=Gamess) =
match fmt with
| Gamess -> to_string_gamess
| Gaussian -> to_string_gaussian

View File

@ -1,5 +1,9 @@
exception GTO_Read_Failure of string
exception End_Of_Basis
type fmt =
| Gamess
| Gaussian
type t =
{ sym : Symmetry.t ;
lc : (Primitive.t * Qptypes.AO_coef.t) list;
@ -13,4 +17,4 @@ val of_prim_coef_list :
val read_one : in_channel -> t
(** Convert to string for printing *)
val to_string : t -> string
val to_string : ?fmt:fmt -> t -> string

View File

@ -17,6 +17,7 @@ module Ao_basis : sig
;;
val read : unit -> t option
val to_string : t -> string
val to_basis : t -> Basis.t
val write : t -> unit
val to_md5 : t -> MD5.t
val to_rst : t -> Rst_string.t

View File

@ -13,6 +13,7 @@ module Nuclei : sig
val read : unit -> t option
val write : t -> unit
val to_string : t -> string
val to_atom_list : t -> Atom.t list
val to_rst : t -> Rst_string.t
val of_rst : Rst_string.t -> t option
end = struct
@ -134,6 +135,22 @@ end = struct
;;
let to_atom_list b =
let rec loop accu (coord, charge, label) = function
| -1 -> accu
| i ->
let atom =
{ Atom.element = label.(i) ;
Atom.charge = charge.(i) ;
Atom.coord = coord.(i) ;
}
in
loop (atom::accu) (coord, charge, label) (i-1)
in
loop [] (b.nucl_coord, b.nucl_charge, b.nucl_label)
( (Nucl_number.to_int b.nucl_num) - 1)
;;
let to_string b =
Printf.sprintf "
nucl_num = %s

View File

@ -85,7 +85,7 @@ let name m =
String.concat (result)
let to_string m =
let to_string_general ~f m =
let { nuclei ; elec_alpha ; elec_beta } = m
in
let n =
@ -94,10 +94,15 @@ let to_string m =
let title =
name m
in
[ Int.to_string n ; title ] @
(List.map ~f:(fun x -> Atom.to_string Units.Angstrom x) nuclei)
[ Int.to_string n ; title ] @ (List.map ~f nuclei)
|> String.concat ~sep:"\n"
let to_string =
to_string_general ~f:(fun x -> Atom.to_string Units.Angstrom x)
let to_xyz =
to_string_general ~f:Atom.to_xyz
let of_xyz_string
?(charge=(Charge.of_int 0)) ?(multiplicity=(Multiplicity.of_int 1))

View File

@ -20,6 +20,7 @@ val name : t -> string
(** Conversion for printing *)
val to_string : t -> string
val to_xyz : t -> string
(** Creates a molecule from an xyz file *)

84
ocaml/TaskServer.mli Normal file
View File

@ -0,0 +1,84 @@
type t =
{
queue : Queuing_system.t ;
state : Message.State.t option ;
address_tcp : Address.Tcp.t option ;
address_inproc : Address.Inproc.t option ;
psi : Message.Psi.t option;
progress_bar : Progress_bar.t option ;
running : bool;
}
(** {1} Debugging *)
(** Fetch the QP_TASK_DEBUG environment variable *)
val debug_env : bool
(** Print a debug message *)
val debug : string -> unit
(** {1} ZMQ *)
(** ZeroMQ context *)
val zmq_context : ZMQ.Context.t
(** Bind a ZMQ socket *)
val bind_socket :
socket_type:string -> socket:'a ZMQ.Socket.t -> address:string -> unit
(** Name of the host on which the server runs *)
val hostname : string lazy_t
(** IP address of the current host *)
val ip_address : string lazy_t
(** Standard messages *)
val reply_ok : [> `Req ] ZMQ.Socket.t -> unit
val reply_wrong_state : [> `Req ] ZMQ.Socket.t -> unit
(** Stop server *)
val stop : port:int -> unit
(** {1} Server functions *)
(** Create a new job *)
val new_job : Message.Newjob_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Finish a running job *)
val end_job : Message.Endjob_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Connect a client *)
val connect: Message.Connect_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Disconnect a client *)
val disconnect: Message.Disconnect_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Add a task to the pool *)
val add_task: Message.AddTask_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Mark the task as done by the client *)
val task_done: Message.TaskDone_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Delete a task when it has been pulled by the collector *)
val del_task: Message.DelTask_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** The client get a new task to execute *)
val get_task: Message.GetTask_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Terminate server *)
val terminate : t -> [> `Req ] ZMQ.Socket.t -> t
(** Put a wave function in the task server *)
val put_psi :
Message.PutPsi_msg.t -> string list -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Get the wave function stored in the task server *)
val get_psi : Message.GetPsi_msg.t -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Reply an Error message *)
val error : string -> t -> [> `Req ] ZMQ.Socket.t -> t
(** Run server *)
val run : port:int -> unit

View File

@ -1,3 +1,3 @@
true: package(core,sexplib.syntax,cryptokit,ZMQ)
true: package(core,cryptokit,ZMQ,sexplib.syntax)
true: thread
false: profile

View File

@ -8,10 +8,9 @@ s.unset_skip()
s.filter_only_1h1p()
print s
s = H_apply("just_mono")
s = H_apply("just_mono",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
s.unset_double_excitations()
print s
END_SHELL

View File

@ -15,7 +15,7 @@ subroutine routine
integer :: N_st, degree
double precision,allocatable :: E_before(:)
integer :: n_det_before
N_st = N_states
N_st = N_states_diag
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
i = 0
print*,'N_det = ',N_det

View File

@ -20,22 +20,18 @@ print s
s = H_apply("CAS_S",do_double_exc=False)
s.unset_double_excitations()
print s
s = H_apply("CAS_S_selected_no_skip",do_double_exc=False)
s.unset_double_excitations()
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_S_selected",do_double_exc=False)
s.unset_double_excitations()
s.set_selection_pt2("epstein_nesbet_2x2")
print s
s = H_apply("CAS_S_PT2",do_double_exc=False)
s.unset_double_excitations()
s.set_perturbation("epstein_nesbet_2x2")
print s

View File

@ -3,10 +3,10 @@ program ddci
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:),E_before(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
N_st = N_states_diag
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
character*(64) :: perturbation
pt2 = 1.d0
@ -27,6 +27,8 @@ program ddci
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
call H_apply_DDCI_selection(pt2, norm_pert, H_pert_diag, N_st)
@ -47,8 +49,21 @@ program ddci
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, 'E+PT2 = ', E_before+pt2
print *, '-----'
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
call ezfio_set_ddci_selected_energy(CI_energy)
enddo
if(do_pt2_end)then

View File

@ -1,6 +1,13 @@
[threshold_singles]
[threshold_lmct]
type: double precision
doc: threshold to select the pertinent single excitations at second order
doc: threshold to select the pertinent LMCT excitations at second order
interface: ezfio,provider,ocaml
default: 0.01
[threshold_mlct]
type: double precision
doc: threshold to select the pertinent MLCT excitations at second order
interface: ezfio,provider,ocaml
default: 0.01
@ -16,6 +23,20 @@ doc: if true, you do the FOBOCI calculation perturbatively
interface: ezfio,provider,ocaml
default: .False.
[speed_up_convergence_foboscf]
type: logical
doc: if true, the threshold of the FOBO-SCF algorithms are increased with the iterations
interface: ezfio,provider,ocaml
default: .True.
[dressing_2h2p]
type: logical
doc: if true, you do dress with 2h2p excitations each FOBOCI matrix
interface: ezfio,provider,ocaml
default: .False.
[second_order_h]
type: logical
doc: if true, you do the FOBOCI calculation using second order intermediate Hamiltonian

View File

@ -18,8 +18,22 @@ print s
s = H_apply("standard")
s = H_apply("only_1h2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_1h2p()
s.unset_skip()
print s
s = H_apply("only_2h2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_2h2p()
s.unset_skip()
print s
s = H_apply("only_2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_2p()
s.unset_skip()
print s

View File

@ -1 +1 @@
Perturbation Generators_restart Selectors_no_sorted
Perturbation Selectors_no_sorted Hartree_Fock

View File

@ -6,9 +6,9 @@ subroutine all_single
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 1.d-8
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
threshold_davidson = 1.d-9
soft_touch threshold_davidson davidson_criterion
i = 0
print*,'Doing all the mono excitations !'
@ -52,10 +52,173 @@ subroutine all_single
enddo
endif
E_before = CI_energy
!!!!!!!!!!!!!!!!!!!!!!!!!!! DOING ONLY ONE ITERATION OF SELECTION AS THE SELECTION CRITERION IS SET TO ZERO
exit
enddo
threshold_davidson = 1.d-10
! threshold_davidson = 1.d-8
! soft_touch threshold_davidson davidson_criterion
! call diagonalize_CI
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
do i = 1, max(2,N_det_generators)
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(pt2,norm_pert,E_before)
end
subroutine all_1h2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 1h2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_1h2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2h2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2h2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_2h2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
@ -67,10 +230,89 @@ subroutine all_single
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
! call save_wavefunction
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
deallocate(pt2,norm_pert,E_before)
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
end
subroutine all_single_no_1h_or_1p
implicit none
integer :: i,k
@ -79,6 +321,8 @@ subroutine all_single_no_1h_or_1p
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
@ -124,7 +368,7 @@ subroutine all_single_no_1h_or_1p
endif
E_before = CI_energy
enddo
threshold_davidson = 1.d-10
threshold_davidson = 1.d-16
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
print*,'Final Step '
@ -215,85 +459,6 @@ subroutine all_single_no_1h_or_1p_or_2p
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_standard(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
! call save_wavefunction
deallocate(pt2,norm_pert,E_before)
end
subroutine all_1h_1p_routine
implicit none
integer :: i,k

View File

@ -5,7 +5,7 @@ subroutine all_single_split(psi_det_generators_input,psi_coef_generators_input,N
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,Ndet_generators_input)
double precision, intent(inout) :: dressing_matrix(Ndet_generators_input,Ndet_generators_input)
double precision, intent(in) :: psi_coef_generators_input(ndet_generators_input,n_states)
integer :: i,i_hole
integer :: i,i_hole,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
do i = 1, n_inact_orb
@ -22,56 +22,339 @@ subroutine all_single_split(psi_det_generators_input,psi_coef_generators_input,N
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
threshold_davidson = 1.d-10
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
do i = 1, n_act_orb
i_hole = list_act(i)
print*,''
print*,'Doing all the single excitations from the orbital '
print*,i_hole
print*,''
print*,''
threshold_davidson = 1.d-4
soft_touch threshold_davidson davidson_criterion
call modify_bitmasks_for_hole(i_hole)
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
do i = 1, n_virt_orb
i_hole = list_virt(i)
print*,''
print*,'Doing all the single excitations from the orbital '
print*,i_hole
print*,''
print*,''
threshold_davidson = 1.d-4
soft_touch threshold_davidson davidson_criterion
call modify_bitmasks_for_hole(i_hole)
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
n_det_max_jacobi = 1000
soft_touch n_det_max_jacobi
end
subroutine all_single_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
subroutine all_single_for_1p(i_particl,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
implicit none
use bitmasks
integer, intent(in) :: i_particl
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_2h1p(N_det_generators,N_det_generators)
integer :: i,i_hole
double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
integer :: i,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
integer :: n_det_1h1p,n_det_2h1p
integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
integer(bit_kind), allocatable :: psi_2h1p(:,:,:)
double precision, allocatable :: psi_ref_coef_out(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_2h1p(:,:)
call all_single_no_1h_or_1p
call all_single
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
call give_n_1h1p_and_n_2h1p_in_psi_det(n_det_1h1p,n_det_2h1p)
allocate(psi_ref_out(N_int,2,N_det_generators))
allocate(psi_1h1p(N_int,2,n_det_1h1p))
allocate(psi_2h1p(N_int,2,n_det_2h1p))
allocate(psi_ref_coef_out(N_det_generators,N_states))
allocate(psi_coef_1h1p(n_det_1h1p,N_states))
allocate(psi_coef_2h1p(n_det_2h1p,N_states))
call split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p)
call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h1p,psi_coef_1h1p,n_det_1h1p)
call provide_matrix_dressing_general(dressing_matrix_2h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_2h1p,psi_coef_2h1p,n_det_2h1p)
deallocate(psi_ref_out)
deallocate(psi_1h1p)
deallocate(psi_2h1p)
deallocate(psi_ref_coef_out)
deallocate(psi_coef_1h1p)
deallocate(psi_coef_2h1p)
double precision, allocatable :: matrix_ref_1h_1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h2p(:,:)
double precision, allocatable :: psi_coef_ref_1h_1p(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_1h2p(:,:)
integer(bit_kind), allocatable :: psi_det_1h2p(:,:,:)
integer(bit_kind), allocatable :: psi_det_ref_1h_1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_1h1p(:,:,:)
integer :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
double precision :: hka
double precision,allocatable :: eigenvectors(:,:), eigenvalues(:)
call give_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p)
allocate(matrix_ref_1h_1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h2p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p), psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states))
allocate(psi_det_1h2p(N_int,2,n_det_1h2p), psi_coef_1h2p(n_det_1h2p,N_states))
allocate(psi_det_1h1p(N_int,2,n_det_1h1p), psi_coef_1h1p(n_det_1h1p,N_states))
call give_wf_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_1h2p,psi_coef_1h2p,psi_det_1h1p,psi_coef_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
call i_h_j(psi_det_ref_1h_1p(1,1,i),psi_det_ref_1h_1p(1,1,j),N_int,hka)
matrix_ref_1h_1p(i,j) = hka
enddo
enddo
matrix_ref_1h_1p_dressing_1h1p = 0.d0
matrix_ref_1h_1p_dressing_1h2p = 0.d0
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h2p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h2p,psi_coef_1h2p,n_det_1h2p)
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h1p,psi_coef_1h1p,n_det_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
matrix_ref_1h_1p(i,j) += matrix_ref_1h_1p_dressing_1h2p(i,j) + matrix_ref_1h_1p_dressing_1h1p(i,j)
enddo
enddo
allocate(eigenvectors(n_det_ref_1h_1p,n_det_ref_1h_1p), eigenvalues(n_det_ref_1h_1p))
call lapack_diag(eigenvalues,eigenvectors,matrix_ref_1h_1p,n_det_ref_1h_1p,n_det_ref_1h_1p)
!do j = 1, n_det_ref_1h_1p
! print*,'coef = ',eigenvectors(j,1)
!enddo
print*,''
print*,'-----------------------'
print*,'-----------------------'
print*,'e_dressed = ',eigenvalues(1)+nuclear_repulsion
print*,'-----------------------'
! Extract the
integer, allocatable :: index_generator(:)
integer :: n_det_generators_tmp,degree
n_det_generators_tmp = 0
allocate(index_generator(n_det_ref_1h_1p))
do i = 1, n_det_ref_1h_1p
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det_ref_1h_1p(1,1,i), degree, N_int)
if(degree == 0)then
n_det_generators_tmp +=1
index_generator(n_det_generators_tmp) = i
endif
enddo
enddo
if(n_det_generators_tmp .ne. n_det_generators)then
print*,'PB !!!'
print*,'if(n_det_generators_tmp .ne. n_det_genrators)then'
stop
endif
do i = 1, N_det_generators
print*,'psi_coef_dressed = ',eigenvectors(index_generator(i),1)
do j = 1, N_det_generators
dressing_matrix_1h1p(i,j) += matrix_ref_1h_1p_dressing_1h1p(index_generator(i),index_generator(j))
dressing_matrix_1h2p(i,j) += matrix_ref_1h_1p_dressing_1h2p(index_generator(i),index_generator(j))
enddo
enddo
print*,'-----------------------'
print*,'-----------------------'
deallocate(matrix_ref_1h_1p)
deallocate(matrix_ref_1h_1p_dressing_1h1p)
deallocate(matrix_ref_1h_1p_dressing_1h2p)
deallocate(psi_det_ref_1h_1p, psi_coef_ref_1h_1p)
deallocate(psi_det_1h2p, psi_coef_1h2p)
deallocate(psi_det_1h1p, psi_coef_1h1p)
deallocate(eigenvectors,eigenvalues)
deallocate(index_generator)
end
subroutine all_single_for_1h(i_hole,dressing_matrix_1h1p,dressing_matrix_2h1p,dressing_matrix_extra_1h_or_1p)
implicit none
use bitmasks
integer, intent(in) :: i_hole
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_2h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
integer :: i,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
call all_single
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
double precision, allocatable :: matrix_ref_1h_1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_2h1p(:,:)
double precision, allocatable :: psi_coef_ref_1h_1p(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_2h1p(:,:)
integer(bit_kind), allocatable :: psi_det_2h1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_ref_1h_1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_1h1p(:,:,:)
integer :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
double precision :: hka
double precision,allocatable :: eigenvectors(:,:), eigenvalues(:)
call give_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p)
allocate(matrix_ref_1h_1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_2h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p), psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states))
allocate(psi_det_2h1p(N_int,2,n_det_2h1p), psi_coef_2h1p(n_det_2h1p,N_states))
allocate(psi_det_1h1p(N_int,2,n_det_1h1p), psi_coef_1h1p(n_det_1h1p,N_states))
call give_wf_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_2h1p,psi_coef_2h1p,psi_det_1h1p,psi_coef_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
call i_h_j(psi_det_ref_1h_1p(1,1,i),psi_det_ref_1h_1p(1,1,j),N_int,hka)
matrix_ref_1h_1p(i,j) = hka
enddo
enddo
matrix_ref_1h_1p_dressing_1h1p = 0.d0
matrix_ref_1h_1p_dressing_2h1p = 0.d0
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_2h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_2h1p,psi_coef_2h1p,n_det_2h1p)
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h1p,psi_coef_1h1p,n_det_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
matrix_ref_1h_1p(i,j) += matrix_ref_1h_1p_dressing_2h1p(i,j) + matrix_ref_1h_1p_dressing_1h1p(i,j)
enddo
enddo
allocate(eigenvectors(n_det_ref_1h_1p,n_det_ref_1h_1p), eigenvalues(n_det_ref_1h_1p))
call lapack_diag(eigenvalues,eigenvectors,matrix_ref_1h_1p,n_det_ref_1h_1p,n_det_ref_1h_1p)
!do j = 1, n_det_ref_1h_1p
! print*,'coef = ',eigenvectors(j,1)
!enddo
print*,''
print*,'-----------------------'
print*,'-----------------------'
print*,'e_dressed = ',eigenvalues(1)+nuclear_repulsion
print*,'-----------------------'
! Extract the
integer, allocatable :: index_generator(:)
integer :: n_det_generators_tmp,degree
n_det_generators_tmp = 0
allocate(index_generator(n_det_ref_1h_1p))
do i = 1, n_det_ref_1h_1p
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det_ref_1h_1p(1,1,i), degree, N_int)
if(degree == 0)then
n_det_generators_tmp +=1
index_generator(n_det_generators_tmp) = i
endif
enddo
enddo
if(n_det_generators_tmp .ne. n_det_generators)then
print*,'PB !!!'
print*,'if(n_det_generators_tmp .ne. n_det_genrators)then'
stop
endif
do i = 1, N_det_generators
print*,'psi_coef_dressed = ',eigenvectors(index_generator(i),1)
do j = 1, N_det_generators
dressing_matrix_1h1p(i,j) += matrix_ref_1h_1p_dressing_1h1p(index_generator(i),index_generator(j))
dressing_matrix_2h1p(i,j) += matrix_ref_1h_1p_dressing_2h1p(index_generator(i),index_generator(j))
enddo
enddo
print*,'-----------------------'
print*,'-----------------------'
deallocate(matrix_ref_1h_1p)
deallocate(matrix_ref_1h_1p_dressing_1h1p)
deallocate(matrix_ref_1h_1p_dressing_2h1p)
deallocate(psi_det_ref_1h_1p, psi_coef_ref_1h_1p)
deallocate(psi_det_2h1p, psi_coef_2h1p)
deallocate(psi_det_1h1p, psi_coef_1h1p)
deallocate(eigenvectors,eigenvalues)
deallocate(index_generator)
!return
!
!integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
!integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
!integer(bit_kind), allocatable :: psi_2h1p(:,:,:)
!integer(bit_kind), allocatable :: psi_extra_1h_or_1p(:,:,:)
!double precision, allocatable :: psi_ref_coef_out(:,:)
!double precision, allocatable :: psi_coef_extra_1h_or_1p(:,:)
!call all_single_no_1h_or_1p
!call give_n_1h1p_and_n_2h1p_in_psi_det(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p)
!allocate(psi_ref_out(N_int,2,N_det_generators))
!allocate(psi_1h1p(N_int,2,n_det_1h1p))
!allocate(psi_2h1p(N_int,2,n_det_2h1p))
!allocate(psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p))
!allocate(psi_ref_coef_out(N_det_generators,N_states))
!allocate(psi_coef_1h1p(n_det_1h1p,N_states))
!allocate(psi_coef_2h1p(n_det_2h1p,N_states))
!allocate(psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p,N_states))
!call split_wf_generators_and_1h1p_and_2h1p(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
!do i = 1, n_det_extra_1h_or_1p
! print*,'----'
! print*,'c = ',psi_coef_extra_1h_or_1p(i,1)
! call debug_det(psi_extra_1h_or_1p(1,1,i),N_int)
! print*,'----'
!enddo
!call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h1p,psi_coef_1h1p,n_det_1h1p)
!print*,'Dressing 1h1p '
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_1h1p(j,:)
!enddo
!call provide_matrix_dressing_general(dressing_matrix_2h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_2h1p,psi_coef_2h1p,n_det_2h1p)
!print*,'Dressing 2h1p '
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_2h1p(j,:)
!enddo
!call provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix_extra_1h_or_1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p,n_det_extra_1h_or_1p)
!print*,',dressing_matrix_extra_1h_or_1p'
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_extra_1h_or_1p(j,:)
!enddo
!deallocate(psi_ref_out)
!deallocate(psi_1h1p)
!deallocate(psi_2h1p)
!deallocate(psi_extra_1h_or_1p)
!deallocate(psi_ref_coef_out)
!deallocate(psi_coef_1h1p)
!deallocate(psi_coef_2h1p)
!deallocate(psi_coef_extra_1h_or_1p)
end
@ -197,47 +480,56 @@ subroutine all_single_split_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
soft_touch n_det_max_jacobi
end
subroutine all_single_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
implicit none
use bitmasks
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
integer :: i,i_hole
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
integer :: n_det_1h1p,n_det_1h2p
integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
integer(bit_kind), allocatable :: psi_1h2p(:,:,:)
double precision, allocatable :: psi_ref_coef_out(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_1h2p(:,:)
call all_single_no_1h_or_1p_or_2p
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
call give_n_1h1p_and_n_1h2p_in_psi_det(n_det_1h1p,n_det_1h2p)
allocate(psi_ref_out(N_int,2,N_det_generators))
allocate(psi_1h1p(N_int,2,n_det_1h1p))
allocate(psi_1h2p(N_int,2,n_det_1h2p))
allocate(psi_ref_coef_out(N_det_generators,N_states))
allocate(psi_coef_1h1p(n_det_1h1p,N_states))
allocate(psi_coef_1h2p(n_det_1h2p,N_states))
call split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p)
call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h1p,psi_coef_1h1p,n_det_1h1p)
call provide_matrix_dressing_general(dressing_matrix_1h2p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h2p,psi_coef_1h2p,n_det_1h2p)
deallocate(psi_ref_out)
deallocate(psi_1h1p)
deallocate(psi_1h2p)
deallocate(psi_ref_coef_out)
deallocate(psi_coef_1h1p)
deallocate(psi_coef_1h2p)
end
! subroutine all_single_for_1p(i_particl,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
! implicit none
! use bitmasks
! integer, intent(in ) :: i_particl
! double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
! double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
! double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
! integer :: i
! n_det_max_jacobi = 50
! soft_touch n_det_max_jacobi
!
! integer :: n_det_1h1p,n_det_1h2p,n_det_extra_1h_or_1p
! integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
! integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
! integer(bit_kind), allocatable :: psi_1h2p(:,:,:)
! integer(bit_kind), allocatable :: psi_extra_1h_or_1p(:,:,:)
! double precision, allocatable :: psi_ref_coef_out(:,:)
! double precision, allocatable :: psi_coef_1h1p(:,:)
! double precision, allocatable :: psi_coef_1h2p(:,:)
! double precision, allocatable :: psi_coef_extra_1h_or_1p(:,:)
!!!!call all_single_no_1h_or_1p_or_2p
! call all_single
!
! threshold_davidson = 1.d-12
! soft_touch threshold_davidson davidson_criterion
! call diagonalize_CI
! call give_n_1h1p_and_n_1h2p_in_psi_det(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p)
! allocate(psi_ref_out(N_int,2,N_det_generators))
! allocate(psi_1h1p(N_int,2,n_det_1h1p))
! allocate(psi_1h2p(N_int,2,n_det_1h2p))
! allocate(psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p))
! allocate(psi_ref_coef_out(N_det_generators,N_states))
! allocate(psi_coef_1h1p(n_det_1h1p,N_states))
! allocate(psi_coef_1h2p(n_det_1h2p,N_states))
! allocate(psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p,N_states))
! call split_wf_generators_and_1h1p_and_1h2p(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
! call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h1p,psi_coef_1h1p,n_det_1h1p)
! call provide_matrix_dressing_general(dressing_matrix_1h2p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h2p,psi_coef_1h2p,n_det_1h2p)
! call provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix_extra_1h_or_1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p,n_det_extra_1h_or_1p)
!
! deallocate(psi_ref_out)
! deallocate(psi_1h1p)
! deallocate(psi_1h2p)
! deallocate(psi_ref_coef_out)
! deallocate(psi_coef_1h1p)
! deallocate(psi_coef_1h2p)
!
! end

View File

@ -0,0 +1,436 @@
use bitmasks
subroutine collect_lmct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
print*,'COLLECTING THE PERTINENT LMCT (1h)'
double precision, allocatable :: tmp(:,:)
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-2)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_mlct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
print*,'COLLECTING THE PERTINENT MLCT (1p)'
double precision, allocatable :: tmp(:,:)
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-3)then
n_couples +=1
hole_particle(n_couples,1) = iorb
hole_particle(n_couples,2) = jorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_lmct_mlct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
double precision, allocatable :: tmp(:,:)
print*,'COLLECTING THE PERTINENT LMCT (1h)'
print*,'AND THE PERTINENT MLCT (1p)'
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
n_couples +=1
hole_particle(n_couples,1) = iorb
hole_particle(n_couples,2) = jorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_1h1p(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
double precision, allocatable :: tmp(:,:)
print*,'COLLECTING THE PERTINENT 1h1p'
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_virt_orb
iorb = list_virt(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-2)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine set_lmct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
print*,'i_hole,i_particle 2 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
print*,'i_hole,i_particle 1 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_mlct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_mlct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
print*,'i_hole,i_particle 2 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
print*,'i_hole,i_particle 1 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_lmct_mlct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct_mlct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_lmct_mlct_to_psi_det
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct_mlct(hole_particle,n_couples)
call set_psi_det_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_generators_restart
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det = N_det_total
integer :: k
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = 1.d0/dsqrt(dble(N_det_total))
enddo
enddo
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
call remove_duplicates_in_psi_det(found_duplicates)
end
subroutine set_1h1p_to_psi_det
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_1h1p(hole_particle,n_couples)
call set_psi_det_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_generators_restart
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det = N_det_total
integer :: k
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = 1.d0/dsqrt(dble(N_det_total))
enddo
enddo
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
call remove_duplicates_in_psi_det(found_duplicates)
end

View File

@ -0,0 +1,425 @@
BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_ab_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_bb_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_a, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_b, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_double, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_2h2p]
use bitmasks
print*,''
print*,'Providing the 2h2p correlation energy'
print*,''
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_2h2p = 0.d0
corr_energy_2h2p_ab_2_orb = 0.d0
corr_energy_2h2p_bb_2_orb = 0.d0
corr_energy_2h2p_per_orb_ab = 0.d0
corr_energy_2h2p_per_orb_aa = 0.d0
corr_energy_2h2p_per_orb_bb = 0.d0
corr_energy_2h2p_for_1h1p_a = 0.d0
corr_energy_2h2p_for_1h1p_b = 0.d0
corr_energy_2h2p_for_1h1p_double = 0.d0
do i = 1, n_inact_orb ! beta
i_hole = list_inact(i)
do k = 1, n_virt_orb ! beta
k_part = list_virt(k)
do j = 1, n_inact_orb ! alpha
j_hole = list_inact(j)
do l = 1, n_virt_orb ! alpha
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = (ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = hij*hij/delta_e
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_ab(i_hole) += contrib
corr_energy_2h2p_per_orb_ab(k_part) += contrib
! Couple of orbital contribution for the single 1h1p
corr_energy_2h2p_for_1h1p_a(j_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_a(l_part,j_hole) += contrib
corr_energy_2h2p_for_1h1p_b(j_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_b(l_part,j_hole) += contrib
! Couple of orbital contribution for the double 1h1p
corr_energy_2h2p_for_1h1p_double(i_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_double(l_part,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(i_hole,j_hole) += contrib
corr_energy_2h2p_ab_2_orb(j_hole,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(i_hole,k_part) += contrib
corr_energy_2h2p_ab_2_orb(k_part,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(k_part,l_part) += contrib
corr_energy_2h2p_ab_2_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! alpha alpha correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_virt_orb
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_aa(i_hole) += contrib
corr_energy_2h2p_per_orb_aa(k_part) += contrib
! Couple of orbital contribution for the single 1h1p
corr_energy_2h2p_for_1h1p_a(i_hole,k_part) += contrib
corr_energy_2h2p_for_1h1p_a(k_part,i_hole) += contrib
enddo
enddo
enddo
enddo
! beta beta correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_virt_orb
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_bb(i_hole) += contrib
corr_energy_2h2p_per_orb_bb(k_part) += contrib
corr_energy_2h2p_for_1h1p_b(i_hole,k_part) += contrib
corr_energy_2h2p_for_1h1p_b(k_part,i_hole) += contrib
! Two particle correlation energy
corr_energy_2h2p_bb_2_orb(i_hole,j_hole) += contrib
corr_energy_2h2p_bb_2_orb(j_hole,i_hole) += contrib
corr_energy_2h2p_bb_2_orb(i_hole,k_part) += contrib
corr_energy_2h2p_bb_2_orb(k_part,i_hole) += contrib
corr_energy_2h2p_bb_2_orb(k_part,l_part) += contrib
corr_energy_2h2p_bb_2_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_2h1p_ab_bb_per_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_a, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_b, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_double, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_2h1p]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_2h1p = 0.d0
corr_energy_2h1p_per_orb_ab = 0.d0
corr_energy_2h1p_per_orb_aa = 0.d0
corr_energy_2h1p_per_orb_bb = 0.d0
corr_energy_2h1p_ab_bb_per_2_orb = 0.d0
corr_energy_2h1p_for_1h1p_a = 0.d0
corr_energy_2h1p_for_1h1p_b = 0.d0
corr_energy_2h1p_for_1h1p_double = 0.d0
do i = 1, n_inact_orb
i_hole = list_inact(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h1p += contrib
corr_energy_2h1p_ab_bb_per_2_orb(i_hole,j_hole) += contrib
corr_energy_2h1p_per_orb_ab(i_hole) += contrib
corr_energy_2h1p_per_orb_ab(l_part) += contrib
enddo
enddo
enddo
enddo
! Alpha Alpha spin correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h1p += contrib
corr_energy_2h1p_per_orb_aa(i_hole) += contrib
corr_energy_2h1p_per_orb_aa(l_part) += contrib
enddo
enddo
enddo
enddo
! Beta Beta correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
corr_energy_2h1p_ab_bb_per_2_orb(i_hole,j_hole) += contrib
total_corr_e_2h1p += contrib
corr_energy_2h1p_per_orb_bb(i_hole) += contrib
corr_energy_2h1p_per_orb_aa(l_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_two_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_1h2p]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_1h2p = 0.d0
corr_energy_1h2p_per_orb_ab = 0.d0
corr_energy_1h2p_per_orb_aa = 0.d0
corr_energy_1h2p_per_orb_bb = 0.d0
do i = 1, n_virt_orb
i_hole = list_virt(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_ab(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! Alpha Alpha correlation energy
do i = 1, n_virt_orb
i_hole = list_virt(i)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_aa(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! Beta Beta correlation energy
do i = 1, n_virt_orb
i_hole = list_virt(i)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_bb(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_1h1p_spin_flip_per_orb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_1h1p_spin_flip]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_1h1p_spin_flip = 0.d0
corr_energy_1h1p_spin_flip_per_orb = 0.d0
do i = 1, n_inact_orb
i_hole = list_inact(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_act_orb
j_hole = list_act(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h1p_spin_flip += contrib
corr_energy_1h1p_spin_flip_per_orb(i_hole) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -3,6 +3,7 @@ subroutine diag_inactive_virt_and_update_mos
integer :: i,j,i_inact,j_inact,i_virt,j_virt
double precision :: tmp(mo_tot_num_align,mo_tot_num)
character*(64) :: label
print*,'Diagonalizing the occ and virt Fock operator'
tmp = 0.d0
do i = 1, mo_tot_num
tmp(i,i) = Fock_matrix_mo(i,i)
@ -33,3 +34,50 @@ subroutine diag_inactive_virt_and_update_mos
end
subroutine diag_inactive_virt_new_and_update_mos
implicit none
integer :: i,j,i_inact,j_inact,i_virt,j_virt,k,k_act
double precision :: tmp(mo_tot_num_align,mo_tot_num),accu,get_mo_bielec_integral_schwartz
character*(64) :: label
tmp = 0.d0
do i = 1, mo_tot_num
tmp(i,i) = Fock_matrix_mo(i,i)
enddo
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = i+1, n_inact_orb
j_inact = list_inact(j)
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_inact,k_act,j_inact,k_act,mo_integrals_map)
accu -= get_mo_bielec_integral_schwartz(i_inact,k_act,k_act,j_inact,mo_integrals_map)
enddo
tmp(i_inact,j_inact) = Fock_matrix_mo(i_inact,j_inact) + accu
tmp(j_inact,i_inact) = Fock_matrix_mo(j_inact,i_inact) + accu
enddo
enddo
do i = 1, n_virt_orb
i_virt = list_virt(i)
do j = i+1, n_virt_orb
j_virt = list_virt(j)
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_virt,k_act,j_virt,k_act,mo_integrals_map)
enddo
tmp(i_virt,j_virt) = Fock_matrix_mo(i_virt,j_virt) - accu
tmp(j_virt,i_virt) = Fock_matrix_mo(j_virt,i_virt) - accu
enddo
enddo
label = "Canonical"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
end

View File

@ -58,24 +58,24 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
call i_h_j(det_buffer(1,1,i),det_buffer(1,1,i),Nint,haa)
f = 1.d0/(E_ref-haa)
if(second_order_h)then
! if(second_order_h)then
lambda_i = f
else
! You write the new Hamiltonian matrix
do k = 1, Ndet_generators
H_matrix_tmp(k,Ndet_generators+1) = H_array(k)
H_matrix_tmp(Ndet_generators+1,k) = H_array(k)
enddo
H_matrix_tmp(Ndet_generators+1,Ndet_generators+1) = haa
! Then diagonalize it
call lapack_diag(eigenvalues,eigenvectors,H_matrix_tmp,Ndet_generators+1,Ndet_generators+1)
! Then you extract the effective denominator
accu = 0.d0
do k = 1, Ndet_generators
accu += eigenvectors(k,1) * H_array(k)
enddo
lambda_i = eigenvectors(Ndet_generators+1,1)/accu
endif
! else
! ! You write the new Hamiltonian matrix
! do k = 1, Ndet_generators
! H_matrix_tmp(k,Ndet_generators+1) = H_array(k)
! H_matrix_tmp(Ndet_generators+1,k) = H_array(k)
! enddo
! H_matrix_tmp(Ndet_generators+1,Ndet_generators+1) = haa
! ! Then diagonalize it
! call lapack_diag(eigenvalues,eigenvectors,H_matrix_tmp,Ndet_generators+1,Ndet_generators+1)
! ! Then you extract the effective denominator
! accu = 0.d0
! do k = 1, Ndet_generators
! accu += eigenvectors(k,1) * H_array(k)
! enddo
! lambda_i = eigenvectors(Ndet_generators+1,1)/accu
! endif
do k=1,idx(0)
contrib = H_array(idx(k)) * H_array(idx(k)) * lambda_i
delta_ij_generators_(idx(k), idx(k)) += contrib
@ -85,33 +85,6 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
delta_ij_generators_(idx(j), idx(k)) += contrib
enddo
enddo
! H_matrix_tmp_bis(idx(k),idx(k)) += contrib
! H_matrix_tmp_bis(idx(k),idx(j)) += contrib
! H_matrix_tmp_bis(idx(j),idx(k)) += contrib
! do k = 1, Ndet_generators
! do j = 1, Ndet_generators
! H_matrix_tmp_bis(k,j) = H_matrix_tmp(k,j)
! enddo
! enddo
! double precision :: H_matrix_tmp_bis(Ndet_generators,Ndet_generators)
! double precision :: eigenvectors_bis(Ndet_generators,Ndet_generators), eigenvalues_bis(Ndet_generators)
! call lapack_diag(eigenvalues_bis,eigenvectors_bis,H_matrix_tmp_bis,Ndet_generators,Ndet_generators)
! print*,'f,lambda_i = ',f,lambda_i
! print*,'eigenvalues_bi(1)',eigenvalues_bis(1)
! print*,'eigenvalues ',eigenvalues(1)
! do k = 1, Ndet_generators
! print*,'coef,coef_dres = ', eigenvectors(k,1), eigenvectors_bis(k,1)
! enddo
! pause
! accu = 0.d0
! do k = 1, Ndet_generators
! do j = 1, Ndet_generators
! accu += eigenvectors(k,1) * eigenvectors(j,1) * (H_matrix_tmp(k,j) + delta_ij_generators_(k,j))
! enddo
! enddo
! print*,'accu,eigv = ',accu,eigenvalues(1)
! pause
enddo
end

View File

@ -0,0 +1,59 @@
program foboscf
implicit none
call run_prepare
no_oa_or_av_opt = .True.
touch no_oa_or_av_opt
call routine_fobo_scf
call save_mos
end
subroutine run_prepare
implicit none
no_oa_or_av_opt = .False.
touch no_oa_or_av_opt
call damping_SCF
call diag_inactive_virt_and_update_mos
end
subroutine routine_fobo_scf
implicit none
integer :: i,j
print*,''
print*,''
character*(64) :: label
label = "Natural"
do i = 1, 5
print*,'*******************************************************************************'
print*,'*******************************************************************************'
print*,'FOBO-SCF Iteration ',i
print*,'*******************************************************************************'
print*,'*******************************************************************************'
if(speed_up_convergence_foboscf)then
if(i==3)then
threshold_lmct = max(threshold_lmct,0.001)
threshold_mlct = max(threshold_mlct,0.05)
soft_touch threshold_lmct threshold_mlct
endif
if(i==4)then
threshold_lmct = max(threshold_lmct,0.005)
threshold_mlct = max(threshold_mlct,0.07)
soft_touch threshold_lmct threshold_mlct
endif
if(i==5)then
threshold_lmct = max(threshold_lmct,0.01)
threshold_mlct = max(threshold_mlct,0.1)
soft_touch threshold_lmct threshold_mlct
endif
endif
call FOBOCI_lmct_mlct_old_thr
call save_osoci_natural_mos
call damping_SCF
call diag_inactive_virt_and_update_mos
call clear_mo_map
call provide_properties
enddo
end

View File

@ -9,12 +9,9 @@ subroutine FOBOCI_lmct_mlct_old_thr
double precision :: norm_tmp(N_states),norm_total(N_states)
logical :: test_sym
double precision :: thr,hij
double precision :: threshold
double precision, allocatable :: dressing_matrix(:,:)
logical :: verbose,is_ok
verbose = .True.
threshold = threshold_singles
print*,'threshold = ',threshold
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -36,7 +33,14 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,''
print*,''
print*,'DOING FIRST LMCT !!'
print*,'Threshold_lmct = ',threshold_lmct
integer(bit_kind) , allocatable :: zero_bitmask(:,:)
integer(bit_kind) , allocatable :: psi_singles(:,:,:)
logical :: lmct
double precision, allocatable :: psi_singles_coef(:,:)
allocate( zero_bitmask(N_int,2) )
do i = 1, n_inact_orb
lmct = .True.
integer :: i_hole_osoci
i_hole_osoci = list_inact(i)
print*,'--------------------------'
@ -51,27 +55,91 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,'Passed set generators'
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! so all the mono excitation on the new generators
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
if(.not.do_it_perturbative)then
! call all_single
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
double precision :: hkl
! call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
call debug_det(reunion_of_bitmask,N_int)
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Naked matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! Do all the single excitations on top of the CAS and 1h determinants
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_hole_osoci,lmct)
! endif
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that starts from the active space in order
! ! to introduce the Coulomb hole in the active space
! ! These are the 1h2p excitations that have the i_hole_osoci hole in common
! ! and the 2p if there is more than one electron in the active space
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! ! and in the active space
! do k = 1, n_act_orb
! call set_bit_to_integer(list_act(k),zero_bitmask(1,1),N_int)
! call set_bit_to_integer(list_act(k),zero_bitmask(1,2),N_int)
! enddo
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call all_1h2p
! call diagonalize_CI_SC2
! call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that from the orbital i_hole_osoci
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call set_psi_det_to_generators
! call all_2h2p
! call diagonalize_CI_SC2
double precision :: hkl
call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Dressed matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
endif
call set_intermediate_normalization_lmct_old(norm_tmp,i_hole_osoci)
do k = 1, N_states
print*,'norm_tmp = ',norm_tmp(k)
norm_total(k) += norm_tmp(k)
@ -83,9 +151,12 @@ subroutine FOBOCI_lmct_mlct_old_thr
if(.True.)then
print*,''
print*,'DOING THEN THE MLCT !!'
print*,'Threshold_mlct = ',threshold_mlct
lmct = .False.
do i = 1, n_virt_orb
integer :: i_particl_osoci
i_particl_osoci = list_virt(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
@ -107,7 +178,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
allocate(dressing_matrix(N_det_generators,N_det_generators))
@ -122,6 +193,9 @@ subroutine FOBOCI_lmct_mlct_old_thr
! call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_particl_osoci,lmct)
! endif
endif
call set_intermediate_normalization_mlct_old(norm_tmp,i_particl_osoci)
do k = 1, N_states
@ -132,24 +206,6 @@ subroutine FOBOCI_lmct_mlct_old_thr
deallocate(dressing_matrix)
enddo
endif
if(.False.)then
print*,'LAST loop for all the 1h-1p'
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
call set_psi_det_to_generators
call initialize_bitmask_to_restart_ones
! Impose that only the hole i_hole_osoci can be done
call set_bitmask_particl_as_input(inact_virt_bitmask)
call set_bitmask_hole_as_input(inact_virt_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single
call set_intermediate_normalization_1h1p(norm_tmp)
norm_total += norm_tmp
call update_density_matrix_osoci
endif
print*,'norm_total = ',norm_total
norm_total = norm_generators_restart
@ -174,10 +230,8 @@ subroutine FOBOCI_mlct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
double precision :: threshold
logical :: verbose,is_ok
verbose = .False.
threshold = 1.d-2
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -216,7 +270,7 @@ subroutine FOBOCI_mlct_old
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
print*,'is_ok = ',is_ok
is_ok =.True.
if(.not.is_ok)cycle
@ -250,10 +304,8 @@ subroutine FOBOCI_lmct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
double precision :: threshold
logical :: verbose,is_ok
verbose = .False.
threshold = 1.d-2
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -290,7 +342,7 @@ subroutine FOBOCI_lmct_old
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! ! so all the mono excitation on the new generators

View File

@ -0,0 +1,18 @@
program osoci_program
implicit none
do_it_perturbative = .True.
touch do_it_perturbative
call FOBOCI_lmct_mlct_old_thr
call provide_all_the_rest
end
subroutine provide_all_the_rest
implicit none
integer :: i
call update_one_body_dm_mo
call set_lmct_mlct_to_psi_det
call diagonalize_CI
call save_wavefunction
end

View File

@ -1,126 +1,74 @@
use bitmasks
use bitmasks
BEGIN_PROVIDER [ integer, N_det_generators_restart ]
implicit none
BEGIN_DOC
! Number of determinants in the wave function
! Read the wave function
END_DOC
logical :: exists
character*64 :: label
integer :: i
integer, save :: ifirst = 0
!if(ifirst == 0)then
PROVIDE ezfio_filename
call ezfio_has_determinants_n_det(exists)
print*,'exists = ',exists
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed N_det_generators_restart'
call ezfio_get_determinants_n_det(N_det_generators_restart)
ASSERT (N_det_generators_restart > 0)
double precision :: norm
if(ifirst == 0)then
call ezfio_get_determinants_n_det(N_det_generators_restart)
ifirst = 1
!endif
else
print*,'PB in generators_restart restart !!!'
endif
call write_int(output_determinants,N_det_generators_restart,'Number of generators_restart')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators_restart, (N_int,2,psi_det_size) ]
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators_restart, (N_int,2,N_det_generators_restart) ]
&BEGIN_PROVIDER [ integer(bit_kind), ref_generators_restart, (N_int,2) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators_restart, (N_det_generators_restart,N_states) ]
implicit none
BEGIN_DOC
! The wave function determinants. Initialized with Hartree-Fock if the EZFIO file
! is empty
! read wf
!
END_DOC
integer :: i
logical :: exists
character*64 :: label
integer :: i, k
integer, save :: ifirst = 0
!if(ifirst == 0)then
provide N_det_generators_restart
if(.True.)then
call ezfio_has_determinants_N_int(exists)
if (exists) then
call ezfio_has_determinants_bit_kind(exists)
if (exists) then
call ezfio_has_determinants_N_det(exists)
if (exists) then
call ezfio_has_determinants_N_states(exists)
if (exists) then
call ezfio_has_determinants_psi_det(exists)
endif
endif
endif
endif
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed psi_det_generators_restart'
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
do i = 1, N_int
ref_generators_restart(i,1) = psi_det_generators_restart(i,1,1)
ref_generators_restart(i,2) = psi_det_generators_restart(i,2,1)
enddo
endif
double precision, allocatable :: psi_coef_read(:,:)
if(ifirst == 0)then
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
do k = 1, N_int
ref_generators_restart(k,1) = psi_det_generators_restart(k,1,1)
ref_generators_restart(k,2) = psi_det_generators_restart(k,2,1)
enddo
allocate (psi_coef_read(N_det_generators_restart,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k = 1, N_states
do i = 1, N_det_generators_restart
psi_coef_generators_restart(i,k) = psi_coef_read(i,k)
enddo
enddo
ifirst = 1
!endif
deallocate(psi_coef_read)
else
print*,'PB in generators_restart restart !!!'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_coef_generators_restart, (psi_det_size,N_states_diag) ]
implicit none
BEGIN_DOC
! The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file
! is empty
END_DOC
integer :: i,k, N_int2
logical :: exists
double precision, allocatable :: psi_coef_read(:,:)
character*(64) :: label
integer, save :: ifirst = 0
!if(ifirst == 0)then
psi_coef_generators_restart = 0.d0
do i=1,N_states_diag
psi_coef_generators_restart(i,i) = 1.d0
enddo
call ezfio_has_determinants_psi_coef(exists)
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed psi_coef_generators_restart'
if (exists) then
allocate (psi_coef_read(N_det_generators_restart,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k=1,N_states
do i=1,N_det_generators_restart
psi_coef_generators_restart(i,k) = psi_coef_read(i,k)
enddo
enddo
deallocate(psi_coef_read)
endif
ifirst = 1
!endif
BEGIN_PROVIDER [ integer, size_select_max]
implicit none
BEGIN_DOC
! Size of the select_max array
END_DOC
size_select_max = 10000
END_PROVIDER
BEGIN_PROVIDER [ double precision, select_max, (size_select_max) ]
implicit none
BEGIN_DOC
! Memo to skip useless selectors
END_DOC
select_max = huge(1.d0)
END_PROVIDER
BEGIN_PROVIDER [ integer, N_det_generators ]
&BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,10000) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (10000,N_states) ]
END_PROVIDER

View File

@ -0,0 +1,83 @@
program test_sc2
implicit none
read_wf = .True.
touch read_wf
call routine
end
subroutine routine
implicit none
double precision, allocatable :: energies(:),diag_H_elements(:)
double precision, allocatable :: H_matrix(:,:)
allocate(energies(N_states),diag_H_elements(N_det))
call diagonalize_CI
call test_hcc
call test_mulliken
! call SC2_1h1p(psi_det,psi_coef,energies, &
! diag_H_elements,size(psi_coef,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
allocate(H_matrix(N_det,N_det))
call SC2_1h1p_full(psi_det,psi_coef,energies, &
H_matrix,size(psi_coef,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
deallocate(H_matrix)
integer :: i,j
double precision :: accu,coef_hf
! coef_hf = 1.d0/psi_coef(1,1)
! do i = 1, N_det
! psi_coef(i,1) *= coef_hf
! enddo
touch psi_coef
call pouet
end
subroutine pouet
implicit none
double precision :: accu,coef_hf
! provide one_body_dm_mo_alpha one_body_dm_mo_beta
! call density_matrix_1h1p(psi_det,psi_coef,one_body_dm_mo_alpha,one_body_dm_mo_beta,accu,size(psi_coef,1),N_det,N_states_diag,N_int)
! touch one_body_dm_mo_alpha one_body_dm_mo_beta
call test_hcc
call test_mulliken
! call save_wavefunction
end
subroutine test_hcc
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end
subroutine test_mulliken
double precision :: accu
integer :: i
integer :: j
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
!print*,'AO SPIN POPULATIONS'
accu = 0.d0
!do i = 1, ao_num
! accu += spin_gross_orbital_product(i)
! write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
!enddo
!print*,'sum = ',accu
!accu = 0.d0
!print*,'Angular momentum analysis'
!do i = 0, ao_l_max
! accu += spin_population_angular_momentum(i)
! print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
!print*,'sum = ',accu
!enddo
end

View File

@ -6,6 +6,7 @@ subroutine set_generators_to_psi_det
END_DOC
N_det_generators = N_det
integer :: i,k
print*,'N_det = ',N_det
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_det(k,1,i)

View File

@ -24,6 +24,7 @@ subroutine new_approach
double precision, allocatable :: dressing_matrix_1h1p(:,:)
double precision, allocatable :: dressing_matrix_2h1p(:,:)
double precision, allocatable :: dressing_matrix_1h2p(:,:)
double precision, allocatable :: dressing_matrix_extra_1h_or_1p(:,:)
double precision, allocatable :: H_matrix_tmp(:,:)
logical :: verbose,is_ok
@ -45,7 +46,7 @@ subroutine new_approach
verbose = .True.
threshold = threshold_singles
threshold = threshold_lmct
print*,'threshold = ',threshold
thr = 1.d-12
print*,''
@ -81,12 +82,14 @@ subroutine new_approach
! so all the mono excitation on the new generators
allocate(dressing_matrix_1h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_2h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators))
dressing_matrix_1h1p = 0.d0
dressing_matrix_2h1p = 0.d0
dressing_matrix_extra_1h_or_1p = 0.d0
if(.not.do_it_perturbative)then
n_good_hole +=1
! call all_single_split_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
call all_single_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
call all_single_for_1h(i_hole_foboci,dressing_matrix_1h1p,dressing_matrix_2h1p,dressing_matrix_extra_1h_or_1p)
allocate(H_matrix_tmp(N_det_generators,N_det_generators))
do j = 1,N_det_generators
do k = 1, N_det_generators
@ -96,7 +99,7 @@ subroutine new_approach
enddo
do j = 1, N_det_generators
do k = 1, N_det_generators
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_2h1p(j,k)
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_2h1p(j,k) + dressing_matrix_extra_1h_or_1p(j,k)
enddo
enddo
hjk = H_matrix_tmp(1,1)
@ -130,6 +133,7 @@ subroutine new_approach
endif
deallocate(dressing_matrix_1h1p)
deallocate(dressing_matrix_2h1p)
deallocate(dressing_matrix_extra_1h_or_1p)
enddo
print*,''
@ -155,12 +159,14 @@ subroutine new_approach
! so all the mono excitation on the new generators
allocate(dressing_matrix_1h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_1h2p(N_det_generators,N_det_generators))
allocate(dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators))
dressing_matrix_1h1p = 0.d0
dressing_matrix_1h2p = 0.d0
dressing_matrix_extra_1h_or_1p = 0.d0
if(.not.do_it_perturbative)then
n_good_hole +=1
! call all_single_split_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
call all_single_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
call all_single_for_1p(i_particl_osoci,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
allocate(H_matrix_tmp(N_det_generators,N_det_generators))
do j = 1,N_det_generators
do k = 1, N_det_generators
@ -170,7 +176,7 @@ subroutine new_approach
enddo
do j = 1, N_det_generators
do k = 1, N_det_generators
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_1h2p(j,k)
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_1h2p(j,k) + dressing_matrix_extra_1h_or_1p(j,k)
enddo
enddo
hjk = H_matrix_tmp(1,1)
@ -205,7 +211,10 @@ subroutine new_approach
endif
deallocate(dressing_matrix_1h1p)
deallocate(dressing_matrix_1h2p)
deallocate(dressing_matrix_extra_1h_or_1p)
enddo
double precision, allocatable :: H_matrix_total(:,:)
integer :: n_det_total
n_det_total = N_det_generators_restart + n_good_det
@ -221,7 +230,7 @@ subroutine new_approach
!!! Adding the averaged dressing coming from the 1h1p that are redundant for each of the "n_good_hole" 1h
H_matrix_total(i,j) += dressing_matrix_restart_1h1p(i,j)/dble(n_good_hole+n_good_particl)
!!! Adding the dressing coming from the 2h1p that are not redundant for the any of CI calculations
H_matrix_total(i,j) += dressing_matrix_restart_2h1p(i,j)
H_matrix_total(i,j) += dressing_matrix_restart_2h1p(i,j) + dressing_matrix_restart_1h2p(i,j)
enddo
enddo
do i = 1, n_good_det
@ -244,25 +253,79 @@ subroutine new_approach
H_matrix_total(n_det_generators_restart+j,n_det_generators_restart+i) = hij
enddo
enddo
print*,'H matrix to diagonalize'
double precision :: href
href = H_matrix_total(1,1)
do i = 1, n_det_total
H_matrix_total(i,i) -= href
! Adding the correlation energy
logical :: orb_taken_good_det(mo_tot_num)
double precision :: phase
integer :: n_h,n_p,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
integer :: h1,h2,p1,p2,s1,s2
logical, allocatable :: one_hole_or_one_p(:)
integer, allocatable :: holes_or_particle(:)
allocate(one_hole_or_one_p(n_good_det), holes_or_particle(n_good_det))
orb_taken_good_det = .False.
do i = 1, n_good_det
n_h = number_of_holes(psi_good_det(1,1,i))
n_p = number_of_particles(psi_good_det(1,1,i))
call get_excitation(ref_bitmask,psi_good_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if(n_h == 0 .and. n_p == 1)then
orb_taken_good_det(h1) = .True.
one_hole_or_one_p(i) = .True.
holes_or_particle(i) = h1
endif
if(n_h == 1 .and. n_p == 0)then
orb_taken_good_det(p1) = .True.
one_hole_or_one_p(i) = .False.
holes_or_particle(i) = p1
endif
enddo
do i = 1, n_det_total
write(*,'(100(X,F16.8))')H_matrix_total(i,:)
enddo
double precision, allocatable :: eigvalues(:),eigvectors(:,:)
allocate(eigvalues(n_det_total),eigvectors(n_det_total,n_det_total))
call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion + href
do i = 1, n_det_total
print*,'coef = ',eigvectors(i,1)
enddo
integer(bit_kind), allocatable :: psi_det_final(:,:,:)
double precision, allocatable :: psi_coef_final(:,:)
double precision :: norm
do i = 1, N_det_generators_restart
! Add the 2h2p, 2h1p and 1h2p correlation energy
H_matrix_total(i,i) += total_corr_e_2h2p + total_corr_e_2h1p + total_corr_e_1h2p + total_corr_e_1h1p_spin_flip
! Substract the 2h1p part that have already been taken into account
do j = 1, n_inact_orb
iorb = list_inact(j)
if(.not.orb_taken_good_det(iorb))cycle
H_matrix_total(i,i) -= corr_energy_2h1p_per_orb_ab(iorb) - corr_energy_2h1p_per_orb_bb(iorb) - corr_energy_1h1p_spin_flip_per_orb(iorb)
enddo
! Substract the 1h2p part that have already been taken into account
do j = 1, n_virt_orb
iorb = list_virt(j)
if(.not.orb_taken_good_det(iorb))cycle
H_matrix_total(i,i) -= corr_energy_1h2p_per_orb_ab(iorb) - corr_energy_1h2p_per_orb_aa(iorb)
enddo
enddo
do i = 1, N_good_det
! Repeat the 2h2p correlation energy
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += total_corr_e_2h2p
! Substract the part that can not be repeated
! If it is a 1h
if(one_hole_or_one_p(i))then
! 2h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h2p_per_orb_bb(holes_or_particle(i))
! You can repeat a certain part of the 1h2p correlation energy
! that is everything except the part that involves the hole of the 1h
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += total_corr_e_1h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_1h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_1h2p_per_orb_bb(holes_or_particle(i))
else
! 2h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h2p_per_orb_aa(holes_or_particle(i))
! You can repeat a certain part of the 2h1p correlation energy
! that is everything except the part that involves the hole of the 1p
! 2h1p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h1p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h1p_per_orb_aa(holes_or_particle(i))
endif
enddo
allocate(psi_coef_final(n_det_total, N_states))
allocate(psi_det_final(N_int,2,n_det_total))
do i = 1, N_det_generators_restart
@ -277,22 +340,222 @@ subroutine new_approach
psi_det_final(j,2,n_det_generators_restart+i) = psi_good_det(j,2,i)
enddo
enddo
norm = 0.d0
double precision :: href
double precision, allocatable :: eigvalues(:),eigvectors(:,:)
integer(bit_kind), allocatable :: psi_det_final(:,:,:)
double precision, allocatable :: psi_coef_final(:,:)
double precision :: norm
allocate(eigvalues(n_det_total),eigvectors(n_det_total,n_det_total))
call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
print*,''
print*,''
print*,'H_matrix_total(1,1) = ',H_matrix_total(1,1)
print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion
do i = 1, n_det_total
do j = 1, N_states
psi_coef_final(i,j) = eigvectors(i,j)
enddo
norm += psi_coef_final(i,1)**2
! call debug_det(psi_det_final(1, 1, i), N_int)
print*,'coef = ',eigvectors(i,1),H_matrix_total(i,i) - H_matrix_total(1,1)
enddo
print*,'norm = ',norm
integer(bit_kind), allocatable :: psi_det_remaining_1h_or_1p(:,:,:)
integer(bit_kind), allocatable :: key_tmp(:,:)
integer :: n_det_remaining_1h_or_1p
integer :: ispin,i_ok
allocate(key_tmp(N_int,2),psi_det_remaining_1h_or_1p(N_int,2,n_inact_orb*n_act_orb+n_virt_orb*n_act_orb))
logical :: is_already_present
logical, allocatable :: one_hole_or_one_p_bis(:)
integer, allocatable :: holes_or_particle_bis(:)
double precision,allocatable :: H_array(:)
allocate(one_hole_or_one_p_bis(n_inact_orb*n_act_orb+n_virt_orb*n_act_orb), holes_or_particle_bis(n_inact_orb*n_act_orb+n_virt_orb*n_act_orb))
allocate(H_array(n_det_total))
! Dressing with the remaining 1h determinants
print*,''
print*,''
print*,'Dressing with the remaining 1h determinants'
n_det_remaining_1h_or_1p = 0
do i = 1, n_inact_orb
iorb = list_inact(i)
if(orb_taken_good_det(iorb))cycle
do j = 1, n_act_orb
jorb = list_act(j)
ispin = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,iorb,jorb,ispin,i_ok)
if(i_ok .ne.1)cycle
is_already_present = .False.
H_array = 0.d0
call i_h_j(key_tmp,key_tmp,N_int,hij)
href = ref_bitmask_energy - hij
href = 1.d0/href
do k = 1, n_det_total
call get_excitation_degree(psi_det_final(1,1,k),key_tmp,degree,N_int)
if(degree == 0)then
is_already_present = .True.
exit
endif
enddo
if(is_already_present)cycle
n_det_remaining_1h_or_1p +=1
one_hole_or_one_p_bis(n_det_remaining_1h_or_1p) = .True.
holes_or_particle_bis(n_det_remaining_1h_or_1p) = iorb
do k = 1, N_int
psi_det_remaining_1h_or_1p(k,1,n_det_remaining_1h_or_1p) = key_tmp(k,1)
psi_det_remaining_1h_or_1p(k,2,n_det_remaining_1h_or_1p) = key_tmp(k,2)
enddo
! do k = 1, n_det_total
! call i_h_j(psi_det_final(1,1,k),key_tmp,N_int,hij)
! H_array(k) = hij
! enddo
! do k = 1, n_det_total
! do l = 1, n_det_total
! H_matrix_total(k,l) += H_array(k) * H_array(l) * href
! enddo
! enddo
enddo
enddo
! Dressing with the remaining 1p determinants
print*,'n_det_remaining_1h_or_1p = ',n_det_remaining_1h_or_1p
print*,'Dressing with the remaining 1p determinants'
do i = 1, n_virt_orb
iorb = list_virt(i)
if(orb_taken_good_det(iorb))cycle
do j = 1, n_act_orb
jorb = list_act(j)
ispin = 1
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,jorb,iorb,ispin,i_ok)
if(i_ok .ne.1)cycle
is_already_present = .False.
H_array = 0.d0
call i_h_j(key_tmp,key_tmp,N_int,hij)
href = ref_bitmask_energy - hij
href = 1.d0/href
do k = 1, n_det_total
call get_excitation_degree(psi_det_final(1,1,k),key_tmp,degree,N_int)
if(degree == 0)then
is_already_present = .True.
exit
endif
enddo
if(is_already_present)cycle
n_det_remaining_1h_or_1p +=1
one_hole_or_one_p_bis(n_det_remaining_1h_or_1p) = .False.
holes_or_particle_bis(n_det_remaining_1h_or_1p) = iorb
do k = 1, N_int
psi_det_remaining_1h_or_1p(k,1,n_det_remaining_1h_or_1p) = key_tmp(k,1)
psi_det_remaining_1h_or_1p(k,2,n_det_remaining_1h_or_1p) = key_tmp(k,2)
enddo
! do k = 1, n_det_total
! call i_h_j(psi_det_final(1,1,k),key_tmp,N_int,hij)
! H_array(k) = hij
! enddo
! do k = 1, n_det_total
! do l = 1, n_det_total
! H_matrix_total(k,l) += H_array(k) * H_array(l) * href
! enddo
! enddo
enddo
enddo
print*,'n_det_remaining_1h_or_1p = ',n_det_remaining_1h_or_1p
deallocate(key_tmp,H_array)
double precision, allocatable :: eigvalues_bis(:),eigvectors_bis(:,:),H_matrix_total_bis(:,:)
integer :: n_det_final
n_det_final = n_det_total + n_det_remaining_1h_or_1p
allocate(eigvalues_bis(n_det_final),eigvectors_bis(n_det_final,n_det_final),H_matrix_total_bis(n_det_final,n_det_final))
print*,'passed the allocate, building the big matrix'
do i = 1, n_det_total
do j = 1, n_det_total
H_matrix_total_bis(i,j) = H_matrix_total(i,j)
enddo
enddo
do i = 1, n_det_remaining_1h_or_1p
do j = 1, n_det_remaining_1h_or_1p
call i_h_j(psi_det_remaining_1h_or_1p(1,1,i),psi_det_remaining_1h_or_1p(1,1,j),N_int,hij)
H_matrix_total_bis(n_det_total+i,n_det_total+j) = hij
enddo
enddo
do i = 1, n_det_total
do j = 1, n_det_remaining_1h_or_1p
call i_h_j(psi_det_final(1,1,i),psi_det_remaining_1h_or_1p(1,1,j),N_int,hij)
H_matrix_total_bis(i,n_det_total+j) = hij
H_matrix_total_bis(n_det_total+j,i) = hij
enddo
enddo
print*,'passed the matrix'
do i = 1, n_det_remaining_1h_or_1p
if(one_hole_or_one_p_bis(i))then
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_2h2p -corr_energy_2h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h2p_per_orb_bb(holes_or_particle_bis(i))
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_1h2p -corr_energy_1h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_1h2p_per_orb_bb(holes_or_particle_bis(i))
else
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_2h2p -corr_energy_2h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h2p_per_orb_aa(holes_or_particle_bis(i))
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_1h2p -corr_energy_2h1p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h1p_per_orb_aa(holes_or_particle_bis(i))
endif
enddo
do i = 2, n_det_final
do j = i+1, n_det_final
H_matrix_total_bis(i,j) = 0.d0
H_matrix_total_bis(j,i) = 0.d0
enddo
enddo
do i = 1, n_det_final
write(*,'(500(F10.5,X))')H_matrix_total_bis(i,:)
enddo
call lapack_diag(eigvalues_bis,eigvectors_bis,H_matrix_total_bis,n_det_final,n_det_final)
print*,'e_dressed = ',eigvalues_bis(1) + nuclear_repulsion
do i = 1, n_det_final
print*,'coef = ',eigvectors_bis(i,1),H_matrix_total_bis(i,i) - H_matrix_total_bis(1,1)
enddo
do j = 1, N_states
do i = 1, n_det_total
psi_coef_final(i,j) = eigvectors_bis(i,j)
norm += psi_coef_final(i,j)**2
enddo
norm = 1.d0/dsqrt(norm)
do i = 1, n_det_total
psi_coef_final(i,j) = psi_coef_final(i,j) * norm
enddo
enddo
deallocate(eigvalues_bis,eigvectors_bis,H_matrix_total_bis)
!print*,'H matrix to diagonalize'
!href = H_matrix_total(1,1)
!do i = 1, n_det_total
! H_matrix_total(i,i) -= href
!enddo
!do i = 1, n_det_total
! write(*,'(100(X,F16.8))')H_matrix_total(i,:)
!enddo
!call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
!print*,'H_matrix_total(1,1) = ',H_matrix_total(1,1)
!print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion
!do i = 1, n_det_total
! print*,'coef = ',eigvectors(i,1),H_matrix_total(i,i) - H_matrix_total(1,1)
!enddo
!norm = 0.d0
!do i = 1, n_det_total
! do j = 1, N_states
! psi_coef_final(i,j) = eigvectors(i,j)
! enddo
! norm += psi_coef_final(i,1)**2
!enddo
!print*,'norm = ',norm
call set_psi_det_as_input_psi(n_det_total,psi_det_final,psi_coef_final)
print*,''
!do i = 1, N_det
! call debug_det(psi_det(1,1,i),N_int)
! print*,'coef = ',psi_coef(i,1)
!enddo
do i = 1, N_det
call debug_det(psi_det(1,1,i),N_int)
print*,'coef = ',psi_coef(i,1)
enddo
provide one_body_dm_mo
integer :: i_core,iorb,jorb,i_inact,j_inact,i_virt,j_virt,j_core
@ -360,14 +623,14 @@ subroutine new_approach
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_singles)then
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(one_body_dm_mo(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_singles)then
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(one_body_dm_mo(iorb,jorb))
endif

View File

@ -0,0 +1,132 @@
program test_new_new
implicit none
read_wf = .True.
touch read_wf
call test
end
subroutine test
implicit none
integer :: i,j,k,l
call diagonalize_CI
call set_generators_to_psi_det
print*,'Initial coefficients'
do i = 1, N_det
print*,''
call debug_det(psi_det(1,1,i),N_int)
print*,'psi_coef = ',psi_coef(i,1)
print*,''
enddo
double precision, allocatable :: dressing_matrix(:,:)
double precision :: hij
double precision :: phase
integer :: n_h,n_p,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
integer :: h1,h2,p1,p2,s1,s2
allocate(dressing_matrix(N_det_generators,N_det_generators))
do i = 1, N_det_generators
do j = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,i),psi_det_generators(1,1,j),N_int,hij)
dressing_matrix(i,j) = hij
enddo
enddo
href = dressing_matrix(1,1)
print*,'Diagonal part of the dressing'
do i = 1, N_det_generators
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
double precision :: href
print*,''
! One considers that the following excitation classes are not repeatable on the 1h and 1p determinants :
! + 1h1p spin flip
! + 2h1p
! + 1h2p
! But the 2h2p are correctly taken into account
!dressing_matrix(1,1) += total_corr_e_1h2p + total_corr_e_2h1p + total_corr_e_1h1p_spin_flip
!do i = 1, N_det_generators
! dressing_matrix(i,i) += total_corr_e_2h2p
! n_h = number_of_holes(psi_det(1,1,i))
! n_p = number_of_particles(psi_det(1,1,i))
! if(n_h == 1 .and. n_p ==0)then
!
! call get_excitation(ref_bitmask,psi_det_generators(1,1,i),exc,degree,phase,N_int)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! print*,''
! print*,' 1h det '
! print*,''
! call debug_det(psi_det_generators(1,1,i),N_int)
! print*,'h1,p1 = ',h1,p1
! print*,'total_corr_e_2h2p ',total_corr_e_2h2p
! print*,'corr_energy_2h2p_per_orb_ab(h1)',corr_energy_2h2p_per_orb_ab(h1)
! print*,'corr_energy_2h2p_per_orb_bb(h1)',corr_energy_2h2p_per_orb_bb(h1)
! dressing_matrix(i,i) += -corr_energy_2h2p_per_orb_ab(h1) - corr_energy_2h2p_per_orb_bb(h1)
! dressing_matrix(1,1) += -corr_energy_2h1p_per_orb_aa(h1) - corr_energy_2h1p_per_orb_ab(h1) -corr_energy_2h1p_per_orb_bb(h1) &
! -corr_energy_1h1p_spin_flip_per_orb(h1)
! endif
! if(n_h == 0 .and. n_p ==1)then
! call get_excitation(ref_bitmask,psi_det_generators(1,1,i),exc,degree,phase,N_int)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! print*,''
! print*,' 1p det '
! print*,''
! call debug_det(psi_det_generators(1,1,i),N_int)
! print*,'h1,p1 = ',h1,p1
! print*,'total_corr_e_2h2p ',total_corr_e_2h2p
! print*,'corr_energy_2h2p_per_orb_ab(p1)',corr_energy_2h2p_per_orb_ab(p1)
! print*,'corr_energy_2h2p_per_orb_aa(p1)',corr_energy_2h2p_per_orb_aa(p1)
! dressing_matrix(i,i) += -corr_energy_2h2p_per_orb_ab(p1) - corr_energy_2h2p_per_orb_aa(p1)
! dressing_matrix(1,1) += -corr_energy_1h2p_per_orb_aa(p1) - corr_energy_1h2p_per_orb_ab(p1) -corr_energy_1h2p_per_orb_bb(p1)
! endif
!enddo
!href = dressing_matrix(1,1)
!print*,'Diagonal part of the dressing'
!do i = 1, N_det_generators
! print*,'delta e = ',dressing_matrix(i,i) - href
!enddo
call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
print*,'After dressing matrix'
print*,''
print*,''
do i = 1, N_det
print*,'psi_coef = ',psi_coef(i,1)
enddo
!print*,''
!print*,''
!print*,'Canceling the dressing part of the interaction between 1h and 1p'
!do i = 2, N_det_generators
! do j = i+1, N_det_generators
! call i_h_j(psi_det_generators(1,1,i),psi_det_generators(1,1,j),N_int,hij)
! dressing_matrix(i,j) = hij
! dressing_matrix(j,i) = hij
! enddo
!enddo
!call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
!print*,''
!print*,''
!do i = 1, N_det
! print*,'psi_coef = ',psi_coef(i,1)
!enddo
!print*,''
!print*,''
!print*,'Canceling the interaction between 1h and 1p'
!print*,''
!print*,''
!do i = 2, N_det_generators
! do j = i+1, N_det_generators
! dressing_matrix(i,j) = 0.d0
! dressing_matrix(j,i) = 0.d0
! enddo
!enddo
!call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
!do i = 1, N_det
! print*,'psi_coef = ',psi_coef(i,1)
!enddo
call save_natural_mos
deallocate(dressing_matrix)
end

View File

@ -55,15 +55,11 @@ subroutine provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det
i_pert = 0
endif
do j = 1, ndet_generators_input
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
if(dabs(H_array(j)*lambda_i).gt.0.1d0)then
i_pert = 1
exit
endif
enddo
! print*,''
! print*,'lambda_i,f = ',lambda_i,f
! print*,'i_pert = ',i_pert
! print*,''
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
@ -79,9 +75,122 @@ subroutine provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det
enddo
enddo
enddo
href = dressing_matrix(1,1)
print*,'Diagonal part of the dressing'
do i = 1, ndet_generators_input
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
!print*,'i_pert_count = ',i_pert_count
end
subroutine update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,H_jj_in)
use bitmasks
implicit none
integer, intent(in) :: ndet_generators_input
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,ndet_generators_input)
double precision, intent(in) :: H_jj_in(N_det)
double precision, intent(inout) :: dressing_matrix(ndet_generators_input,ndet_generators_input)
integer :: i,j,n_det_ref_tmp,degree
double precision :: href
n_det_ref_tmp = 0
do i = 1, N_det
do j = 1, Ndet_generators_input
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_input(1,1,j),degree,N_int)
if(degree == 0)then
dressing_matrix(j,j) += H_jj_in(i)
n_det_ref_tmp +=1
exit
endif
enddo
enddo
if( ndet_generators_input .ne. n_det_ref_tmp)then
print*,'Problem !!!! '
print*,' ndet_generators .ne. n_det_ref_tmp !!!'
print*,'ndet_generators,n_det_ref_tmp'
print*,ndet_generators_input,n_det_ref_tmp
stop
endif
href = dressing_matrix(1,1)
print*,''
print*,'Update with the SC2 dressing'
print*,''
print*,'Diagonal part of the dressing'
do i = 1, ndet_generators_input
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
end
subroutine provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix,psi_det_ref_input,psi_coef_ref_input,n_det_ref_input, &
psi_det_outer_input,psi_coef_outer_input,n_det_outer_input)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_input
integer(bit_kind), intent(in) :: psi_det_ref_input(N_int,2,n_det_ref_input)
double precision, intent(in) :: psi_coef_ref_input(n_det_ref_input,N_states)
integer, intent(in) :: n_det_outer_input
integer(bit_kind), intent(in) :: psi_det_outer_input(N_int,2,n_det_outer_input)
double precision, intent(in) :: psi_coef_outer_input(n_det_outer_input,N_states)
double precision, intent(inout) :: dressing_matrix(n_det_ref_input,n_det_ref_input)
integer :: i_pert, i_pert_count,i,j,k
double precision :: f,href,hka,lambda_i
double precision :: H_array(n_det_ref_input),accu
integer :: n_h_out,n_p_out,n_p_in,n_h_in,number_of_holes,number_of_particles
call i_h_j(psi_det_ref_input(1,1,1),psi_det_ref_input(1,1,1),N_int,href)
i_pert_count = 0
do i = 1, n_det_outer_input
call i_h_j(psi_det_outer_input(1,1,i),psi_det_outer_input(1,1,i),N_int,hka)
f = 1.d0/(href - hka)
H_array = 0.d0
accu = 0.d0
! n_h_out = number_of_holes(psi_det_outer_input(1,1,i))
! n_p_out = number_of_particles(psi_det_outer_input(1,1,i))
do j=1,n_det_ref_input
n_h_in = number_of_holes(psi_det_ref_input(1,1,j))
n_p_in = number_of_particles(psi_det_ref_input(1,1,j))
! if(n_h_in == 0 .and. n_h_in == 0)then
call i_h_j(psi_det_outer_input(1,1,i),psi_det_ref_input(1,1,j),N_int,hka)
! else
! hka = 0.d0
! endif
H_array(j) = hka
accu += psi_coef_ref_input(j,1) * hka
enddo
lambda_i = psi_coef_outer_input(i,1)/accu
i_pert = 1
if(accu * f / psi_coef_outer_input(i,1) .gt. 0.5d0 .and. accu * f/psi_coef_outer_input(i,1).gt.0.d0)then
i_pert = 0
endif
do j = 1, n_det_ref_input
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
i_pert = 1
exit
endif
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! i_pert = 0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
endif
do k=1,n_det_ref_input
double precision :: contrib
contrib = H_array(k) * H_array(k) * lambda_i
dressing_matrix(k, k) += contrib
do j=k+1,n_det_ref_input
contrib = H_array(k) * H_array(j) * lambda_i
dressing_matrix(k, j) += contrib
dressing_matrix(j, k) += contrib
enddo
enddo
enddo
end
subroutine provide_matrix_dressing_general(dressing_matrix,psi_det_ref_input,psi_coef_ref_input,n_det_ref_input, &
psi_det_outer_input,psi_coef_outer_input,n_det_outer_input)
use bitmasks
@ -112,16 +221,17 @@ subroutine provide_matrix_dressing_general(dressing_matrix,psi_det_ref_input,psi
accu += psi_coef_ref_input(j,1) * hka
enddo
lambda_i = psi_coef_outer_input(i,1)/accu
i_pert = 1
i_pert = 0
if(accu * f / psi_coef_outer_input(i,1) .gt. 0.5d0 .and. accu * f/psi_coef_outer_input(i,1).gt.0.d0)then
i_pert = 0
endif
do j = 1, n_det_ref_input
if(dabs(H_array(j)*lambda_i).gt.0.3d0)then
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
i_pert = 1
exit
endif
enddo
! i_pert = 0
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
@ -170,114 +280,379 @@ subroutine diag_dressed_matrix_and_set_to_psi_det(psi_det_generators_input,Ndet_
end
subroutine give_n_1h1p_and_n_2h1p_in_psi_det(n_det_1h1p,n_det_2h1p)
subroutine give_n_1h1p_and_n_2h1p_in_psi_det(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_1h1p, n_det_2h1p
integer, intent(in) :: i_hole
integer, intent(out) :: n_det_1h1p, n_det_2h1p,n_det_extra_1h_or_1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
n_det_ref_restart_tmp = 0
n_det_1h = 0
n_det_1h1p = 0
n_det_2h1p = 0
n_det_extra_1h_or_1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
else if (n_h ==1 .and. n_p==0)then
n_det_1h +=1
if(is_the_hole_in_det(psi_det(1,1,i),1,i_hole).or.is_the_hole_in_det(psi_det(1,1,i),2,i_hole))then
n_det_1h +=1
else
n_det_extra_1h_or_1p +=1
endif
else if (n_h ==0 .and. n_p==1)then
n_det_extra_1h_or_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1h1p or 2h1p'
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
! if(n_det_1h.ne.1)then
! print*,'PB !! You have more than one 1h'
! stop
! endif
if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
stop
endif
if(n_det_2h1p + n_det_1h1p + n_det_extra_1h_or_1p + n_det_generators .ne. N_det)then
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
stop
endif
end
subroutine give_n_1h1p_and_n_1h2p_in_psi_det(n_det_1h1p,n_det_1h2p)
subroutine give_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_1h1p, n_det_1h2p
integer, intent(out) :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
n_det_ref_restart_tmp = 0
n_det_1h = 0
logical :: is_the_hole_in_det
n_det_ref_1h_1p = 0
n_det_2h1p = 0
n_det_1h1p = 0
n_det_1h2p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p +=1
else if (n_h ==0 .and. n_p==1)then
n_det_1h +=1
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
end
subroutine give_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
n_det_ref_1h_1p = 0
n_det_1h2p = 0
n_det_1h1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p +=1
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1p, 1h1p or 1h2p'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
end
subroutine give_wf_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_2h1p,psi_coef_2h1p,psi_det_1h1p,psi_coef_1h1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
integer(bit_kind), intent(out) :: psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p)
integer(bit_kind), intent(out) :: psi_det_2h1p(N_int,2,n_det_2h1p)
integer(bit_kind), intent(out) :: psi_det_1h1p(N_int,2,n_det_1h1p)
double precision, intent(out) :: psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states)
double precision, intent(out) :: psi_coef_2h1p(n_det_2h1p,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p,N_states)
integer :: n_det_ref_1h_1p_tmp,n_det_2h1p_tmp,n_det_1h1p_tmp
integer :: i,j
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
integer, allocatable :: index_ref_1h_1p(:)
integer, allocatable :: index_2h1p(:)
integer, allocatable :: index_1h1p(:)
allocate(index_ref_1h_1p(n_det))
allocate(index_2h1p(n_det))
allocate(index_1h1p(n_det))
n_det_ref_1h_1p_tmp = 0
n_det_2h1p_tmp = 0
n_det_1h1p_tmp = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p_tmp +=1
index_1h1p(n_det_1h1p_tmp) = i
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p_tmp +=1
index_2h1p(n_det_2h1p_tmp) = i
else
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
stop
endif
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
do i = 1, n_det_2h1p
do j = 1, N_int
psi_det_2h1p(j,1,i) = psi_det(j,1,index_2h1p(i))
psi_det_2h1p(j,2,i) = psi_det(j,2,index_2h1p(i))
enddo
do j = 1, N_states
psi_coef_2h1p(i,j) = psi_coef(index_2h1p(i),j)
enddo
enddo
do i = 1, n_det_1h1p
do j = 1, N_int
psi_det_1h1p(j,1,i) = psi_det(j,1,index_1h1p(i))
psi_det_1h1p(j,2,i) = psi_det(j,2,index_1h1p(i))
enddo
do j = 1, N_states
psi_coef_1h1p(i,j) = psi_coef(index_1h1p(i),j)
enddo
enddo
do i = 1, n_det_ref_1h_1p
do j = 1, N_int
psi_det_ref_1h_1p(j,1,i) = psi_det(j,1,index_ref_1h_1p(i))
psi_det_ref_1h_1p(j,2,i) = psi_det(j,2,index_ref_1h_1p(i))
enddo
do j = 1, N_states
psi_coef_ref_1h_1p(i,j) = psi_coef(index_ref_1h_1p(i),j)
enddo
enddo
end
subroutine give_wf_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_1h2p,psi_coef_1h2p,psi_det_1h1p,psi_coef_1h1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
integer(bit_kind), intent(out) :: psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p)
integer(bit_kind), intent(out) :: psi_det_1h2p(N_int,2,n_det_1h2p)
integer(bit_kind), intent(out) :: psi_det_1h1p(N_int,2,n_det_1h1p)
double precision, intent(out) :: psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states)
double precision, intent(out) :: psi_coef_1h2p(n_det_1h2p,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p,N_states)
integer :: n_det_ref_1h_1p_tmp,n_det_1h2p_tmp,n_det_1h1p_tmp
integer :: i,j
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
integer, allocatable :: index_ref_1h_1p(:)
integer, allocatable :: index_1h2p(:)
integer, allocatable :: index_1h1p(:)
allocate(index_ref_1h_1p(n_det))
allocate(index_1h2p(n_det))
allocate(index_1h1p(n_det))
n_det_ref_1h_1p_tmp = 0
n_det_1h2p_tmp = 0
n_det_1h1p_tmp = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p_tmp +=1
index_1h1p(n_det_1h1p_tmp) = i
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p_tmp +=1
index_1h2p(n_det_1h2p_tmp) = i
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
do i = 1, n_det_1h2p
do j = 1, N_int
psi_det_1h2p(j,1,i) = psi_det(j,1,index_1h2p(i))
psi_det_1h2p(j,2,i) = psi_det(j,2,index_1h2p(i))
enddo
do j = 1, N_states
psi_coef_1h2p(i,j) = psi_coef(index_1h2p(i),j)
enddo
enddo
do i = 1, n_det_1h1p
do j = 1, N_int
psi_det_1h1p(j,1,i) = psi_det(j,1,index_1h1p(i))
psi_det_1h1p(j,2,i) = psi_det(j,2,index_1h1p(i))
enddo
do j = 1, N_states
psi_coef_1h1p(i,j) = psi_coef(index_1h1p(i),j)
enddo
enddo
do i = 1, n_det_ref_1h_1p
do j = 1, N_int
psi_det_ref_1h_1p(j,1,i) = psi_det(j,1,index_ref_1h_1p(i))
psi_det_ref_1h_1p(j,2,i) = psi_det(j,2,index_ref_1h_1p(i))
enddo
do j = 1, N_states
psi_coef_ref_1h_1p(i,j) = psi_coef(index_ref_1h_1p(i),j)
enddo
enddo
end
subroutine give_n_1h1p_and_n_1h2p_in_psi_det(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p)
use bitmasks
implicit none
integer, intent(in) ::i_particl
integer, intent(out) :: n_det_1h1p, n_det_1h2p,n_det_extra_1h_or_1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1p
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_particl_in_det
n_det_ref_restart_tmp = 0
n_det_1p = 0
n_det_1h1p = 0
n_det_1h2p = 0
n_det_extra_1h_or_1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
else if (n_h ==0 .and. n_p==1)then
if(is_the_particl_in_det(psi_det(1,1,i),1,i_particl).or.is_the_particl_in_det(psi_det(1,1,i),2,i_particl))then
n_det_1p +=1
else
n_det_extra_1h_or_1p +=1
endif
else if (n_h ==1 .and. n_p==0)then
n_det_extra_1h_or_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
!if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
! print*,'PB !!!!'
! print*,'You have forgotten something in your generators ... '
! stop
!endif
end
subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p)
subroutine split_wf_generators_and_1h1p_and_2h1p(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_1h1p,n_det_2h1p
integer, intent(in) :: n_det_1h1p,n_det_2h1p,n_det_extra_1h_or_1p,i_hole
integer(bit_kind), intent(out) :: psi_ref_out(N_int,2,N_det_generators)
integer(bit_kind), intent(out) :: psi_1h1p(N_int,2,n_det_1h1p)
integer(bit_kind), intent(out) :: psi_2h1p(N_int,2,n_det_2h1p)
integer(bit_kind), intent(out) :: psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p)
double precision, intent(out) :: psi_ref_coef_out(N_det_generators,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p, N_states)
double precision, intent(out) :: psi_coef_2h1p(n_det_2h1p, N_states)
double precision, intent(out) :: psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p, N_states)
integer :: i,j
integer :: degree
integer :: number_of_holes,n_h, number_of_particles,n_p
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_2h1p_tmp
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_2h1p_tmp,n_det_extra_1h_or_1p_tmp
integer :: n_det_1h_tmp
integer, allocatable :: index_generator(:)
integer, allocatable :: index_1h1p(:)
integer, allocatable :: index_2h1p(:)
integer, allocatable :: index_extra_1h_or_1p(:)
logical :: is_the_hole_in_det
allocate(index_1h1p(n_det))
allocate(index_2h1p(n_det))
allocate(index_extra_1h_or_1p(n_det))
allocate(index_generator(N_det))
n_det_generators_tmp = 0
n_det_1h1p_tmp = 0
n_det_2h1p_tmp = 0
n_det_extra_1h_or_1p_tmp = 0
n_det_1h_tmp = 0
do i = 1, n_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
@ -287,6 +662,16 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p_tmp +=1
index_2h1p(n_det_2h1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
if(is_the_hole_in_det(psi_det(1,1,i),1,i_hole).or.is_the_hole_in_det(psi_det(1,1,i),2,i_hole))then
n_det_1h_tmp +=1
else
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
endif
endif
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det(1,1,i), degree, N_int)
@ -315,6 +700,12 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
stop
endif
if(n_det_extra_1h_or_1p.ne.n_det_extra_1h_or_1p_tmp)then
print*,'PB !!!'
print*,'n_det_extra_1h_or_1p.ne.n_det_extra_1h_or_1p_tmp'
stop
endif
do i = 1,N_det_generators
do j = 1, N_int
psi_ref_out(j,1,i) = psi_det(j,1,index_generator(i))
@ -345,41 +736,59 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
enddo
enddo
do i = 1, n_det_extra_1h_or_1p
do j = 1, N_int
psi_extra_1h_or_1p(j,1,i) = psi_det(j,1,index_extra_1h_or_1p(i))
psi_extra_1h_or_1p(j,2,i) = psi_det(j,2,index_extra_1h_or_1p(i))
enddo
do j = 1, N_states
psi_coef_extra_1h_or_1p(i,j) = psi_coef(index_extra_1h_or_1p(i),j)
enddo
enddo
deallocate(index_generator)
deallocate(index_1h1p)
deallocate(index_2h1p)
deallocate(index_extra_1h_or_1p)
end
subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p)
subroutine split_wf_generators_and_1h1p_and_1h2p(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_1h1p,n_det_1h2p
integer, intent(in) :: n_det_1h1p,n_det_1h2p,n_det_extra_1h_or_1p,i_particl
integer(bit_kind), intent(out) :: psi_ref_out(N_int,2,N_det_generators)
integer(bit_kind), intent(out) :: psi_1h1p(N_int,2,n_det_1h1p)
integer(bit_kind), intent(out) :: psi_1h2p(N_int,2,n_det_1h2p)
integer(bit_kind), intent(out) :: psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p)
double precision, intent(out) :: psi_ref_coef_out(N_det_generators,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p, N_states)
double precision, intent(out) :: psi_coef_1h2p(n_det_1h2p, N_states)
double precision, intent(out) :: psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p, N_states)
integer :: i,j
integer :: degree
integer :: number_of_holes,n_h, number_of_particles,n_p
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_1h2p_tmp
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_1h2p_tmp,n_det_extra_1h_or_1p_tmp
integer, allocatable :: index_generator(:)
integer, allocatable :: index_1h1p(:)
integer, allocatable :: index_1h2p(:)
integer, allocatable :: index_extra_1h_or_1p(:)
logical :: is_the_particl_in_det
integer :: n_det_1p_tmp
allocate(index_1h1p(n_det))
allocate(index_1h2p(n_det))
allocate(index_extra_1h_or_1p(n_det))
allocate(index_generator(N_det))
n_det_generators_tmp = 0
n_det_1h1p_tmp = 0
n_det_1h2p_tmp = 0
n_det_extra_1h_or_1p_tmp = 0
n_det_1p_tmp = 0
do i = 1, n_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
@ -389,6 +798,15 @@ subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_o
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p_tmp +=1
index_1h2p(n_det_1h2p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
if(is_the_particl_in_det(psi_det(1,1,i),1,i_particl).or.is_the_particl_in_det(psi_det(1,1,i),2,i_particl))then
n_det_1p_tmp +=1
else
n_det_extra_1h_or_1p_tmp +=1
endif
endif
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det(1,1,i), degree, N_int)
@ -448,9 +866,20 @@ subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_o
enddo
do i = 1, n_det_extra_1h_or_1p
do j = 1, N_int
psi_extra_1h_or_1p(j,1,i) = psi_det(j,1,index_extra_1h_or_1p(i))
psi_extra_1h_or_1p(j,2,i) = psi_det(j,2,index_extra_1h_or_1p(i))
enddo
do j = 1, N_states
psi_coef_extra_1h_or_1p(i,j) = psi_coef(index_extra_1h_or_1p(i),j)
enddo
enddo
deallocate(index_generator)
deallocate(index_1h1p)
deallocate(index_1h2p)
deallocate(index_extra_1h_or_1p)
end

View File

@ -332,20 +332,20 @@ subroutine save_osoci_natural_mos
enddo
tmp = tmp_bis
!! Symetrization act-virt
do j = 1, n_virt_orb
j_virt= list_virt(j)
accu = 0.d0
do i = 1, n_act_orb
jorb = list_act(i)
accu += dabs(tmp_bis(j_virt,jorb))
enddo
do i = 1, n_act_orb
iorb = list_act(i)
tmp(j_virt,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
tmp(iorb,j_virt) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
enddo
enddo
!!! Symetrization act-virt
! do j = 1, n_virt_orb
! j_virt= list_virt(j)
! accu = 0.d0
! do i = 1, n_act_orb
! jorb = list_act(i)
! accu += dabs(tmp_bis(j_virt,jorb))
! enddo
! do i = 1, n_act_orb
! iorb = list_act(i)
! tmp(j_virt,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
! tmp(iorb,j_virt) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
! enddo
! enddo
!! Symetrization act-inact
!do j = 1, n_inact_orb
@ -387,16 +387,16 @@ subroutine save_osoci_natural_mos
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
enddo
@ -410,8 +410,9 @@ subroutine save_osoci_natural_mos
enddo
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
!soft_touch mo_coef
deallocate(tmp,occ)
@ -518,16 +519,16 @@ subroutine set_osoci_natural_mos
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
enddo
@ -602,15 +603,210 @@ end
subroutine provide_properties
implicit none
integer :: i
double precision :: accu
if(.True.)then
accu= 0.d0
do i = 1, nucl_num
accu += mulliken_spin_densities(i)
print*,i,nucl_charge(i),mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
endif
call print_mulliken_sd
call print_hcc
end
subroutine dress_diag_elem_2h1p(dressing_H_mat_elem,ndet,lmct,i_hole)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet,i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 0.and.n_p==0)then ! CAS
dressing_H_mat_elem(i)+= total_corr_e_2h1p
if(lmct)then
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(i_hole) - corr_energy_2h1p_per_orb_bb(i_hole)
endif
endif
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(p1) - corr_energy_2h1p_per_orb_aa(p1)
else if (n_h == 1.and.n_p==1)then ! 1h1p
! if(degree==1)then
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i)+= - corr_energy_2h1p_per_orb_ab(h1)
! else
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
! dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
! endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(h1)
endif
enddo
end
subroutine dress_diag_elem_1h2p(dressing_H_mat_elem,ndet,lmct,i_hole)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet,i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 0.and.n_p==0)then ! CAS
dressing_H_mat_elem(i)+= total_corr_e_1h2p
if(.not.lmct)then
dressing_H_mat_elem(i) += - corr_energy_1h2p_per_orb_ab(i_hole) - corr_energy_1h2p_per_orb_aa(i_hole)
endif
endif
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i)+= total_corr_e_1h2p - corr_energy_1h2p_per_orb_ab(h1)
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 1.and.n_p==1)then ! 1h1p
if(degree==1)then
dressing_H_mat_elem(i)+= total_corr_e_1h2p
dressing_H_mat_elem(i)+= - corr_energy_1h2p_per_orb_ab(h1)
else
dressing_H_mat_elem(i) +=0.d0
endif
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
! dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
! endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i)+= total_corr_e_1h2p
dressing_H_mat_elem(i)+= - corr_energy_1h2p_per_orb_ab(h1) - corr_energy_1h2p_per_orb_ab(h1)
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i) += 0.d0
endif
enddo
end
subroutine dress_diag_elem_2h2p(dressing_H_mat_elem,ndet)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
dressing_H_mat_elem(i)+= total_corr_e_2h2p
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
else if (n_h == 1.and.n_p==1)then ! 1h1p
if(degree==1)then
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_a(h1,p1) + corr_energy_2h2p_for_1h1p_b(h1,p1))
else
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) - corr_energy_2h2p_per_orb_bb(h1) &
- corr_energy_2h2p_per_orb_ab(h2) &
- 0.5d0 * ( corr_energy_2h2p_per_orb_bb(h2) + corr_energy_2h2p_per_orb_bb(h2))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1)
if(s1.ne.s2)then
dressing_H_mat_elem(i) += corr_energy_2h2p_ab_2_orb(h1,h2)
else
dressing_H_mat_elem(i) += corr_energy_2h2p_bb_2_orb(h1,h2)
endif
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
if(s1.ne.s2)then
dressing_H_mat_elem(i) += corr_energy_2h2p_ab_2_orb(p1,p2)
else
dressing_H_mat_elem(i) += corr_energy_2h2p_bb_2_orb(p1,p2)
endif
endif
enddo
end
subroutine diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_hole,lmct)
implicit none
double precision, allocatable :: dressing_H_mat_elem(:),energies(:)
integer, intent(in) :: i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
integer :: i
double precision :: hij
allocate(dressing_H_mat_elem(N_det),energies(N_states_diag))
print*,''
print*,'dressing with the 2h2p in a CC logic'
print*,''
do i = 1, N_det
call i_h_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
dressing_H_mat_elem(i) = hij
enddo
call dress_diag_elem_2h2p(dressing_H_mat_elem,N_det)
call dress_diag_elem_2h1p(dressing_H_mat_elem,N_det,lmct,i_hole)
call dress_diag_elem_1h2p(dressing_H_mat_elem,N_det,lmct,i_hole)
call davidson_diag_hjj(psi_det,psi_coef,dressing_H_mat_elem,energies,size(psi_coef,1),N_det,N_states_diag,N_int,output_determinants)
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(dressing_H_mat_elem)
end

View File

@ -7,6 +7,11 @@ s.set_selection_pt2("epstein_nesbet_2x2")
#s.unset_openmp()
print s
#s = H_apply("FCI_PT2")
#s.set_perturbation("epstein_nesbet_2x2")
#s.unset_openmp()
#print s
s = H_apply_zmq("FCI_PT2")
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()

View File

@ -24,6 +24,8 @@ subroutine run_wf
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
print *, 'Getting wave function'
zmq_context = f77_zmq_ctx_new ()
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call zmq_get_psi(zmq_to_qp_run_socket, 1)
@ -33,6 +35,8 @@ subroutine run_wf
call provide_everything
integer :: rc, i
print *, 'Contribution to PT2 running'
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call H_apply_FCI_PT2_slave_tcp(i)

View File

@ -1,5 +1,5 @@
use bitmasks
BEGIN_PROVIDER [ integer, N_det_generators ]
implicit none
BEGIN_DOC
@ -8,17 +8,18 @@ BEGIN_PROVIDER [ integer, N_det_generators ]
integer :: i
integer, save :: ifirst = 0
double precision :: norm
read_wf = .True.
if(ifirst == 0)then
N_det_generators = N_det
call ezfio_get_determinants_n_det(N_det_generators)
ifirst = 1
else
print*,'PB in generators restart !!!'
endif
call write_int(output_determinants,N_det_generators,'Number of generators')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (psi_det_size,N_states) ]
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,N_det_generators) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (N_det_generators,N_states) ]
implicit none
BEGIN_DOC
! read wf
@ -26,17 +27,20 @@ END_PROVIDER
END_DOC
integer :: i, k
integer, save :: ifirst = 0
double precision, allocatable :: psi_coef_read(:,:)
if(ifirst == 0)then
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_det(k,1,i)
psi_det_generators(k,2,i) = psi_det(k,2,i)
enddo
call read_dets(psi_det_generators,N_int,N_det_generators)
allocate (psi_coef_read(N_det_generators,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k = 1, N_states
psi_coef_generators(i,k) = psi_coef(i,k)
do i = 1, N_det_generators
psi_coef_generators(i,k) = psi_coef_read(i,k)
enddo
enddo
enddo
ifirst = 1
deallocate(psi_coef_read)
else
print*,'PB in generators restart !!!'
endif
END_PROVIDER

View File

@ -119,7 +119,9 @@ subroutine damping_SCF
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') '====','================','================','================', '===='
write(output_hartree_fock,*)
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
if(.not.no_oa_or_av_opt)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
endif
call write_double(output_hartree_fock, E_min, 'Hartree-Fock energy')
call ezfio_set_hartree_fock_energy(E_min)

View File

@ -65,8 +65,17 @@ subroutine run_pt2(N_st,energy)
threshold_selectors = 1.d0
threshold_generators = 0.999d0
N_det_generators = lambda_mrcc_pt2(0)
do i=1,N_det_generators
N_det_generators = lambda_mrcc_pt2(0) + N_det_cas
do i=1,N_det_cas
do k=1,N_int
psi_det_generators(k,1,i) = psi_ref(k,1,i)
psi_det_generators(k,2,i) = psi_ref(k,2,i)
enddo
do k=1,N_st
psi_coef_generators(i,k) = psi_ref_coef(i,k)
enddo
enddo
do i=N_det_cas+1,N_det_generators
j = lambda_mrcc_pt2(i)
do k=1,N_int
psi_det_generators(k,1,i) = psi_non_ref(k,1,j)

View File

@ -25,7 +25,7 @@ print s
s = H_apply_zmq("mrcc_PT2")
s = H_apply("mrcc_PT2")
s.energy = "ci_electronic_energy_dressed"
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()
@ -36,6 +36,11 @@ s.energy = "psi_ref_energy_diagonalized"
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()
print s
#s = H_apply_zmq("mrcc_PT2")
#s.energy = "ci_electronic_energy_dressed"
#s.set_perturbation("epstein_nesbet_2x2")
#s.unset_openmp()
#print s
END_SHELL

View File

@ -1 +1 @@
MO_Basis Utils
MO_Basis Utils

View File

@ -1,196 +0,0 @@
BEGIN_PROVIDER [ character*(128), ao_l_char, (ao_num) ]
implicit none
BEGIN_DOC
! ao_l = l value of the AO: a+b+c in x^a y^b z^c
END_DOC
integer :: i
do i=1,ao_num
ao_l_char(i) = l_to_character(ao_l(i))
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(128), l_to_character, (0:4)]
BEGIN_DOC
! character corresponding to the "L" value of an AO orbital
END_DOC
implicit none
l_to_character(0)='S'
l_to_character(1)='P'
l_to_character(2)='D'
l_to_character(3)='F'
l_to_character(4)='G'
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_N_Aos, (nucl_num)]
&BEGIN_PROVIDER [ integer, N_AOs_max ]
implicit none
integer :: i
BEGIN_DOC
! Number of AOs per atom
END_DOC
Nucl_N_Aos = 0
do i = 1, ao_num
Nucl_N_Aos(ao_nucl(i)) +=1
enddo
N_AOs_max = maxval(Nucl_N_Aos)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_Aos, (nucl_num,N_AOs_max)]
implicit none
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
Nucl_Aos = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i))+=1
Nucl_Aos(ao_nucl(i),nucl_tmp(ao_nucl(i))) = i
enddo
deallocate(nucl_tmp)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_list_shell_Aos, (nucl_num,N_AOs_max)]
&BEGIN_PROVIDER [ integer, Nucl_num_shell_Aos, (nucl_num)]
implicit none
integer :: i,j,k
BEGIN_DOC
! Index of the shell type Aos and of the corresponding Aos
! Per convention, for P,D,F and G AOs, we take the index
! of the AO with the the corresponding power in the "X" axis
END_DOC
do i = 1, nucl_num
Nucl_num_shell_Aos(i) = 0
do j = 1, Nucl_N_Aos(i)
if(ao_l(Nucl_Aos(i,j))==0)then
! S type function
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
elseif(ao_l(Nucl_Aos(i,j))==1)then
! P type function
if(ao_power(Nucl_Aos(i,j),1)==1)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==2)then
! D type function
if(ao_power(Nucl_Aos(i,j),1)==2)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==3)then
! F type function
if(ao_power(Nucl_Aos(i,j),1)==3)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==4)then
! G type function
if(ao_power(Nucl_Aos(i,j),1)==4)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(4), ao_l_char_space, (ao_num) ]
implicit none
integer :: i
character*(4) :: give_ao_character_space
do i=1,ao_num
if(ao_l(i)==0)then
! S type AO
give_ao_character_space = 'S '
elseif(ao_l(i) == 1)then
! P type AO
if(ao_power(i,1)==1)then
give_ao_character_space = 'X '
elseif(ao_power(i,2) == 1)then
give_ao_character_space = 'Y '
else
give_ao_character_space = 'Z '
endif
elseif(ao_l(i) == 2)then
! D type AO
if(ao_power(i,1)==2)then
give_ao_character_space = 'XX '
elseif(ao_power(i,2) == 2)then
give_ao_character_space = 'YY '
elseif(ao_power(i,3) == 2)then
give_ao_character_space = 'ZZ '
elseif(ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XY '
elseif(ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XZ '
else
give_ao_character_space = 'YZ '
endif
elseif(ao_l(i) == 3)then
! F type AO
if(ao_power(i,1)==3)then
give_ao_character_space = 'XXX '
elseif(ao_power(i,2) == 3)then
give_ao_character_space = 'YYY '
elseif(ao_power(i,3) == 3)then
give_ao_character_space = 'ZZZ '
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXY '
elseif(ao_power(i,1) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXZ '
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYX '
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYZ '
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZX '
elseif(ao_power(i,3) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZY '
elseif(ao_power(i,3) == 1 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XYZ '
endif
elseif(ao_l(i) == 4)then
! G type AO
if(ao_power(i,1)==4)then
give_ao_character_space = 'XXXX'
elseif(ao_power(i,2) == 4)then
give_ao_character_space = 'YYYY'
elseif(ao_power(i,3) == 4)then
give_ao_character_space = 'ZZZZ'
elseif(ao_power(i,1) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXXY'
elseif(ao_power(i,1) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXXZ'
elseif(ao_power(i,2) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYYX'
elseif(ao_power(i,2) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYYZ'
elseif(ao_power(i,3) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZZX'
elseif(ao_power(i,3) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZZY'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 2)then
give_ao_character_space = 'XXYY'
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 2)then
give_ao_character_space = 'YYZZ'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXYZ'
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYXZ'
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZXY'
endif
endif
ao_l_char_space(i) = give_ao_character_space
enddo
END_PROVIDER

View File

@ -104,6 +104,8 @@ subroutine write_Ao_basis(i_unit_output)
write(i_unit_output,*)''
write(i_unit_output,'(A47,2X,I3)')'TOTAL NUMBER OF BASIS SET SHELLS =', i_shell
write(i_unit_output,'(A47,2X,I3)')'NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS =', ao_num
! this is for the new version of molden
write(i_unit_output,'(A12)')'PP =NONE'
write(i_unit_output,*)''
@ -126,7 +128,9 @@ subroutine write_Mo_basis(i_unit_output)
write(i_unit_output,'(18X,F8.5)')-1.d0
write(i_unit_output,*)''
do i = 1, ao_num
write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F9.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F9.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! F12.6 for larger coefficients...
write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F12.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! write(i_unit_output,'(I3, X A1, X I3, X A4 X F16.8)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i))
enddo
write(i_unit_output,*)''

View File

@ -125,6 +125,8 @@ subroutine pt2_moller_plesset ($arguments)
delta_e = (Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)) + &
(Fock_matrix_diag_mo(h2) - Fock_matrix_diag_mo(p2))
delta_e = 1.d0/delta_e
! print*,'h1,p1',h1,p1
! print*,'h2,p2',h2,p2
else if (degree == 1) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)

View File

@ -133,3 +133,16 @@ END_PROVIDER
enddo
END_PROVIDER
subroutine print_hcc
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end

View File

@ -105,3 +105,34 @@ END_PROVIDER
enddo
END_PROVIDER
subroutine print_mulliken_sd
implicit none
double precision :: accu
integer :: i
integer :: j
print*,'Mulliken spin densities'
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
print*,'AO SPIN POPULATIONS'
accu = 0.d0
do i = 1, ao_num
accu += spin_gross_orbital_product(i)
write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
enddo
print*,'sum = ',accu
accu = 0.d0
print*,'Angular momentum analysis'
do i = 0, ao_l_max
accu += spin_population_angular_momentum(i)
print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
print*,'sum = ',accu
enddo
end

View File

@ -1,17 +1,6 @@
program print_hcc
program print_hcc_main
implicit none
read_wf = .True.
touch read_wf
call test
call print_hcc
end
subroutine test
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end

View File

@ -2,34 +2,5 @@ program print_mulliken
implicit none
read_wf = .True.
touch read_wf
print*,'Mulliken spin densities'
call test
call print_mulliken_sd
end
subroutine test
double precision :: accu
integer :: i
integer :: j
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
print*,'AO SPIN POPULATIONS'
accu = 0.d0
do i = 1, ao_num
accu += spin_gross_orbital_product(i)
write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
enddo
print*,'sum = ',accu
accu = 0.d0
print*,'Angular momentum analysis'
do i = 0, ao_l_max
accu += spin_population_angular_momentum(i)
print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
print*,'sum = ',accu
enddo
end

View File

@ -0,0 +1,102 @@
program e_curve
use bitmasks
implicit none
integer :: i,j,k, nab, m, l
double precision :: norm, E, hij, num, ci, cj
integer, allocatable :: iorder(:)
double precision , allocatable :: norm_sort(:)
nab = n_det_alpha_unique+n_det_beta_unique
allocate ( norm_sort(0:nab), iorder(0:nab) )
norm_sort(0) = 0.d0
iorder(0) = 0
do i=1,n_det_alpha_unique
norm_sort(i) = det_alpha_norm(i)
iorder(i) = i
enddo
do i=1,n_det_beta_unique
norm_sort(i+n_det_alpha_unique) = det_beta_norm(i)
iorder(i+n_det_alpha_unique) = -i
enddo
call dsort(norm_sort(1),iorder(1),nab)
if (.not.read_wf) then
stop 'Please set read_wf to true'
endif
PROVIDE psi_bilinear_matrix_values nuclear_repulsion
print *, ''
print *, '=============================='
print *, 'Energies at different cut-offs'
print *, '=============================='
print *, ''
print *, '=========================================================='
print '(A8,2X,A8,2X,A12,2X,A10,2X,A12)', 'Thresh.', 'Ndet', 'Cost', 'Norm', 'E'
print *, '=========================================================='
double precision :: thresh
integer(bit_kind), allocatable :: det_i(:,:), det_j(:,:)
thresh = 1.d-10
do j=0,nab
i = iorder(j)
if (i<0) then
do k=1,n_det
if (psi_bilinear_matrix_columns(k) == -i) then
psi_bilinear_matrix_values(k,1) = 0.d0
endif
enddo
else
do k=1,n_det
if (psi_bilinear_matrix_rows(k) == i) then
psi_bilinear_matrix_values(k,1) = 0.d0
endif
enddo
endif
if (thresh > norm_sort(j)) then
cycle
endif
num = 0.d0
norm = 0.d0
m = 0
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,l,det_i,det_j,ci,cj,hij) REDUCTION(+:norm,m,num)
allocate( det_i(N_int,2), det_j(N_int,2))
!$OMP DO SCHEDULE(guided)
do k=1,n_det
if (psi_bilinear_matrix_values(k,1) == 0.d0) then
cycle
endif
ci = psi_bilinear_matrix_values(k,1)
det_i(:,1) = psi_det_alpha_unique(:,psi_bilinear_matrix_rows(k))
det_i(:,2) = psi_det_beta_unique(:,psi_bilinear_matrix_columns(k))
do l=1,n_det
if (psi_bilinear_matrix_values(l,1) == 0.d0) then
cycle
endif
cj = psi_bilinear_matrix_values(l,1)
det_j(:,1) = psi_det_alpha_unique(:,psi_bilinear_matrix_rows(l))
det_j(:,2) = psi_det_beta_unique(:,psi_bilinear_matrix_columns(l))
call i_h_j(det_i, det_j, N_int, hij)
num = num + ci*cj*hij
enddo
norm = norm + ci*ci
m = m+1
enddo
!$OMP END DO
deallocate (det_i,det_j)
!$OMP END PARALLEL
if (m == 0) then
exit
endif
E = num / norm + nuclear_repulsion
print '(E9.1,2X,I8,2X,F10.2,2X,F10.8,2X,F12.6)', thresh, m, &
dble( elec_alpha_num**3 + elec_alpha_num**2 * (nab-1) ) / &
dble( elec_alpha_num**3 + elec_alpha_num**2 * (j-1)), norm, E
thresh = thresh * 2.d0
enddo
print *, '=========================================================='
deallocate (iorder, norm_sort)
end

View File

@ -1,9 +1,46 @@
program save_for_qmc
read_wf = .True.
TOUCH read_wf
print *, "N_det = ", N_det
call write_spindeterminants
if (do_pseudo) then
call write_pseudopotential
endif
integer :: iunit
integer, external :: get_unit_and_open
logical :: exists
double precision :: e_ref
! Determinants
read_wf = .True.
TOUCH read_wf
print *, "N_det = ", N_det
call write_spindeterminants
! Reference Energy
if (do_pseudo) then
call write_pseudopotential
endif
call system( &
'mkdir -p '//trim(ezfio_filename)//'/simulation ;' // &
'cp '//trim(ezfio_filename)//'/.version '//trim(ezfio_filename)//'/simulation/.version ; ' // &
'mkdir -p '//trim(ezfio_filename)//'/properties ;' // &
'cp '//trim(ezfio_filename)//'/.version '//trim(ezfio_filename)//'/properties/.version ; ' // &
'echo T > '//trim(ezfio_filename)//'/properties/e_loc' &
)
iunit = 13
open(unit=iunit,file=trim(ezfio_filename)//'/simulation/e_ref',action='write')
call ezfio_has_full_ci_energy_pt2(exists)
if (exists) then
call ezfio_get_full_ci_energy_pt2(e_ref)
else
call ezfio_has_full_ci_energy(exists)
if (exists) then
call ezfio_get_full_ci_energy(e_ref)
else
call ezfio_has_hartree_fock_energy(exists)
if (exists) then
call ezfio_get_hartree_fock_energy(e_ref)
else
e_ref = 0.d0
endif
endif
endif
write(iunit,*) e_ref
close(iunit)
end

View File

@ -17,9 +17,11 @@ C
data small/1.d-6/
zprt=.true.
niter=500
niter=1000000
conv=1.d-8
C niter=1000000
C conv=1.d-6
write (6,5) n,m,conv
5 format (//5x,'Unitary transformation of',i3,' vectors'/
* 5x,'following the principle of maximum overlap with a set of',

View File

@ -92,13 +92,182 @@
nrot(1) = 6 ! number of orbitals to be localized
nrot(1) = 64 ! number of orbitals to be localized
integer :: index_rot(1000,1)
cmoref = 0.d0
irot = 0
! H2 molecule for the mixed localization
do i=1,64
irot(i,1) = i+2
enddo
do i=1,17
cmoref(i+1,i,1)=1.d0
enddo
cmoref(19,19-1,1)=1.d0
cmoref(20,19-1,1)=-1.d0
cmoref(19,20-1,1)=-1.d0
cmoref(20,20-1,1)=-1.d0
cmoref(21,20-1,1)=2.d0
cmoref(22,21-1,1)=1.d0
cmoref(23,22-1,1)=1.d0
cmoref(24,23-1,1)=1.d0
cmoref(25,24-1,1)=1.d0
cmoref(26,24-1,1)=-1.d0
cmoref(25,25-1,1)=-1.d0
cmoref(26,25-1,1)=-1.d0
cmoref(27,25-1,1)=2.d0
cmoref(28,26-1,1)=1.d0
cmoref(29,27-1,1)=1.d0
cmoref(30,28-1,1)=1.d0
cmoref(31,29-1,1)=1.d0
cmoref(32,29-1,1)=-1.d0
cmoref(31,30-1,1)=-1.d0
cmoref(32,30-1,1)=-1.d0
cmoref(33,30-1,1)=2.d0
cmoref(34,31-1,1)=1.d0
cmoref(35,32-1,1)=1.d0
cmoref(36,33-1,1)=1.d0
do i=33,49
cmoref(i+5,i,1)= 1.d0
enddo
cmoref(55,52-2,1)=1.d0
cmoref(56,52-2,1)=-1.d0
cmoref(55,53-2,1)=-1.d0
cmoref(56,53-2,1)=-1.d0
cmoref(57,53-2,1)=2.d0
cmoref(58,54-2,1)=1.d0
cmoref(59,55-2,1)=1.d0
cmoref(60,56-2,1)=1.d0
cmoref(61,57-2,1)=1.d0
cmoref(62,57-2,1)=-1.d0
cmoref(61,58-2,1)=-1.d0
cmoref(62,58-2,1)=-1.d0
cmoref(63,58-2,1)=2.d0
cmoref(64,59-2,1)=1.d0
cmoref(65,60-2,1)=1.d0
cmoref(66,61-2,1)=1.d0
cmoref(67,62-2,1)=1.d0
cmoref(68,62-2,1)=-1.d0
cmoref(67,63-2,1)=-1.d0
cmoref(68,63-2,1)=-1.d0
cmoref(69,63-2,1)=2.d0
cmoref(70,64-2,1)=1.d0
cmoref(71,65-2,1)=1.d0
cmoref(72,66-2,1)=1.d0
! H2 molecule
! do i=1,66
! irot(i,1) = i
! enddo
!
! do i=1,18
! cmoref(i,i,1)=1.d0
! enddo
! cmoref(19,19,1)=1.d0
! cmoref(20,19,1)=-1.d0
! cmoref(19,20,1)=-1.d0
! cmoref(20,20,1)=-1.d0
! cmoref(21,20,1)=2.d0
! cmoref(22,21,1)=1.d0
! cmoref(23,22,1)=1.d0
! cmoref(24,23,1)=1.d0
!
!
! cmoref(25,24,1)=1.d0
! cmoref(26,24,1)=-1.d0
! cmoref(25,25,1)=-1.d0
! cmoref(26,25,1)=-1.d0
! cmoref(27,25,1)=2.d0
! cmoref(28,26,1)=1.d0
! cmoref(29,27,1)=1.d0
! cmoref(30,28,1)=1.d0
!
! cmoref(31,29,1)=1.d0
! cmoref(32,29,1)=-1.d0
! cmoref(31,30,1)=-1.d0
! cmoref(32,30,1)=-1.d0
! cmoref(33,30,1)=2.d0
! cmoref(34,31,1)=1.d0
! cmoref(35,32,1)=1.d0
! cmoref(36,33,1)=1.d0
!
! do i=34,51
! cmoref(i+3,i,1)= 1.d0
! enddo
!
! cmoref(55,52,1)=1.d0
! cmoref(56,52,1)=-1.d0
! cmoref(55,53,1)=-1.d0
! cmoref(56,53,1)=-1.d0
! cmoref(57,53,1)=2.d0
! cmoref(58,54,1)=1.d0
! cmoref(59,55,1)=1.d0
! cmoref(60,56,1)=1.d0
!
! cmoref(61,57,1)=1.d0
! cmoref(62,57,1)=-1.d0
! cmoref(61,58,1)=-1.d0
! cmoref(62,58,1)=-1.d0
! cmoref(63,58,1)=2.d0
! cmoref(64,59,1)=1.d0
! cmoref(65,60,1)=1.d0
! cmoref(66,61,1)=1.d0
!
! cmoref(67,62,1)=1.d0
! cmoref(68,62,1)=-1.d0
! cmoref(67,63,1)=-1.d0
! cmoref(68,63,1)=-1.d0
! cmoref(69,63,1)=2.d0
! cmoref(70,64,1)=1.d0
! cmoref(71,65,1)=1.d0
! cmoref(72,66,1)=1.d0
! H atom
! do i=1,33
! irot(i,1) = i
! enddo
!
! do i=1,18
! cmoref(i,i,1)=1.d0
! enddo
! cmoref(19,19,1)=1.d0
! cmoref(20,19,1)=-1.d0
! cmoref(19,20,1)=-1.d0
! cmoref(20,20,1)=-1.d0
! cmoref(21,20,1)=2.d0
! cmoref(22,21,1)=1.d0
! cmoref(23,22,1)=1.d0
! cmoref(24,23,1)=1.d0
! cmoref(25,24,1)=1.d0
! cmoref(26,24,1)=-1.d0
! cmoref(25,25,1)=-1.d0
! cmoref(26,25,1)=-1.d0
! cmoref(27,25,1)=2.d0
! cmoref(28,26,1)=1.d0
! cmoref(29,27,1)=1.d0
! cmoref(30,28,1)=1.d0
!
! cmoref(31,29,1)=1.d0
! cmoref(32,29,1)=-1.d0
! cmoref(31,30,1)=-1.d0
! cmoref(32,30,1)=-1.d0
! cmoref(33,30,1)=2.d0
! cmoref(34,31,1)=1.d0
! cmoref(35,32,1)=1.d0
! cmoref(36,33,1)=1.d0
! Definition of the index of the MO to be rotated
! irot(2,1) = 21 ! the first mo to be rotated is the 21 th MO
@ -106,25 +275,67 @@
! irot(4,1) = 23 !
! irot(5,1) = 24 !
! irot(6,1) = 25 !
! do i = 1,12
! irot(i,1) = i+6
! enddo
irot(1,1) = 5
irot(2,1) = 6
irot(3,1) = 7
irot(4,1) = 8
irot(5,1) = 9
irot(6,1) = 10
!N2
! irot(1,1) = 5
! irot(2,1) = 6
! irot(3,1) = 7
! irot(4,1) = 8
! irot(5,1) = 9
! irot(6,1) = 10
!
! cmoref(5,1,1) = 1.d0 !
! cmoref(6,2,1) = 1.d0 !
! cmoref(7,3,1) = 1.d0 !
! cmoref(40,4,1) = 1.d0 !
! cmoref(41,5,1) = 1.d0 !
! cmoref(42,6,1) = 1.d0 !
!END N2
!HEXATRIENE
! irot(1,1) = 20
! irot(2,1) = 21
! irot(3,1) = 22
! irot(4,1) = 23
! irot(5,1) = 24
! irot(6,1) = 25
!
! cmoref(7,1,1) = 1.d0 !
! cmoref(26,1,1) = 1.d0 !
! cmoref(45,2,1) = 1.d0 !
! cmoref(64,2,1) = 1.d0 !
! cmoref(83,3,1) = 1.d0 !
! cmoref(102,3,1) = 1.d0 !
! cmoref(7,4,1) = 1.d0 !
! cmoref(26,4,1) = -1.d0 !
! cmoref(45,5,1) = 1.d0 !
! cmoref(64,5,1) = -1.d0 !
! cmoref(83,6,1) = 1.d0 !
! cmoref(102,6,1) = -1.d0 !
!END HEXATRIENE
!!!!H2 H2 CAS
! irot(1,1) = 1
! irot(2,1) = 2
!
! cmoref(1,1,1) = 1.d0
! cmoref(37,2,1) = 1.d0
!END H2
!!!! LOCALIZATION ON THE BASIS FUNCTIONS
! do i = 1, nrot(1)
! irot(i,1) = i
! cmoref(i,i,1) = 1.d0
! enddo
!END BASISLOC
! do i = 1, nrot(1)
! irot(i,1) = 4+i
! enddo
do i = 1, nrot(1)
print*,'irot(i,1) = ',irot(i,1)
enddo
pause
cmoref(4,1,1) = 1.d0 ! 2S function
cmoref(5,2,1) = 1.d0 ! 2S function
cmoref(6,3,1) = 1.d0 ! 2S function
cmoref(19,4,1) = 1.d0 ! 2S function
cmoref(20,5,1) = 1.d0 ! 2S function
cmoref(21,6,1) = 1.d0 ! 2S function
! pause
! you define the guess vectors that you want
! the new MO to be close to
@ -138,233 +349,21 @@
! own guess vectors for the MOs
! The new MOs are provided in output
! in the same order than the guess MOs
! C-C bonds
! 1-2
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,1,1) = -0.012d0 ! 2S function
! cmoref(2+shift,1,1) = 0.18d0 !
! cmoref(3+shift,1,1) = 0.1d0 !
! cmoref(5+shift,1,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,1,1) = -0.1d0 ! 2pZ function
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,1,1) = -0.012d0 ! 2S function
! cmoref(2+shift,1,1) = 0.18d0 !
! cmoref(3+shift,1,1) = 0.1d0 !
! cmoref(5+shift,1,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,1,1) = 0.1d0 ! 2pZ function
! ! 1-3
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,2,1) = -0.012d0 ! 2S function
! cmoref(2+shift,2,1) = 0.18d0 !
! cmoref(3+shift,2,1) = 0.1d0 !
! cmoref(5+shift,2,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,2,1) = -0.1d0 ! 2pZ function
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,2,1) = -0.012d0 ! 2S function
! cmoref(2+shift,2,1) = 0.18d0 !
! cmoref(3+shift,2,1) = 0.1d0 !
! cmoref(5+shift,2,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,2,1) = 0.1d0 ! 2pZ function
! ! 4-6
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,3,1) = -0.012d0 ! 2S function
! cmoref(2+shift,3,1) = 0.18d0 !
! cmoref(3+shift,3,1) = 0.1d0 !
! cmoref(5+shift,3,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,3,1) = -0.1d0 ! 2pZ function
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,3,1) = -0.012d0 ! 2S function
! cmoref(2+shift,3,1) = 0.18d0 !
! cmoref(3+shift,3,1) = 0.1d0 !
! cmoref(5+shift,3,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,3,1) = 0.1d0 ! 2pZ function
! ! 6-5
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,4,1) = -0.012d0 ! 2S function
! cmoref(2+shift,4,1) = 0.18d0 !
! cmoref(3+shift,4,1) = 0.1d0 !
! cmoref(5+shift,4,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,4,1) = 0.1d0 ! 2pZ function
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,4,1) = -0.012d0 ! 2S function
! cmoref(2+shift,4,1) = 0.18d0 !
! cmoref(3+shift,4,1) = 0.1d0 !
! cmoref(5+shift,4,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,4,1) = -0.1d0 ! 2pZ function
! ! 2-4
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,5,1) = -0.012d0 ! 2S function
! cmoref(2+shift,5,1) = 0.18d0 !
! cmoref(3+shift,5,1) = 0.1d0 !
! cmoref(6+shift,5,1) = 0.1d0 ! 2pZ function
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,5,1) = -0.012d0 ! 2S function
! cmoref(2+shift,5,1) = 0.18d0 !
! cmoref(3+shift,5,1) = 0.1d0 !
! cmoref(6+shift,5,1) = -0.1d0 ! 2pZ function
! ! 3-5
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,6,1) = -0.012d0 ! 2S function
! cmoref(2+shift,6,1) = 0.18d0 !
! cmoref(3+shift,6,1) = 0.1d0 !
! cmoref(6+shift,6,1) = 0.1d0 ! 2pZ function
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,6,1) = -0.012d0 ! 2S function
! cmoref(2+shift,6,1) = 0.18d0 !
! cmoref(3+shift,6,1) = 0.1d0 !
! cmoref(6+shift,6,1) = -0.1d0 ! 2pZ function
! ! C-H bonds
! ! 2-7
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,7,1) = -0.012d0 ! 2S function
! cmoref(2+shift,7,1) = 0.18d0 !
! cmoref(3+shift,7,1) = 0.1d0 !
! cmoref(5+shift,7,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,7,1) = 0.1d0 ! 2pZ function
!
! i_atom = 7
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,7,1) = 0.12d0 ! 1S function
! ! 4-10
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,8,1) = -0.012d0 ! 2S function
! cmoref(2+shift,8,1) = 0.18d0 !
! cmoref(3+shift,8,1) = 0.1d0 !
! cmoref(5+shift,8,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,8,1) = -0.1d0 ! 2pZ function
!
! i_atom = 10
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,8,1) = 0.12d0 ! 1S function
! ! 5-11
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,9,1) = -0.012d0 ! 2S function
! cmoref(2+shift,9,1) = 0.18d0 !
! cmoref(3+shift,9,1) = 0.1d0 !
! cmoref(5+shift,9,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,9,1) = -0.1d0 ! 2pZ function
!
! i_atom = 11
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,9,1) = 0.12d0 ! 1S function
! ! 3-8
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,10,1) = -0.012d0 ! 2S function
! cmoref(2+shift,10,1) = 0.18d0 !
! cmoref(3+shift,10,1) = 0.1d0 !
!
! cmoref(5+shift,10,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,10,1) = 0.1d0 ! 2pZ function
!
! i_atom = 8
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,10,1) = 0.12d0 ! 1S function
! ! 1-9
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,11,1) = -0.012d0 ! 2S function
! cmoref(2+shift,11,1) = 0.18d0 !
! cmoref(3+shift,11,1) = 0.1d0 !
!
! cmoref(6+shift,11,1) = 0.1d0 ! 2pZ function
! i_atom = 9
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,11,1) = 0.12d0 ! 1S function
!
! ! 6-12
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,12,1) = -0.012d0 ! 2S function
! cmoref(2+shift,12,1) = 0.18d0 !
! cmoref(3+shift,12,1) = 0.1d0 !
!
! cmoref(6+shift,12,1) = -0.1d0 ! 2pZ function
! i_atom = 12
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,12,1) = 0.12d0 ! 1S function
! cmoref(12,1,1) = 1.d0 !
! cmoref(21,2,1) = 1.d0 !
! cmoref(30,2,1) = 1.d0 !
! cmoref(39,3,1) = 1.d0 !
! cmoref(48,3,1) = 1.d0 !
! cmoref(3,4,1) = 1.d0 !
! cmoref(12,4,1) =-1.d0 !
! cmoref(21,5,1) = 1.d0 !
! cmoref(30,5,1) =-1.d0 !
! cmoref(39,6,1) = 1.d0 !
! cmoref(48,6,1) =-1.d0 !
! do i = 1, nrot(1)
! j = 5+(i-1)*15
! cmoref(j,i,1) = 0.2d0
! cmoref(j+3,i,1) = 0.12d0
! print*,'j = ',j
! enddo
! pause
print*,'passed the definition of the referent vectors '
!Building the S (overlap) matrix in the AO basis.
do i = 1, ao_num
do j = 1, ao_num
s(i,j,1) = ao_overlap(i,j)
do j =1, ao_num
s(i,j,1) = ao_overlap(i,j)
enddo
enddo
!Now big loop over symmetry
@ -398,20 +397,13 @@
! do i=1,nmo(isym)
do i=1,ao_num
do j=1,nrot(isym)
ddum(i,j)=0.d0
do k=1,ao_num
ddum(i,j)=ddum(i,j)+s(i,k,isym)*cmo(k,irot(j,isym),isym)
enddo
enddo
do i=1,ao_num
ddum(i,j)=0.d0
do k=1,ao_num
ddum(i,j)=ddum(i,j)+s(i,k,isym)*cmo(k,irot(j,isym),isym)
enddo
enddo
enddo
@ -441,7 +433,7 @@
do i=1,nrot(isym)
do j=1,ao_num
write (6,*) 'isym,',isym,nrot(isym),nmo(isym)
! write (6,*) 'isym,',isym,nrot(isym),nmo(isym)
newcmo(j,irot(i,isym),isym)=0.d0
do k=1,nrot(isym)
newcmo(j,irot(i,isym),isym)=newcmo(j,irot(i,isym),isym) + cmo(j,irot(k,isym),isym)*t(k,i)
@ -459,7 +451,7 @@
enddo !big loop over symmetry
10 format (4E20.12)
10 format (4E18.12)
! Now we copyt the newcmo into the mo_coef
@ -472,9 +464,7 @@
enddo
enddo
enddo
! if(dabs(newcmo(3,19,1) - mo_coef(3,19)) .gt.1.d-10 )then
print*,'mo_coef(3,19)',mo_coef(3,19)
pause
! pause
! we say that it hase been touched, and valid and that everything that

View File

@ -183,6 +183,9 @@ def get_nb_permutation(str_):
def order_l_l_sym(l_l_sym):
l_order_mo = [i for i,_ in enumerate(l_l_sym)]
n = 1
for i in range(len(l_l_sym)):
if n != 1:
@ -192,11 +195,11 @@ def order_l_l_sym(l_l_sym):
l = l_l_sym[i]
n = get_nb_permutation(l[2])
l_l_sym[i:i + n] = sorted(l_l_sym[i:i + n],
key=lambda x: x[2],
cmp=compare_gamess_style)
l_l_sym[i:i + n], l_order_mo[i:i+n] = zip(*sorted(zip(l_l_sym[i:i + n],l_order_mo[i:i+n]),
key=lambda x: x[0][2],
cmp=compare_gamess_style))
return l_l_sym
return l_l_sym, l_order_mo
#==========================
@ -205,8 +208,13 @@ def order_l_l_sym(l_l_sym):
l_sym_without_header = sym_raw.split("\n")[3:-2]
l_l_sym_raw = [i.split() for i in l_sym_without_header]
print len(l_l_sym_raw)
l_l_sym_expend_sym = expend_sym_l(l_l_sym_raw)
l_l_sym_ordered = order_l_l_sym(l_l_sym_expend_sym)
print len(l_l_sym_expend_sym)
l_l_sym_ordered, l_order_mo = order_l_l_sym(l_l_sym_expend_sym)
#========
#MO COEF
@ -256,7 +264,7 @@ def print_mo_coef(mo_coef_block, l_l_sym):
i_a = int(l[1]) - 1
sym = l[2]
print l_label[i_a], sym, " ".join('{: 3.8f}'.format(i)
print l_label[i_a], sym, " ".join('{0: 3.8f}'.format(i)
for i in a[i])
if i_block != nb_block - 1:
@ -348,6 +356,7 @@ d_rep={"+":"1","-":"0"}
det_without_header = det_raw[pos+2::]
for line_raw in det_without_header.split("\n"):
line = line_raw
@ -355,8 +364,14 @@ for line_raw in det_without_header.split("\n"):
try:
float(line)
except ValueError:
print line_raw.strip(), len(line_raw.strip())
print l_order_mo, len(l_order_mo)
line_order = [line_raw[i] for i in l_order_mo]
line= "".join([d_rep[x] if x in d_rep else x for x in line_raw])
print line.strip()
print "END_DET"

View File

@ -37,7 +37,7 @@ from qp_path import QP_ROOT, QP_SRC, QP_EZFIO
LIB = "" # join(QP_ROOT, "lib", "rdtsc.o")
EZFIO_LIB = join(QP_ROOT, "lib", "libezfio_irp.a")
ZMQ_LIB = join(QP_ROOT, "lib", "libf77zmq.a") + " " + join(QP_ROOT, "lib", "libzmq.a") + " -lstdc++ -lrt"
ZMQ_LIB = join(QP_ROOT, "lib", "libf77zmq.a") + " " + join(QP_ROOT, "lib", "libzmq.a") + " -lstdc++ -lrt"
ROOT_BUILD_NINJA = join(QP_ROOT, "config", "build.ninja")
header = r"""#
@ -96,7 +96,8 @@ def ninja_create_env_variable(pwd_config_file):
l_string.append(str_)
lib_lapack = get_compilation_option(pwd_config_file, "LAPACK_LIB")
l_string.append("LIB = {0} {1} {2} {3}".format(LIB, lib_lapack, EZFIO_LIB, ZMQ_LIB))
str_lib = " ".join([LIB, lib_lapack, EZFIO_LIB, ZMQ_LIB])
l_string.append("LIB = {0} ".format(str_lib))
l_string.append("")
@ -387,6 +388,8 @@ def get_l_file_for_module(path_module):
l_src.append(f)
obj = '{0}.o'.format(os.path.splitext(f)[0])
l_obj.append(obj)
elif f.lower().endswith(".o"):
l_obj.append(join(path_module.abs, f))
elif f == "EZFIO.cfg":
l_depend.append(join(path_module.abs, "ezfio_interface.irp.f"))

View File

@ -345,7 +345,7 @@ def save_ezfio_provider(path_head, dict_code_provider):
path = "{0}/ezfio_interface.irp.f".format(path_head)
l_output = ["! DO NOT MODIFY BY HAND",
"! Created by $QP_ROOT/scripts/ezfio_interface.py",
"! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py",
"! from file {0}/EZFIO.cfg".format(path_head),
"\n"]

View File

@ -22,6 +22,7 @@ BEGIN_PROVIDER [ %(type)s, %(name)s %(size)s ]
logical :: has
PROVIDE ezfio_filename
%(test_null_size)s
call ezfio_has_%(ezfio_dir)s_%(ezfio_name)s(has)
if (has) then
call ezfio_get_%(ezfio_dir)s_%(ezfio_name)s(%(name)s)
@ -44,6 +45,7 @@ END_PROVIDER
def __repr__(self):
self.set_write()
self.set_test_null_size()
for v in self.values:
if not v:
msg = "Error : %s is not set in EZFIO.cfg" % (v)
@ -54,20 +56,31 @@ END_PROVIDER
return self.data % self.__dict__
def set_test_null_size(self):
if "size" not in self.__dict__:
self.__dict__["size"] = ""
if self.size != "":
self.test_null_size = "if (size(%s) == 0) return\n" % ( self.name )
else:
self.test_null_size = ""
def set_write(self):
self.write = ""
if self.type in self.write_correspondance:
write = self.write_correspondance[self.type]
output = self.output
name = self.name
if "size" in self.__dict__:
return
else:
if self.type in self.write_correspondance:
write = self.write_correspondance[self.type]
output = self.output
name = self.name
l_write = ["",
" call write_time(%(output)s)",
" call %(write)s(%(output)s, %(name)s, &",
" '%(name)s')",
""]
l_write = ["",
" call write_time(%(output)s)",
" call %(write)s(%(output)s, %(name)s, &",
" '%(name)s')",
""]
self.write = "\n".join(l_write) % locals()
self.write = "\n".join(l_write) % locals()
def set_type(self, t):
self.type = t.lower()

View File

@ -6,7 +6,7 @@ open Core.Std;;
WARNING
This file is autogenerad by
`${{QP_ROOT}}/script/ezfio_interface/ei_handler.py`
`${{QP_ROOT}}/scripts/ezfio_interface/ei_handler.py`
*)
@ -120,7 +120,7 @@ let set str s =
| Nuclei -> write Nuclei.(of_rst, write) s
| Ao_basis -> () (* TODO *)
| Mo_basis -> () (* TODO *)
end
end
;;
@ -169,7 +169,9 @@ let run check_only ezfio_filename =
in
(* Create the temp file *)
let temp_filename = create_temp_file ezfio_filename tasks in
let temp_filename =
create_temp_file ezfio_filename tasks
in
(* Open the temp file with external editor *)
let editor =
@ -193,7 +195,7 @@ let run check_only ezfio_filename =
List.iter ~f:(fun x -> set temp_string x) tasks;
(* Remove temp_file *)
Sys.remove temp_filename;
Sys.remove temp_filename
;;

View File

@ -8,11 +8,22 @@ copy_buffer
declarations
decls_main
deinit_thread
do_double_excitations
skip
init_main
filter_integrals
filter2p
filter2h2p_double
filter2h2p_single
filter1h
filter1p
filter2h2p
filter2p
only_2p_single
only_2p_double
filter_only_1h1p_single
filter_only_1h1p_double
filter_only_1h2p_single
filter_only_1h2p_double
filter_only_2h2p_single
filter_only_2h2p_double
filterhole
filter_integrals
filter_only_1h1p_double
@ -182,7 +193,7 @@ class H_apply(object):
if (is_a_2p(hole)) cycle
"""
def filter_1p(self):
self["filter0p"] = """
self["filter1p"] = """
! ! DIR$ FORCEINLINE
if (is_a_1p(hole)) cycle
"""
@ -208,6 +219,27 @@ class H_apply(object):
if (is_a_1h1p(key).eqv..False.) cycle
"""
def filter_only_2h2p(self):
self["filter_only_2h2p_single"] = """
! ! DIR$ FORCEINLINE
if (is_a_two_holes_two_particles(hole).eqv..False.) cycle
"""
self["filter_only_1h1p_double"] = """
! ! DIR$ FORCEINLINE
if (is_a_two_holes_two_particles(key).eqv..False.) cycle
"""
def filter_only_1h2p(self):
self["filter_only_1h2p_single"] = """
! ! DIR$ FORCEINLINE
if (is_a_1h2p(hole).eqv..False.) cycle
"""
self["filter_only_1h2p_double"] = """
! ! DIR$ FORCEINLINE
if (is_a_1h2p(key).eqv..False.) cycle
"""
def unset_skip(self):
self["skip"] = """
@ -215,9 +247,12 @@ class H_apply(object):
def set_filter_2h_2p(self):
self["filter2h2p"] = """
self["filter2h2p_double"] = """
if (is_a_two_holes_two_particles(key)) cycle
"""
self["filter2h2p_single"] = """
if (is_a_two_holes_two_particles(hole)) cycle
"""
def set_perturbation(self,pert):
@ -248,13 +283,13 @@ class H_apply(object):
"""
self.data["deinit_thread"] = """
!$ call omp_set_lock(lck)
! OMP CRITICAL
do k=1,N_st
sum_e_2_pert_in(k) = sum_e_2_pert_in(k) + sum_e_2_pert(k)
sum_norm_pert_in(k) = sum_norm_pert_in(k) + sum_norm_pert(k)
sum_H_pert_diag_in(k) = sum_H_pert_diag_in(k) + sum_H_pert_diag(k)
enddo
!$ call omp_unset_lock(lck)
! OMP END CRITICAL
deallocate (e_2_pert_buffer, coef_pert_buffer)
"""
self.data["size_max"] = "8192"
@ -356,12 +391,12 @@ class H_apply(object):
self.data["skip"] = """
if (i_generator < size_select_max) then
if (select_max(i_generator) < selection_criterion_min*selection_criterion_factor) then
!$ call omp_set_lock(lck)
! OMP CRITICAL
do k=1,N_st
norm_psi(k) = norm_psi(k) + psi_coef_generators(i_generator,k)*psi_coef_generators(i_generator,k)
pt2_old(k) = 0.d0
enddo
!$ call omp_unset_lock(lck)
! OMP END CRITICAL
cycle
endif
select_max(i_generator) = 0.d0
@ -401,7 +436,16 @@ class H_apply_zmq(H_apply):
H_pert_diag(k) = 0.d0
norm_psi(k) = 0.d0
enddo
"""
"""
self.data["copy_buffer"] = """
do i=1,N_det_generators
do k=1,N_st
pt2(k) = pt2(k) + pt2_generators(k,i)
norm_pert(k) = norm_pert(k) + norm_pert_generators(k,i)
H_pert_diag(k) = H_pert_diag(k) + H_pert_diag_generators(k,i)
enddo
enddo
"""
def set_selection_pt2(self,pert):
H_apply.set_selection_pt2(self,pert)
@ -416,3 +460,4 @@ class H_apply_zmq(H_apply):
select_max(i_generator) = 0.d0
endif
"""

View File

@ -25,7 +25,7 @@ END_PROVIDER
BEGIN_DOC
! Coefficients including the AO normalization
END_DOC
double precision :: norm, norm2,overlap_x,overlap_y,overlap_z,C_A(3), c
double precision :: norm,overlap_x,overlap_y,overlap_z,C_A(3), c
integer :: l, powA(3), nz
integer :: i,j,k
nz=100
@ -34,9 +34,11 @@ END_PROVIDER
C_A(3) = 0.d0
ao_coef_normalized = 0.d0
do i=1,ao_num
powA(1) = ao_power(i,1)
powA(2) = ao_power(i,2)
powA(3) = ao_power(i,3)
do j=1,ao_prim_num(i)
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,j),powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
ao_coef_normalized(i,j) = ao_coef(i,j)/sqrt(norm)
@ -51,8 +53,42 @@ END_PROVIDER
enddo
ao_coef_normalization_factor(i) = 1.d0/sqrt(norm)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_coef_normalization_libint_factor, (ao_num) ]
implicit none
BEGIN_DOC
! Coefficients including the AO normalization
END_DOC
double precision :: norm,overlap_x,overlap_y,overlap_z,C_A(3), c
integer :: l, powA(3), nz
integer :: i,j,k
nz=100
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
do i=1,ao_num
powA(1) = ao_l(i)
powA(2) = 0
powA(3) = 0
! Normalization of the contracted basis functions
norm = 0.d0
do j=1,ao_prim_num(i)
do k=1,ao_prim_num(i)
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
norm = norm+c*ao_coef_normalized(i,j)*ao_coef_normalized(i,k)
enddo
enddo
ao_coef_normalization_libint_factor(i) = ao_coef_normalization_factor(i) * sqrt(norm)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_coef_normalized_ordered, (ao_num_align,ao_prim_num_max) ]
&BEGIN_PROVIDER [ double precision, ao_expo_ordered, (ao_num_align,ao_prim_num_max) ]
implicit none
@ -170,3 +206,176 @@ BEGIN_PROVIDER [ character*(128), l_to_charater, (0:4)]
l_to_charater(4)='G'
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_N_Aos, (nucl_num)]
&BEGIN_PROVIDER [ integer, N_AOs_max ]
implicit none
integer :: i
BEGIN_DOC
! Number of AOs per atom
END_DOC
Nucl_N_Aos = 0
do i = 1, ao_num
Nucl_N_Aos(ao_nucl(i)) +=1
enddo
N_AOs_max = maxval(Nucl_N_Aos)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_Aos, (nucl_num,N_AOs_max)]
implicit none
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
Nucl_Aos = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i))+=1
Nucl_Aos(ao_nucl(i),nucl_tmp(ao_nucl(i))) = i
enddo
deallocate(nucl_tmp)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_list_shell_Aos, (nucl_num,N_AOs_max)]
&BEGIN_PROVIDER [ integer, Nucl_num_shell_Aos, (nucl_num)]
implicit none
integer :: i,j,k
BEGIN_DOC
! Index of the shell type Aos and of the corresponding Aos
! Per convention, for P,D,F and G AOs, we take the index
! of the AO with the the corresponding power in the "X" axis
END_DOC
do i = 1, nucl_num
Nucl_num_shell_Aos(i) = 0
do j = 1, Nucl_N_Aos(i)
if(ao_l(Nucl_Aos(i,j))==0)then
! S type function
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
elseif(ao_l(Nucl_Aos(i,j))==1)then
! P type function
if(ao_power(Nucl_Aos(i,j),1)==1)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==2)then
! D type function
if(ao_power(Nucl_Aos(i,j),1)==2)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==3)then
! F type function
if(ao_power(Nucl_Aos(i,j),1)==3)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==4)then
! G type function
if(ao_power(Nucl_Aos(i,j),1)==4)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(4), ao_l_char_space, (ao_num) ]
implicit none
integer :: i
character*(4) :: give_ao_character_space
do i=1,ao_num
if(ao_l(i)==0)then
! S type AO
give_ao_character_space = 'S '
elseif(ao_l(i) == 1)then
! P type AO
if(ao_power(i,1)==1)then
give_ao_character_space = 'X '
elseif(ao_power(i,2) == 1)then
give_ao_character_space = 'Y '
else
give_ao_character_space = 'Z '
endif
elseif(ao_l(i) == 2)then
! D type AO
if(ao_power(i,1)==2)then
give_ao_character_space = 'XX '
elseif(ao_power(i,2) == 2)then
give_ao_character_space = 'YY '
elseif(ao_power(i,3) == 2)then
give_ao_character_space = 'ZZ '
elseif(ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XY '
elseif(ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XZ '
else
give_ao_character_space = 'YZ '
endif
elseif(ao_l(i) == 3)then
! F type AO
if(ao_power(i,1)==3)then
give_ao_character_space = 'XXX '
elseif(ao_power(i,2) == 3)then
give_ao_character_space = 'YYY '
elseif(ao_power(i,3) == 3)then
give_ao_character_space = 'ZZZ '
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXY '
elseif(ao_power(i,1) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXZ '
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYX '
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYZ '
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZX '
elseif(ao_power(i,3) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZY '
elseif(ao_power(i,3) == 1 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XYZ '
endif
elseif(ao_l(i) == 4)then
! G type AO
if(ao_power(i,1)==4)then
give_ao_character_space = 'XXXX'
elseif(ao_power(i,2) == 4)then
give_ao_character_space = 'YYYY'
elseif(ao_power(i,3) == 4)then
give_ao_character_space = 'ZZZZ'
elseif(ao_power(i,1) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXXY'
elseif(ao_power(i,1) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXXZ'
elseif(ao_power(i,2) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYYX'
elseif(ao_power(i,2) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYYZ'
elseif(ao_power(i,3) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZZX'
elseif(ao_power(i,3) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZZY'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 2)then
give_ao_character_space = 'XXYY'
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 2)then
give_ao_character_space = 'YYZZ'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXYZ'
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYXZ'
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZXY'
endif
endif
ao_l_char_space(i) = give_ao_character_space
enddo
END_PROVIDER

View File

@ -212,6 +212,12 @@ logical function is_a_two_holes_two_particles(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: i,i_diff
integer :: number_of_holes, number_of_particles
is_a_two_holes_two_particles = .False.
if(number_of_holes(key_in) == 2 .and. number_of_particles(key_in) == 2)then
is_a_two_holes_two_particles = .True.
return
endif
i_diff = 0
if(N_int == 1)then
i_diff = i_diff &
@ -456,6 +462,17 @@ logical function is_a_1h1p(key_in)
end
logical function is_a_1h2p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1h2p = .False.
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.2)then
is_a_1h2p = .True.
endif
end
logical function is_a_1h(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)

View File

@ -95,9 +95,40 @@ BEGIN_PROVIDER [ integer, N_generators_bitmask ]
END_PROVIDER
BEGIN_PROVIDER [ integer, N_generators_bitmask_restart ]
implicit none
BEGIN_DOC
! Number of bitmasks for generators
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_bitmasks_N_mask_gen(exists)
if (exists) then
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask_restart)
integer :: N_int_check
integer :: bit_kind_check
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
if (bit_kind_check /= bit_kind) then
print *, bit_kind_check, bit_kind
print *, 'Error: bit_kind is not correct in EZFIO file'
endif
call ezfio_get_bitmasks_N_int(N_int_check)
if (N_int_check /= N_int) then
print *, N_int_check, N_int
print *, 'Error: N_int is not correct in EZFIO file'
endif
else
N_generators_bitmask_restart = 1
endif
ASSERT (N_generators_bitmask_restart > 0)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask) ]
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask_restart) ]
implicit none
BEGIN_DOC
! Bitmasks for generator determinants.
@ -306,7 +337,7 @@ END_PROVIDER
n_inact_orb = 0
n_virt_orb = 0
if(N_generators_bitmask == 1)then
if(N_generators_bitmask_restart == 1)then
do j = 1, N_int
inact_bitmask(j,1) = xor(generators_bitmask_restart(j,1,1,1),cas_bitmask(j,1,1))
inact_bitmask(j,2) = xor(generators_bitmask_restart(j,2,1,1),cas_bitmask(j,2,1))
@ -319,15 +350,15 @@ END_PROVIDER
i_hole = 1
i_gen = 1
do i = 1, N_int
inact_bitmask(i,1) = generators_bitmask(i,1,i_hole,i_gen)
inact_bitmask(i,2) = generators_bitmask(i,2,i_hole,i_gen)
inact_bitmask(i,1) = generators_bitmask_restart(i,1,i_hole,i_gen)
inact_bitmask(i,2) = generators_bitmask_restart(i,2,i_hole,i_gen)
n_inact_orb += popcnt(inact_bitmask(i,1))
enddo
i_part = 2
i_gen = 3
do i = 1, N_int
virt_bitmask(i,1) = generators_bitmask(i,1,i_part,i_gen)
virt_bitmask(i,2) = generators_bitmask(i,2,i_part,i_gen)
virt_bitmask(i,1) = generators_bitmask_restart(i,1,i_part,i_gen)
virt_bitmask(i,2) = generators_bitmask_restart(i,2,i_part,i_gen)
n_virt_orb += popcnt(virt_bitmask(i,1))
enddo
endif

View File

@ -214,8 +214,13 @@ subroutine remove_duplicates_in_psi_det(found_duplicates)
duplicate(i) = .False.
enddo
do i=1,N_det-1
found_duplicates = .False.
i=0
j=0
do while (i<N_det-1)
i = max(i+1,j)
if (duplicate(i)) then
found_duplicates = .True.
cycle
endif
j = i+1
@ -239,14 +244,6 @@ subroutine remove_duplicates_in_psi_det(found_duplicates)
enddo
enddo
found_duplicates = .False.
do i=1,N_det
if (duplicate(i)) then
found_duplicates = .True.
exit
endif
enddo
if (found_duplicates) then
call write_bool(output_determinants,found_duplicates,'Found duplicate determinants')
k=0
@ -307,14 +304,14 @@ subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc)
end
subroutine push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,N_st,task_id)
subroutine push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,i_generator,N_st,task_id)
use f77_zmq
implicit none
BEGIN_DOC
! Push PT2 calculation to the collector
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
integer, intent(in) :: N_st
integer, intent(in) :: N_st, i_generator
double precision, intent(in) :: pt2(N_st), norm_pert(N_st), H_pert_diag(N_st)
integer, intent(in) :: task_id
integer :: rc
@ -343,6 +340,12 @@ subroutine push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,N_st,task_id)
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, i_generator, 4, ZMQ_SNDMORE)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, i_generator, 4, 0)'
stop 'error'
endif
rc = f77_zmq_send( zmq_socket_push, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_send( zmq_socket_push, task_id, 4, 0)'
@ -358,7 +361,7 @@ subroutine push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,N_st,task_id)
! endif
end
subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,N_st,n,task_id)
subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,i_generator,N_st,n,task_id)
use f77_zmq
implicit none
BEGIN_DOC
@ -368,7 +371,7 @@ subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,N_st,n,task_id)
integer, intent(in) :: N_st
double precision, intent(out) :: pt2(N_st), norm_pert(N_st), H_pert_diag(N_st)
integer, intent(out) :: task_id
integer, intent(out) :: n
integer, intent(out) :: n, i_generator
integer :: rc
n=0
@ -386,7 +389,11 @@ subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,N_st,n,task_id)
rc = f77_zmq_recv( zmq_socket_pull, pt2(1), 8*N_st, 0)
if (rc /= 8*N_st) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, pt2(1,1) , 8*N_st, 0)'
print *, ''
print *, ''
print *, ''
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, pt2(1) , 8*N_st, 0)'
print *, rc
stop 'error'
endif
@ -402,6 +409,12 @@ subroutine pull_pt2(zmq_socket_pull,pt2,norm_pert,H_pert_diag,N_st,n,task_id)
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, i_generator, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, i_generator, 4, 0)'
stop 'error'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)
if (rc /= 4) then
print *, irp_here, 'f77_zmq_recv( zmq_socket_pull, task_id, 4, 0)'

View File

@ -167,14 +167,10 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
double precision :: diag_H_mat_elem
integer :: iproc
integer :: jtest_vvvv
integer(omp_lock_kind), save :: lck, ifirst=0
if (ifirst == 0) then
!$ call omp_init_lock(lck)
ifirst=1
endif
logical :: check_double_excitation
logical :: is_a_1h1p
logical :: is_a_1h2p
logical :: is_a_1h
logical :: is_a_1p
logical :: is_a_2p
@ -304,8 +300,10 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,other_spin) = ibset(key(k,other_spin),l)
$filter2h2p
$filter2h2p_double
$filter_only_1h1p_double
$filter_only_1h2p_double
$filter_only_2h2p_double
$only_2p_double
key_idx += 1
do k=1,N_int
@ -353,8 +351,10 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,ispin) = ibset(key(k,ispin),l)
$filter2h2p
$filter2h2p_double
$filter_only_1h1p_double
$filter_only_1h2p_double
$filter_only_2h2p_double
$only_2p_double
key_idx += 1
do k=1,N_int
@ -417,13 +417,13 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
integer, allocatable :: ia_ja_pairs(:,:,:)
logical, allocatable :: array_pairs(:,:)
double precision :: diag_H_mat_elem
integer(omp_lock_kind), save :: lck, ifirst=0
integer :: iproc
integer(bit_kind) :: key_mask(N_int, 2)
logical :: check_double_excitation
logical :: is_a_1h1p
logical :: is_a_1h2p
logical :: is_a_1h
logical :: is_a_1p
logical :: is_a_2p
@ -439,11 +439,6 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
$check_double_excitation
if (ifirst == 0) then
ifirst=1
!$ call omp_init_lock(lck)
endif
$initialization
$omp_parallel
@ -505,8 +500,10 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
$filter1h
$filter1p
$filter2p
$filter2h2p
$filter2h2p_single
$filter_only_1h1p_single
$filter_only_1h2p_single
$filter_only_2h2p_single
key_idx += 1
do k=1,N_int
keys_out(k,1,key_idx) = hole(k,1)
@ -532,4 +529,3 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
end

View File

@ -11,7 +11,6 @@ subroutine $subroutine($params_main)
integer :: i_generator, nmax
double precision :: wall_0, wall_1
integer(omp_lock_kind) :: lck
integer(bit_kind), allocatable :: mask(:,:,:)
integer :: ispin, k
integer :: iproc
@ -23,8 +22,6 @@ subroutine $subroutine($params_main)
nmax = mod( N_det_generators,nproc )
!$ call omp_init_lock(lck)
call wall_time(wall_0)
iproc = 0
@ -129,19 +126,18 @@ subroutine $subroutine($params_main)
mask(1,1,s_hole ), mask(1,1,s_part ), &
fock_diag_tmp, i_generator, iproc $params_post)
endif
!$ call omp_set_lock(lck)
!$OMP CRITICAL
call wall_time(wall_1)
$printout_always
if (wall_1 - wall_0 > 2.d0) then
$printout_now
wall_0 = wall_1
endif
!$ call omp_unset_lock(lck)
!$OMP END CRITICAL
enddo
!$OMP END DO
deallocate( mask, fock_diag_tmp )
!$OMP END PARALLEL
!$ call omp_destroy_lock(lck)
$copy_buffer
$generate_psi_guess

View File

@ -10,9 +10,9 @@ subroutine $subroutine($params_main)
$decls_main
integer :: i
integer :: i_generator
double precision :: wall_0, wall_1
integer(omp_lock_kind) :: lck
integer(bit_kind), allocatable :: mask(:,:,:)
integer :: ispin, k
integer :: rc
@ -26,6 +26,9 @@ subroutine $subroutine($params_main)
integer(ZMQ_PTR) :: zmq_socket_pair
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision, allocatable :: pt2_generators(:,:), norm_pert_generators(:,:)
double precision, allocatable :: H_pert_diag_generators(:,:)
call new_parallel_job(zmq_to_qp_run_socket,'$subroutine')
zmq_socket_pair = new_zmq_pair_socket(.True.)
@ -37,24 +40,26 @@ subroutine $subroutine($params_main)
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
enddo
integer(ZMQ_PTR) :: collector_thread
external :: $subroutine_collector
rc = pthread_create(collector_thread, $subroutine_collector)
allocate ( pt2_generators(N_states,N_det_generators), &
norm_pert_generators(N_states,N_det_generators), &
H_pert_diag_generators(N_states,N_det_generators) )
!$OMP PARALLEL DEFAULT(private)
!$OMP TASK PRIVATE(rc)
rc = omp_get_thread_num()
call $subroutine_slave_inproc(rc)
!$OMP END TASK
!$OMP TASKWAIT
PROVIDE nproc N_states
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i) &
!$OMP SHARED(zmq_socket_pair,N_states, pt2_generators, norm_pert_generators, H_pert_diag_generators, n, task_id, i_generator) &
!$OMP num_threads(nproc+1)
i = omp_get_thread_num()
if (i == 0) then
call $subroutine_collector()
integer :: n, task_id
call pull_pt2(zmq_socket_pair, pt2_generators, norm_pert_generators, H_pert_diag_generators, i_generator, size(pt2_generators), n, task_id)
else
call $subroutine_slave_inproc(i)
endif
!$OMP END PARALLEL
integer :: n, task_id
call pull_pt2(zmq_socket_pair, pt2, norm_pert, H_pert_diag, N_st, n, task_id)
rc = pthread_join(collector_thread)
call end_zmq_pair_socket(zmq_socket_pair)
call end_parallel_job(zmq_to_qp_run_socket,'$subroutine')
@ -62,6 +67,7 @@ subroutine $subroutine($params_main)
$copy_buffer
$generate_psi_guess
deallocate ( pt2_generators, norm_pert_generators, H_pert_diag_generators)
end
subroutine $subroutine_slave_tcp(iproc)
@ -169,7 +175,7 @@ subroutine $subroutine_slave(thread, iproc)
endif
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,1)
call push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,N_st,task_id)
call push_pt2(zmq_socket_push,pt2,norm_pert,H_pert_diag,i_generator,N_st,task_id)
enddo
@ -186,7 +192,7 @@ subroutine $subroutine_collector
use f77_zmq
implicit none
BEGIN_DOC
! Collects results from the selection
! Collects results from the selection in an array of generators
END_DOC
integer :: k, rc
@ -194,7 +200,7 @@ subroutine $subroutine_collector
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer*8 :: control, accu
integer :: n, more, task_id
integer :: n, more, task_id, i_generator
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
@ -202,22 +208,25 @@ subroutine $subroutine_collector
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
double precision, allocatable :: pt2(:,:), norm_pert(:,:), H_pert_diag(:,:)
allocate ( pt2(N_states,2), norm_pert(N_states,2), H_pert_diag(N_states,2))
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
double precision, allocatable :: pt2_result(:,:), norm_pert_result(:,:), H_pert_diag_result(:,:)
allocate (pt2(N_states), norm_pert(N_states), H_pert_diag(N_states))
allocate (pt2_result(N_states,N_det_generators), norm_pert_result(N_states,N_det_generators), &
H_pert_diag_result(N_states,N_det_generators))
pt2 = 0.d0
norm_pert = 0.d0
H_pert_diag = 0.d0
pt2_result = 0.d0
norm_pert_result = 0.d0
H_pert_diag_result = 0.d0
accu = 0_8
more = 1
do while (more == 1)
call pull_pt2(zmq_socket_pull, pt2, norm_pert, H_pert_diag, N_states, n, task_id)
call pull_pt2(zmq_socket_pull, pt2, norm_pert, H_pert_diag, i_generator, N_states, n, task_id)
if (n > 0) then
do k=1,N_states
pt2(k,2) = pt2(k,1) + pt2(k,2)
norm_pert(k,2) = norm_pert(k,1) + norm_pert(k,2)
H_pert_diag(k,2) = H_pert_diag(k,1) + H_pert_diag(k,2)
pt2_result(k,i_generator) = pt2(k)
norm_pert_result(k,i_generator) = norm_pert(k)
H_pert_diag_result(k,i_generator) = H_pert_diag(k)
enddo
accu = accu + 1_8
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id,more)
@ -234,9 +243,10 @@ subroutine $subroutine_collector
socket_result = new_zmq_pair_socket(.False.)
call push_pt2(socket_result, pt2(1,2), norm_pert(1,2), H_pert_diag(1,2), N_states,0)
call push_pt2(socket_result, pt2_result, norm_pert_result, H_pert_diag_result, i_generator, &
N_states*N_det_generators,0)
deallocate ( pt2, norm_pert, H_pert_diag)
deallocate (pt2, norm_pert, H_pert_diag, pt2_result, norm_pert_result, H_pert_diag_result)
call end_zmq_pair_socket(socket_result)

View File

@ -1,4 +1,4 @@
subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
subroutine CISD_SC2(dets_in,u_in,energies,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
@ -21,6 +21,7 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision, intent(in) :: convergence
ASSERT (N_st > 0)
ASSERT (sze > 0)
@ -197,6 +198,9 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
converged = dabs(e_corr_double - e_corr_double_before) < convergence
converged = converged
if (converged) then
do i = 1, dim_in
diag_H_elements(i) = H_jj_dressed(i) - H_jj_ref(i)
enddo
exit
endif
e_corr_double_before = e_corr_double

View File

@ -386,39 +386,52 @@ subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iun
! ==============
k_pairs=0
do l=1,N_st
do k=1,l
k_pairs+=1
kl_pairs(1,k_pairs) = k
kl_pairs(2,k_pairs) = l
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
!$OMP Nint,dets_in,u_in) &
!$OMP PRIVATE(k,l,kl,i)
! Orthonormalize initial guess
! ============================
!$OMP DO
do kl=1,k_pairs
k = kl_pairs(1,kl)
l = kl_pairs(2,kl)
if (k/=l) then
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
overlap(l,k) = overlap(k,l)
else
overlap(k,k) = u_dot_u(U_in(1,k),sze)
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
if (N_st > 1) then
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
k_pairs=0
do l=1,N_st
do k=1,l
k_pairs+=1
kl_pairs(1,k_pairs) = k
kl_pairs(2,k_pairs) = l
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
!$OMP Nint,dets_in,u_in) &
!$OMP PRIVATE(k,l,kl)
! Orthonormalize initial guess
! ============================
!$OMP DO
do kl=1,k_pairs
k = kl_pairs(1,kl)
l = kl_pairs(2,kl)
if (k/=l) then
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
overlap(l,k) = overlap(k,l)
else
overlap(k,k) = u_dot_u(U_in(1,k),sze)
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
else
overlap(1,1) = u_dot_u(U_in(1,1),sze)
double precision :: f
f = 1.d0 / dsqrt(overlap(1,1))
do i=1,sze
U_in(i,1) = U_in(i,1) * f
enddo
endif
! Davidson iterations
! ===================

View File

@ -58,7 +58,7 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
else
psi_det_size = 1
endif
psi_det_size = max(psi_det_size,10000)
psi_det_size = max(psi_det_size,100000)
call write_int(output_determinants,psi_det_size,'Dimension of the psi arrays')
END_PROVIDER

View File

@ -23,8 +23,10 @@ END_PROVIDER
threshold_convergence_SC2 = 1.d-10
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, Diag_H_elements_SC2, (N_det) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
@ -39,7 +41,8 @@ END_PROVIDER
enddo
call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, &
size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
! size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
diag_H_elements_SC2,size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
END_PROVIDER
subroutine diagonalize_CI_SC2
@ -54,5 +57,6 @@ subroutine diagonalize_CI_SC2
psi_coef(i,j) = CI_SC2_eigenvectors(i,j)
enddo
enddo
SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors
SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors diag_h_elements_sc2
! SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors
end

View File

@ -301,13 +301,21 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
print*,''
print*,'nstates = ',nstates
allocate(s2(nstates,nstates),overlap(nstates,nstates))
do i = 1, nstates
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
do j = i+1, nstates
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
enddo
enddo
!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE) SCHEDULE(dynamic) &
!$OMP PRIVATE(i,j) SHARED(overlap,psi_coefs_inout,nstates,n)
do i = 1, nstates
do j = 1, nstates
if (i < j) then
cycle
else if (i == j) then
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
else
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
endif
enddo
enddo
!$OMP END PARALLEL DO
print*,'Overlap matrix in the basis of the states considered'
do i = 1, nstates
write(*,'(10(F16.10,X))')overlap(i,:)
@ -315,13 +323,21 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
call ortho_lowdin(overlap,size(overlap,1),nstates,psi_coefs_inout,size(psi_coefs_inout,1),n)
print*,'passed ortho'
do i = 1, nstates
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
do j = i+1, nstates
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
enddo
enddo
!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE) SCHEDULE(dynamic) &
!$OMP PRIVATE(i,j) SHARED(overlap,psi_coefs_inout,nstates,n)
do i = 1, nstates
do j = 1, nstates
if (i < j) then
cycle
else if (i == j) then
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
else
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
endif
enddo
enddo
!$OMP END PARALLEL DO
print*,'Overlap matrix in the basis of the Lowdin orthonormalized states '
do i = 1, nstates
write(*,'(10(F16.10,X))')overlap(i,:)

View File

@ -2,5 +2,6 @@ program save_natorb
read_wf = .True.
touch read_wf
call save_natural_mos
call save_ref_determinant
end

View File

@ -970,12 +970,13 @@ subroutine create_minilist_find_previous(key_mask, fullList, miniList, N_fullLis
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: fullList(Nint, 2, N_fullList)
integer(bit_kind),intent(out) :: miniList(Nint, 2, N_fullList)
integer(bit_kind) :: subList(Nint, 2, N_fullList)
integer(bit_kind), allocatable :: subList(:,:,:)
logical,intent(out) :: fullMatch
integer,intent(out) :: N_miniList
integer(bit_kind) :: key_mask(Nint, 2)
integer :: ni, i, k, l, N_subList
allocate (subList(Nint, 2, N_fullList))
fullMatch = .false.
N_miniList = 0
@ -1032,6 +1033,8 @@ subroutine create_minilist_find_previous(key_mask, fullList, miniList, N_fullLis
enddo
N_minilist = N_minilist + N_subList
end if
deallocate(sublist)
end subroutine

View File

@ -4,6 +4,7 @@ double precision function ao_bielec_integral(i,j,k,l)
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
integer,intent(in) :: i,j,k,l
integer :: p,q,r,s
double precision :: I_center(3),J_center(3),K_center(3),L_center(3)
@ -374,20 +375,16 @@ BEGIN_PROVIDER [ logical, ao_bielec_integrals_in_map ]
call add_task_to_taskserver(zmq_to_qp_run_socket,task)
enddo
integer(ZMQ_PTR) :: collector_thread
external :: ao_bielec_integrals_in_map_collector
rc = pthread_create(collector_thread, ao_bielec_integrals_in_map_collector)
!$OMP PARALLEL DEFAULT(private)
!$OMP TASK PRIVATE(i)
PROVIDE nproc
!$OMP PARALLEL DEFAULT(private) num_threads(nproc+1)
i = omp_get_thread_num()
call ao_bielec_integrals_in_map_slave_inproc(i)
!$OMP END TASK
!$OMP TASKWAIT
if (i==0) then
call ao_bielec_integrals_in_map_collector(i)
else
call ao_bielec_integrals_in_map_slave_inproc(i)
endif
!$OMP END PARALLEL
rc = pthread_join(collector_thread)
call end_parallel_job(zmq_to_qp_run_socket, 'ao_integrals')

View File

@ -230,7 +230,6 @@ subroutine clear_ao_map
end
!! MO Map
!! ======

View File

@ -72,7 +72,7 @@ subroutine add_integrals_to_map(mask_ijkl)
integer :: i2,i3,i4
double precision,parameter :: thr_coef = 1.d-10
PROVIDE ao_bielec_integrals_in_map
PROVIDE ao_bielec_integrals_in_map mo_coef
!Get list of MOs for i,j,k and l
!-------------------------------
@ -329,7 +329,7 @@ end
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
if (.not.do_direct_integrals) then
PROVIDE ao_bielec_integrals_in_map
PROVIDE ao_bielec_integrals_in_map mo_coef
endif
mo_bielec_integral_jj_from_ao = 0.d0
@ -495,4 +495,13 @@ subroutine clear_mo_map
call map_deinit(mo_integrals_map)
FREE mo_integrals_map mo_bielec_integral_schwartz mo_bielec_integral_jj mo_bielec_integral_jj_anti
FREE mo_bielec_integral_jj_exchange mo_bielec_integrals_in_map
end
subroutine provide_all_mo_integrals
implicit none
provide mo_integrals_map mo_bielec_integral_schwartz mo_bielec_integral_jj mo_bielec_integral_jj_anti
provide mo_bielec_integral_jj_exchange mo_bielec_integrals_in_map
end

View File

@ -5,6 +5,7 @@ BEGIN_PROVIDER [ double precision, mo_mono_elec_integral,(mo_tot_num_align,mo_to
! array of the mono electronic hamiltonian on the MOs basis
! : sum of the kinetic and nuclear electronic potential
END_DOC
print*,'Providing the mono electronic integrals'
do j = 1, mo_tot_num
do i = 1, mo_tot_num
mo_mono_elec_integral(i,j) = mo_nucl_elec_integral(i,j) + mo_kinetic_integral(i,j) + mo_pseudo_integral(i,j)

View File

@ -3,10 +3,14 @@ BEGIN_PROVIDER [ double precision, ao_pseudo_integral, (ao_num_align,ao_num)]
BEGIN_DOC
! Pseudo-potential
END_DOC
ao_pseudo_integral = 0.d0
if (do_pseudo) then
ao_pseudo_integral = ao_pseudo_integral_local + ao_pseudo_integral_non_local
else
ao_pseudo_integral = 0.d0
if (pseudo_klocmax > 0) then
ao_pseudo_integral += ao_pseudo_integral_local
endif
if (pseudo_kmax > 0) then
ao_pseudo_integral += ao_pseudo_integral_non_local
endif
endif
END_PROVIDER

View File

@ -295,18 +295,6 @@ BEGIN_PROVIDER [ integer, nproc ]
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ integer, iproc_save, (nproc) ]
implicit none
BEGIN_DOC
! iproc_save(i) = i-1. Used to start threads with pthreads.
END_DOC
integer :: i
do i=1,nproc
iproc_save(i) = i-1
enddo
END_PROVIDER
double precision function u_dot_v(u,v,sze)
implicit none

View File

@ -181,14 +181,14 @@ function new_zmq_pair_socket(bind)
endif
endif
rc = f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_SNDHWM, 0, 4)
rc = f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_SNDHWM, 1, 4)
if (rc /= 0) then
stop 'f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_SNDHWM, 0, 4)'
stop 'f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_SNDHWM, 1, 4)'
endif
rc = f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_RCVHWM, 0, 4)
rc = f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_RCVHWM, 1, 4)
if (rc /= 0) then
stop 'f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_RCVHWM, 0, 4)'
stop 'f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_RCVHWM, 1, 4)'
endif
rc = f77_zmq_setsockopt(new_zmq_pair_socket, ZMQ_IMMEDIATE, 1, 4)
@ -229,16 +229,11 @@ function new_zmq_pull_socket()
stop 'Unable to set ZMQ_LINGER on pull socket'
endif
rc = f77_zmq_setsockopt(new_zmq_pull_socket,ZMQ_RCVHWM,100000,4)
rc = f77_zmq_setsockopt(new_zmq_pull_socket,ZMQ_RCVHWM,1000,4)
if (rc /= 0) then
stop 'Unable to set ZMQ_RCVHWM on pull socket'
endif
rc = f77_zmq_setsockopt(new_zmq_pull_socket,ZMQ_IMMEDIATE,1,4)
if (rc /= 0) then
stop 'Unable to set ZMQ_IMMEDIATE on pull socket'
endif
rc = f77_zmq_bind(new_zmq_pull_socket, zmq_socket_pull_tcp_address)
if (rc /= 0) then
print *, 'Unable to bind new_zmq_pull_socket (tcp)', zmq_socket_pull_tcp_address
@ -279,7 +274,7 @@ function new_zmq_push_socket(thread)
stop 'Unable to set ZMQ_LINGER on push socket'
endif
rc = f77_zmq_setsockopt(new_zmq_push_socket,ZMQ_SNDHWM,100,4)
rc = f77_zmq_setsockopt(new_zmq_push_socket,ZMQ_SNDHWM,1000,4)
if (rc /= 0) then
stop 'Unable to set ZMQ_SNDHWM on push socket'
endif
@ -355,11 +350,11 @@ subroutine end_zmq_pull_socket(zmq_socket_pull)
! endif
rc = f77_zmq_unbind(zmq_socket_pull,zmq_socket_pull_tcp_address)
if (rc /= 0) then
print *, rc
print *, irp_here, 'f77_zmq_unbind(zmq_socket_pull,zmq_socket_pull_tcp_address)'
stop 'error'
endif
! if (rc /= 0) then
! print *, rc
! print *, irp_here, 'f77_zmq_unbind(zmq_socket_pull,zmq_socket_pull_tcp_address)'
! stop 'error'
! endif
call sleep(1) ! see https://github.com/zeromq/libzmq/issues/1922

View File

@ -155,7 +155,7 @@ function run_all_1h_1p() {
ezfio set determinants read_wf True
qp_run mrcc_cassd $INPUT
energy="$(ezfio get mrcc_cassd energy)"
eq $energy -76.2284994316618 1.e-4
eq $energy -76.2288648023833 1.e-4
}
@ -166,7 +166,7 @@ function run_all_1h_1p() {
}
@test "SCF H2O VDZ pseudo" {
run_HF h2o_pseudo.ezfio -16.9483708495521
run_HF h2o_pseudo.ezfio -16.9483703905461
}
@test "FCI H2O VDZ pseudo" {