10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 20:35:19 +01:00

Integration for DFT seems to be ok, but need to improve the angular part

This commit is contained in:
Emmanuel Giner 2016-04-21 23:59:50 +02:00
parent 83f77b61c8
commit e50cfeee02
7 changed files with 210 additions and 147 deletions

View File

@ -18,7 +18,7 @@ IRPF90_FLAGS : --ninja --align=32
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 1 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
@ -50,7 +50,7 @@ FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FC : -g -traceback -fpe0
FCFLAGS : -xSSE2 -C
IRPF90_FLAGS : --openmp

View File

@ -1,11 +1,11 @@
BEGIN_PROVIDER [integer, n_points_angular_grid]
implicit none
n_points_angular_grid = 18
n_points_angular_grid = 51
END_PROVIDER
BEGIN_PROVIDER [integer, n_points_radial_grid]
implicit none
n_points_radial_grid = 10
n_points_radial_grid = 1000
END_PROVIDER
@ -16,7 +16,30 @@ END_PROVIDER
! weights and grid points for the integration on the angular variables on
! the unit sphere centered on (0,0,0)
END_DOC
call cal_quad(n_points_aangular_grid, angular_quadrature_points,weights_angular_points)
call cal_quad(n_points_angular_grid, angular_quadrature_points,weights_angular_points)
END_PROVIDER
BEGIN_PROVIDER [integer , m_knowles]
implicit none
BEGIN_DOC
! value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996)
END_DOC
m_knowles = 3
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_radial, (n_points_radial_grid)]
&BEGIN_PROVIDER [double precision, dr_radial_integral]
implicit none
BEGIN_DOC
! points in [0,1] to map the radial integral [0,\infty]
END_DOC
dr_radial_integral = 1.d0/dble(n_points_radial_grid-1)
integer :: i
do i = 1, n_points_radial_grid-1
grid_points_radial(i) = (i-1) * dr_radial_integral
enddo
END_PROVIDER
@ -27,46 +50,51 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid
implicit none
integer :: i,j,k
double precision :: dr,x_ref,y_ref,z_ref
dr = 1.d0/dble(n_points_radial_grid-1)
double precision :: knowles_function
do i = 1, nucl_num
x_ref = nucl_coord(i,1)
y_ref = nucl_coord(i,2)
z_ref = nucl_coord(i,3)
do j = 1, n_points_radial_grid
do k = 1, n_points_angular_grid
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * dr
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * dr
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * dr
double precision :: x,r
x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1]
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration
do k = 1, n_points_angular_grid ! explicit values of the grid points centered around each atom
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (nucl_num,n_points_angular_grid,n_points_radial_grid) ]
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
BEGIN_DOC
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
! the "n" discrete variable represents the nucleis (j=1,nucl_num)
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
! and the points are labelled by the other dimensions
END_DOC
implicit none
integer :: i,j,k,l,m
double precision :: r(3)
double precision :: accu,cell_function_becke
double precision :: tmp_array(nucl_num)
do j = 1, nucl_num
do k = 1, n_points_radial_grid
do l = 1, n_points_angular_grid
r(1) = grid_points_per_atom(1,j,k,l)
r(2) = grid_points_per_atom(2,j,k,l)
r(3) = grid_points_per_atom(3,j,k,l)
! run over all points in space
do j = 1, nucl_num ! that are referred to each atom
do k = 1, n_points_radial_grid !for each radial grid attached to the "jth" atom
do l = 1, n_points_angular_grid ! for each angular point attached to the "jth" atom
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
accu = 0.d0
do i = 1, nucl_num
tmp_array(i) = cell_function_becke(r,i)
do i = 1, nucl_num ! For each of these points in space, ou need to evaluate the P_n(r)
! function defined for each atom "i" by equation (13) and (21) with k == 3
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
! Then you compute the summ the P_n(r) function for each of the "r" points
accu += tmp_array(i)
enddo
accu = 1.d0/accu
do i = 1, nucl_num
weight_functions_at_grid_points(i,j,k,l) = tmp_array(i)*accu
enddo
weight_functions_at_grid_points(l,k,j) = tmp_array(j) * accu
enddo
enddo
enddo
@ -80,22 +108,34 @@ END_PROVIDER
integer :: i,j,k,l,m
double precision :: contrib
double precision :: r(3)
double precision :: aos_array(ao_num)
double precision :: aos_array(ao_num),mos_array(mo_tot_num)
do j = 1, nucl_num
do k = 1, n_points_radial_grid
do l = 1, n_points_angular_grid
r(1) = grid_points_per_atom(1,j,k,l)
r(2) = grid_points_per_atom(2,j,k,l)
r(3) = grid_points_per_atom(3,j,k,l)
call give_all_aos_at_r(r,aos_array)
one_body_dm_mo_alpha_at_grid_points(j,k,l) = 0.d0
do i = 1, ao_num
do m = 1, ao_num
contrib = aos_array(i) * aos_array(m)
one_body_dm_mo_alpha_at_grid_points(j,k,l) += one_body_dm_ao_alpha(i,m) * contrib
one_body_dm_mo_beta_at_grid_points(j,k,l) += one_body_dm_ao_beta(i,m) * contrib
enddo
one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0
one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
! call give_all_aos_at_r(r,aos_array)
! do i = 1, ao_num
! do m = 1, ao_num
! contrib = aos_array(i) * aos_array(m)
! one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_ao_alpha(i,m) * contrib
! one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_ao_beta(i,m) * contrib
! enddo
! enddo
call give_all_mos_at_r(r,mos_array)
do i = 1, mo_tot_num
do m = 1, mo_tot_num
contrib = mos_array(i) * mos_array(m)
one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha(i,m) * contrib
one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta(i,m) * contrib
enddo
enddo
enddo
enddo
enddo

View File

@ -5,7 +5,7 @@ double precision function step_function_becke(x)
integer :: i,n_max_becke
step_function_becke = f_function_becke(x)
n_max_becke = 2
n_max_becke = 3
do i = 1, n_max_becke
step_function_becke = f_function_becke(step_function_becke)
enddo

View File

@ -3,46 +3,108 @@
implicit none
double precision :: accu
integer :: i,j,k,l
integer :: m_param_knowles
double precision :: dx,x
integer :: n_pt_int_radial
double precision :: x
double precision :: integrand(n_points_angular_grid), weights(n_points_angular_grid)
double precision :: f_average_angular_alpha,f_average_angular_beta
double precision :: derivative_knowles_function,knowles_function
n_pt_int_radial = 10
dx = 1.d0/dble(n_pt_int_radial-1)
x = 0.d0
m_param_knowles = 3
do j = 1, nucl_num
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
do i = 1, n_points_radial_grid
! Angular integration
f_average_angular_alpha = 0.d0
f_average_angular_beta = 0.d0
do k = 1, n_points_angular_grid
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
! Run over all nuclei in order to perform the Voronoi partition
! according ot equation (6) of the paper of Becke (JCP, (88), 1988)
! Here the m index is referred to the w_m(r) weight functions of equation (22)
! Run over all points of integrations : there are
! n_points_radial_grid (i) * n_points_angular_grid (k)
do j = 1, nucl_num
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
integral_density_beta_knowles_becke_per_atom(j) = 0.d0
do i = 1, n_points_radial_grid
! Angular integration over the solid angle Omega for a FIXED angular coordinate "r"
f_average_angular_alpha = 0.d0
f_average_angular_beta = 0.d0
do k = 1, n_points_angular_grid
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
enddo
!
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
double precision :: contrib_integration
! print*,m_knowles
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
integral_density_alpha_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_alpha
integral_density_beta_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_beta
enddo
integral_density_alpha_knowles_becke_per_atom(j) *= dr_radial_integral
integral_density_beta_knowles_becke_per_atom(j) *= dr_radial_integral
enddo
integral_density_alpha_knowles_becke_per_atom(j) += derivative_knowles_function(alpha,m_param_knowles,x) &
*knowles_function(alpha,m_param_knowles,x)**2 &
*f_average_angular_alpha
x += dx
enddo
integral_density_alpha_knowles_becke_per_atom(j) *= dx
enddo
END_PROVIDER
double precision function knowles_function(alpha,m,x)
implicit none
BEGIN_DOC
! function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
! the Log "m" function ( equation (7) in the paper )
END_DOC
double precision, intent(in) :: alpha,x
integer, intent(in) :: m
knowles_function = -alpha * dlog(1.d0-x**m)
!knowles_function = 1.d0
end
double precision function derivative_knowles_function(alpha,m,x)
implicit none
BEGIN_DOC
! derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
END_DOC
double precision, intent(in) :: alpha,x
integer, intent(in) :: m
derivative_knowles_function = m x**(m-1) / (alpha * dlog(1.d0-x**m))
derivative_knowles_function = alpha * dble(m) * x**(m-1) / (1.d0 - x**m)
end
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
implicit none
integer :: i
BEGIN_DOC
! recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
! as a function of the nuclear charge
END_DOC
! H-He
alpha_knowles(1) = 5.d0
alpha_knowles(2) = 5.d0
! Li-Be
alpha_knowles(3) = 7.d0
alpha_knowles(4) = 7.d0
! B-Ne
do i = 5, 10
alpha_knowles(i) = 5.d0
enddo
! Na-Mg
do i = 11, 12
alpha_knowles(i) = 7.d0
enddo
! Al-Ar
do i = 13, 18
alpha_knowles(i) = 5.d0
enddo
! K-Ca
do i = 19, 20
alpha_knowles(i) = 7.d0
enddo
! Sc-Zn
do i = 21, 30
alpha_knowles(i) = 5.d0
enddo
! Ga-Kr
do i = 31, 36
alpha_knowles(i) = 7.d0
enddo
END_PROVIDER

View File

@ -0,0 +1,24 @@
program pouet
print*,'coucou'
read_wf = .True.
touch read_wf
print*,'m_knowles = ',m_knowles
call routine
end
subroutine routine
implicit none
integer :: i
double precision :: accu(2)
accu = 0.d0
do i = 1, nucl_num
accu(1) += integral_density_alpha_knowles_becke_per_atom(i)
accu(2) += integral_density_beta_knowles_becke_per_atom(i)
enddo
print*,'accu(1) = ',accu(1)
print*,'Nalpha = ',elec_alpha_num
print*,'accu(2) = ',accu(2)
print*,'Nalpha = ',elec_beta_num
end

View File

@ -1,80 +0,0 @@
program two_bod_ab_dm
implicit none
read_wf = .True.
touch read_wf
call routine
end
subroutine routine
implicit none
integer :: i,j,k,l
double precision :: dx1,dx2
double precision :: interval_1,interval_2
integer :: nx1,nx2
double precision :: r1(3),r2(3)
double precision :: xmin_1,xmax_1,xmin_2,xmax_2
double precision :: compute_extra_diag_two_body_dm_ab,two_bod_extra_diag
double precision :: compute_diag_two_body_dm_ab,two_bod_diag
double precision,allocatable :: mos_array_r1(:),mos_array_r2(:)
double precision :: test_diag, test_extra_diag
double precision, allocatable :: x_array(:),y_array(:),z_diag_array(:),z_extra_diag_array(:),z_total_array(:)
allocate(mos_array_r1(mo_tot_num),mos_array_r2(mo_tot_num))
! He triplet S
! r1 = x
! r2 = z
nx1 = 100
nx2 = 100
allocate(x_array(nx1),y_array(nx2),z_diag_array(nx1),z_extra_diag_array(nx1),z_total_array(nx1))
xmin_1 = -2.d0
xmax_1 = 2.d0
xmin_2 = -2.d0
xmax_2 = 2.d0
interval_1 = xmax_1 - xmin_1
interval_2 = xmax_2 - xmin_2
dx1 = interval_1/dble(nx1)
dx2 = interval_2/dble(nx2)
r1 = 0.d0
r2 = 0.d0
double precision :: x_tmp,y_tmp
x_tmp = xmin_1
do i = 1, nx1
x_array(i) = x_tmp
write(i_unit_x_two_body_dm_ab,'(10000(F16.10,X))')x_array(i)
x_tmp += dx1
enddo
x_tmp = xmin_2
do i = 1, nx1
y_array(i) = x_tmp
write(i_unit_y_two_body_dm_ab,'(10000(F16.10,X))')x_array(i)
x_tmp += dx2
enddo
! initialization
r1(1) = xmin_1
do i = 1, nx1
r2(3) = xmin_2
do j = 1, nx2
two_bod_extra_diag = compute_extra_diag_two_body_dm_ab(r1,r2)
two_bod_diag = compute_diag_two_body_dm_ab(r1,r2)
z_diag_array(j) = two_bod_diag
z_extra_diag_array(j) = two_bod_extra_diag
z_total_array(j) = two_bod_extra_diag + two_bod_diag
! write(i_unit_two_body_dm_ab,'(100(F16.10,X))')r1(1),r2(3),two_bod_diag,two_bod_extra_diag,two_bod_diag+two_bod_extra_diag
r2(3) += dx2
enddo
write(i_unit_z_two_body_diag_dm_ab,'(10000(F16.10,X))')z_diag_array(:)
write(i_unit_z_two_body_extra_diag_dm_ab,'(10000(F16.10,X))')z_extra_diag_array(:)
write(i_unit_z_two_body_total_dm_ab,'(10000(F16.10,X))')z_total_array(:)
r1(1) += dx1
enddo
deallocate(mos_array_r1,mos_array_r2)
end

View File

@ -242,7 +242,24 @@ BEGIN_PROVIDER [double precision, two_body_dm_ab_big_array, (n_act_orb,n_act_orb
if(degree>2)cycle
call get_excitation(psi_det(1,1,i),psi_det(1,1,j),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! if(i==3.or.j==3)then
! print*,'i,j = ',i,j
! call debug_det(psi_det(1,1,i),N_int)
! call debug_det(psi_det(1,1,j),N_int)
! print*,degree,s1,s2
! print*,h1,p1,h2,p2
! print*,phase
! pause
! endif
contrib = 0.5d0 * psi_coef(i,1) * psi_coef(j,1) * phase
! print*,'coucou'
! print*,'i,j = ',i,j
! print*,'contrib = ',contrib
! print*,h1,p1,h2,p2
! print*,'s1,s2',s1,s2
! call debug_det(psi_det(1,1,i),N_int)
! call debug_det(psi_det(1,1,j),N_int)
! pause
if(degree==2)then ! case of the DOUBLE EXCITATIONS ************************************
if(s1==s2)cycle ! Only the alpha/beta two body density matrix
! <J| a^{\dagger}_{p1 s1} a^{\dagger}_{p2 s2} a_{h2 s2} a_{h1 s1} |I> * c_I * c_J
@ -288,7 +305,7 @@ end
double precision function compute_extra_diag_two_body_dm_ab(r1,r2)
implicit none
double precision :: r1(3),r2(3)
double precision, intent(in) :: r1(3),r2(3)
integer :: i,j,k,l
double precision :: mos_array_r1(mo_tot_num),mos_array_r2(mo_tot_num)
double precision :: contrib
@ -298,16 +315,16 @@ double precision function compute_extra_diag_two_body_dm_ab(r1,r2)
call give_all_act_mos_at_r(r1,mos_array_r1)
call give_all_act_mos_at_r(r2,mos_array_r2)
do l = 1, n_act_orb ! p2
contrib = mos_array_r2(l)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do k = 1, n_act_orb ! h2
! contrib *= mos_array_r2(k)
! if(dabs(contrib*mos_array_r2(k)).lt.threshld_two_bod_dm)cycle
do j = 1, n_act_orb ! p1
! contrib *= mos_array_r1(j)
! if(dabs(contrib).lt.threshld_two_bod_dm)cycle
do i = 1,n_act_orb ! h1
double precision :: contrib_tmp
! print*,'i,j',i,j
! print*,mos_array_r1(i) , mos_array_r1(j)
! print*,'k,l',k,l
! print*,mos_array_r2(k) * mos_array_r2(l)
! print*,'gama = ',two_body_dm_ab_big_array(i,j,k,l)
! pause
contrib_tmp = mos_array_r1(i) * mos_array_r1(j) * mos_array_r2(k) * mos_array_r2(l)
compute_extra_diag_two_body_dm_ab += two_body_dm_ab_big_array(i,j,k,l) * contrib_tmp
enddo