mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-08 20:33:26 +01:00
begin DFT in qp
This commit is contained in:
parent
74f465be90
commit
e432c470a1
4
plugins/DFT_Utils/EZFIO.cfg
Normal file
4
plugins/DFT_Utils/EZFIO.cfg
Normal file
@ -0,0 +1,4 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated energy
|
||||
interface: ezfio
|
1
plugins/DFT_Utils/NEEDED_CHILDREN_MODULES
Normal file
1
plugins/DFT_Utils/NEEDED_CHILDREN_MODULES
Normal file
@ -0,0 +1 @@
|
||||
Determinants
|
104
plugins/DFT_Utils/grid_density.irp.f
Normal file
104
plugins/DFT_Utils/grid_density.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
BEGIN_PROVIDER [integer, n_points_angular_grid]
|
||||
implicit none
|
||||
n_points_angular_grid = 18
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_radial_grid]
|
||||
implicit none
|
||||
n_points_radial_grid = 10
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_angular_grid,3) ]
|
||||
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_angular_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! weights and grid points for the integration on the angular variables on
|
||||
! the unit sphere centered on (0,0,0)
|
||||
END_DOC
|
||||
call cal_quad(n_points_aangular_grid, angular_quadrature_points,weights_angular_points)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid,n_points_radial_grid,nucl_num)]
|
||||
BEGIN_DOC
|
||||
! points for integration over space
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
double precision :: dr,x_ref,y_ref,z_ref
|
||||
dr = 1.d0/dble(n_points_radial_grid-1)
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_radial_grid
|
||||
do k = 1, n_points_angular_grid
|
||||
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * dr
|
||||
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * dr
|
||||
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * dr
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (nucl_num,n_points_angular_grid,n_points_radial_grid) ]
|
||||
BEGIN_DOC
|
||||
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
|
||||
! the "n" discrete variable represents the nucleis (j=1,nucl_num)
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
do j = 1, nucl_num
|
||||
do k = 1, n_points_radial_grid
|
||||
do l = 1, n_points_angular_grid
|
||||
r(1) = grid_points_per_atom(1,j,k,l)
|
||||
r(2) = grid_points_per_atom(2,j,k,l)
|
||||
r(3) = grid_points_per_atom(3,j,k,l)
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
tmp_array(i) = cell_function_becke(r,i)
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
accu = 1.d0/accu
|
||||
do i = 1, nucl_num
|
||||
weight_functions_at_grid_points(i,j,k,l) = tmp_array(i)*accu
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
|
||||
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: contrib
|
||||
double precision :: r(3)
|
||||
double precision :: aos_array(ao_num)
|
||||
do j = 1, nucl_num
|
||||
do k = 1, n_points_radial_grid
|
||||
do l = 1, n_points_angular_grid
|
||||
r(1) = grid_points_per_atom(1,j,k,l)
|
||||
r(2) = grid_points_per_atom(2,j,k,l)
|
||||
r(3) = grid_points_per_atom(3,j,k,l)
|
||||
call give_all_aos_at_r(r,aos_array)
|
||||
one_body_dm_mo_alpha_at_grid_points(j,k,l) = 0.d0
|
||||
do i = 1, ao_num
|
||||
do m = 1, ao_num
|
||||
contrib = aos_array(i) * aos_array(m)
|
||||
one_body_dm_mo_alpha_at_grid_points(j,k,l) += one_body_dm_ao_alpha(i,m) * contrib
|
||||
one_body_dm_mo_beta_at_grid_points(j,k,l) += one_body_dm_ao_beta(i,m) * contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
64
plugins/DFT_Utils/integration_3d.irp.f
Normal file
64
plugins/DFT_Utils/integration_3d.irp.f
Normal file
@ -0,0 +1,64 @@
|
||||
double precision function step_function_becke(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
double precision :: f_function_becke
|
||||
integer :: i,n_max_becke
|
||||
|
||||
step_function_becke = f_function_becke(x)
|
||||
n_max_becke = 2
|
||||
do i = 1, n_max_becke
|
||||
step_function_becke = f_function_becke(step_function_becke)
|
||||
enddo
|
||||
step_function_becke = 0.5d0*(1.d0 - step_function_becke)
|
||||
end
|
||||
|
||||
double precision function f_function_becke(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
f_function_becke = 1.5d0 * x - 0.5d0 * x*x*x
|
||||
end
|
||||
|
||||
double precision function cell_function_becke(r,atom_number)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer, intent(in) :: atom_number
|
||||
BEGIN_DOC
|
||||
! atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
|
||||
! r(1:3) :: x,y,z coordinantes of the current point
|
||||
END_DOC
|
||||
double precision :: mu_ij,nu_ij
|
||||
double precision :: distance_i,distance_j,step_function_becke
|
||||
integer :: j
|
||||
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
|
||||
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
|
||||
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
|
||||
distance_i = dsqrt(distance_i)
|
||||
cell_function_becke = 1.d0
|
||||
do j = 1, nucl_num
|
||||
if(j==atom_number)cycle
|
||||
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
|
||||
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
|
||||
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
|
||||
distance_j = dsqrt(distance_j)
|
||||
mu_ij = (distance_i - distance_j)/nucl_dist(atom_number,j)
|
||||
nu_ij = mu_ij + slater_bragg_type_inter_distance_ua(atom_number,j) * (1.d0 - mu_ij*mu_ij)
|
||||
cell_function_becke *= step_function_becke(nu_ij)
|
||||
enddo
|
||||
end
|
||||
|
||||
double precision function weight_function_becke(r,atom_number)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer, intent(in) :: atom_number
|
||||
BEGIN_DOC
|
||||
! atom_number :: atom on which the weight function of Becke (1988, JCP,88(4))
|
||||
! r(1:3) :: x,y,z coordinantes of the current point
|
||||
END_DOC
|
||||
double precision :: cell_function_becke,accu
|
||||
integer :: j
|
||||
accu = 0.d0
|
||||
do j = 1, nucl_num
|
||||
accu += cell_function_becke(r,j)
|
||||
enddo
|
||||
weight_function_becke = cell_function_becke(r,atom_number)/accu
|
||||
end
|
48
plugins/DFT_Utils/integration_radial.irp.f
Normal file
48
plugins/DFT_Utils/integration_radial.irp.f
Normal file
@ -0,0 +1,48 @@
|
||||
BEGIN_PROVIDER [ double precision, integral_density_alpha_knowles_becke_per_atom, (nucl_num)]
|
||||
&BEGIN_PROVIDER [ double precision, integral_density_beta_knowles_becke_per_atom, (nucl_num)]
|
||||
implicit none
|
||||
double precision :: accu
|
||||
integer :: i,j,k,l
|
||||
integer :: m_param_knowles
|
||||
double precision :: dx,x
|
||||
integer :: n_pt_int_radial
|
||||
double precision :: integrand(n_points_angular_grid), weights(n_points_angular_grid)
|
||||
double precision :: f_average_angular_alpha,f_average_angular_beta
|
||||
double precision :: derivative_knowles_function,knowles_function
|
||||
n_pt_int_radial = 10
|
||||
dx = 1.d0/dble(n_pt_int_radial-1)
|
||||
x = 0.d0
|
||||
m_param_knowles = 3
|
||||
do j = 1, nucl_num
|
||||
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
|
||||
do i = 1, n_points_radial_grid
|
||||
! Angular integration
|
||||
f_average_angular_alpha = 0.d0
|
||||
f_average_angular_beta = 0.d0
|
||||
do k = 1, n_points_angular_grid
|
||||
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
||||
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
||||
enddo
|
||||
integral_density_alpha_knowles_becke_per_atom(j) += derivative_knowles_function(alpha,m_param_knowles,x) &
|
||||
*knowles_function(alpha,m_param_knowles,x)**2 &
|
||||
*f_average_angular_alpha
|
||||
x += dx
|
||||
enddo
|
||||
integral_density_alpha_knowles_becke_per_atom(j) *= dx
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
double precision function knowles_function(alpha,m,x)
|
||||
implicit none
|
||||
double precision, intent(in) :: alpha,x
|
||||
integer, intent(in) :: m
|
||||
knowles_function = -alpha * dlog(1.d0-x**m)
|
||||
end
|
||||
|
||||
double precision function derivative_knowles_function(alpha,m,x)
|
||||
implicit none
|
||||
double precision, intent(in) :: alpha,x
|
||||
integer, intent(in) :: m
|
||||
derivative_knowles_function = m x**(m-1) / (alpha * dlog(1.d0-x**m))
|
||||
end
|
219
plugins/DFT_Utils/routines_roland.irp.f
Normal file
219
plugins/DFT_Utils/routines_roland.irp.f
Normal file
@ -0,0 +1,219 @@
|
||||
|
||||
subroutine cal_quad(n_quad, quad, weight)
|
||||
! --------------------------------------------------------------------------------
|
||||
!
|
||||
! Arguments : subroutine cal_quad
|
||||
! Description: evaluates quadrature points an weights
|
||||
!
|
||||
! Authors : B. Lévy, P. Pernot
|
||||
! Date : 15 Nov 2000
|
||||
! --------------------------------------------------------------------------------
|
||||
implicit none
|
||||
integer, intent(in) :: n_quad
|
||||
double precision, intent(out) :: weight(n_quad)
|
||||
double precision, intent(out) :: quad(n_quad,3)
|
||||
|
||||
! local:
|
||||
double precision, parameter :: zero=0.d0, one= 1.d0
|
||||
|
||||
double precision, parameter :: p=0.707106781186547462d0
|
||||
double precision, parameter :: q=0.577350269189625842d0
|
||||
double precision, parameter :: r=0.301511344577763629d0
|
||||
double precision, parameter :: s=0.904534033733290888d0
|
||||
|
||||
double precision, parameter :: fourpi= 12.5663706143591725d0
|
||||
|
||||
double precision, parameter :: a6=0.166666666666666657d0
|
||||
double precision, parameter :: a18=0.333333333333333329d-01
|
||||
double precision, parameter :: b18=0.666666666666666657d-01
|
||||
double precision, parameter :: a26=0.476190476190476164d-01
|
||||
double precision, parameter :: b26=0.380952380952380987d-01
|
||||
double precision, parameter :: c26=0.321428571428571397d-01
|
||||
double precision, parameter :: a50=0.126984126984126984d-01
|
||||
double precision, parameter :: b50=0.225749559082892431d-01
|
||||
double precision, parameter :: c50=0.210937500000000014d-01
|
||||
double precision, parameter :: d50=0.201733355379188697d-01
|
||||
|
||||
double precision :: apt(3,6),bpt(3,12),cpt(3,8),dpt(3,24)
|
||||
double precision :: awght,bwght,cwght,dwght
|
||||
double precision :: s1, s2, s3
|
||||
integer :: idim, ipt, i1, i2, i3, is1, is2, is3
|
||||
integer :: iquad
|
||||
|
||||
! begin:
|
||||
! l_here ='cal_quad'
|
||||
! call enter (l_here,3)
|
||||
|
||||
! verifications:
|
||||
! message = 'in '//trim(l_here)//', number of dimensions='//&
|
||||
! trim(encode(dimensions_nb))//', must be 3'
|
||||
! call ensure(message, dimensions_nb .eq. 3 )
|
||||
|
||||
! message = 'in '//trim(l_here)//', invalid number of quadrature points ='&
|
||||
! //trim(encode(n_quad))
|
||||
! call ensure(message,(n_quad-2)*(n_quad-6)*(n_quad-18)*(n_quad-26)*(n_quad-50) .eq. 0)
|
||||
|
||||
! initialize weights
|
||||
awght = zero
|
||||
bwght = zero
|
||||
cwght = zero
|
||||
dwght = zero
|
||||
|
||||
! type A points : (+/-1,0,0)
|
||||
awght=a6*fourpi
|
||||
ipt= 1
|
||||
apt=0.
|
||||
do idim = 1, 3
|
||||
apt(idim,ipt)=one
|
||||
ipt=ipt+1
|
||||
apt(idim,ipt)=-one
|
||||
ipt=ipt+1
|
||||
enddo
|
||||
|
||||
! type B points : (+/-p,+/-p,0) with p= 1/sqrt(2)
|
||||
if(n_quad.gt.6) then
|
||||
|
||||
awght=a18*fourpi
|
||||
bwght=b18*fourpi
|
||||
|
||||
s1=p
|
||||
s2=p
|
||||
ipt= 1
|
||||
bpt=0.
|
||||
do idim = 1, 3
|
||||
i1=idim+1
|
||||
if(i1.gt.3) i1=i1-3
|
||||
i2=idim+2
|
||||
if(i2.gt.3) i2=i2-3
|
||||
do is1= 1,2
|
||||
do is2= 1,2
|
||||
bpt(i1,ipt)=s1
|
||||
bpt(i2,ipt)=s2
|
||||
s2=-s2
|
||||
ipt=ipt+1
|
||||
enddo
|
||||
s1=-s1
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
! type C points : (+/-q,+/-q,+/-q) with q= 1/sqrt(3)
|
||||
if(n_quad.gt.18) then
|
||||
|
||||
awght=a26*fourpi
|
||||
bwght=b26*fourpi
|
||||
cwght=c26*fourpi
|
||||
|
||||
s1=q
|
||||
s2=q
|
||||
s3=q
|
||||
ipt= 1
|
||||
cpt=0.
|
||||
do is1= 1,2
|
||||
do is2= 1,2
|
||||
do is3= 1,2
|
||||
cpt(1,ipt)=s1
|
||||
cpt(2,ipt)=s2
|
||||
cpt(3,ipt)=s3
|
||||
s3=-s3
|
||||
ipt=ipt+1
|
||||
enddo
|
||||
s2=-s2
|
||||
enddo
|
||||
s1=-s1
|
||||
enddo
|
||||
endif
|
||||
|
||||
! type D points : (+/-r,+/-r,+/-s)
|
||||
if(n_quad.gt.26) then
|
||||
|
||||
awght=a50*fourpi
|
||||
bwght=b50*fourpi
|
||||
cwght=c50*fourpi
|
||||
dwght=d50*fourpi
|
||||
|
||||
ipt= 1
|
||||
dpt=0.
|
||||
do i1= 1, 3
|
||||
s1=s
|
||||
s2=r
|
||||
s3=r
|
||||
i2=i1+1
|
||||
if(i2.gt.3) i2=i2-3
|
||||
i3=i1+2
|
||||
if(i3.gt.3) i3=i3-3
|
||||
do is1= 1,2
|
||||
do is2= 1,2
|
||||
do is3= 1,2
|
||||
dpt(i1,ipt)=s1
|
||||
dpt(i2,ipt)=s2
|
||||
dpt(i3,ipt)=s3
|
||||
s3=-s3
|
||||
ipt=ipt+1
|
||||
enddo
|
||||
s2=-s2
|
||||
enddo
|
||||
s1=-s1
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
! fill the points and weights tables
|
||||
iquad= 1
|
||||
do ipt= 1, 6
|
||||
do idim = 1, 3
|
||||
quad(iquad,idim)=apt(idim,ipt)
|
||||
enddo
|
||||
weight(iquad)=awght
|
||||
iquad=iquad+1
|
||||
enddo
|
||||
|
||||
if(n_quad.gt.6) then
|
||||
do ipt= 1,12
|
||||
do idim = 1, 3
|
||||
quad(iquad,idim)=bpt(idim,ipt)
|
||||
enddo
|
||||
weight(iquad)=bwght
|
||||
iquad=iquad+1
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(n_quad.gt.18) then
|
||||
do ipt= 1,8
|
||||
do idim = 1, 3
|
||||
quad(iquad,idim)=cpt(idim,ipt)
|
||||
enddo
|
||||
weight(iquad)=cwght
|
||||
iquad=iquad+1
|
||||
enddo
|
||||
endif
|
||||
|
||||
if(n_quad.gt.26) then
|
||||
do ipt= 1,24
|
||||
do idim = 1, 3
|
||||
quad(iquad,idim)=dpt(idim,ipt)
|
||||
enddo
|
||||
weight(iquad)=dwght
|
||||
iquad=iquad+1
|
||||
enddo
|
||||
endif
|
||||
|
||||
! if (debug) then
|
||||
! write(6,*)
|
||||
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
|
||||
! '------------------------------------------------------'
|
||||
! write(6,'(1X,a)') trim(l_here)//'-d : '//' I Weight Quad_points'
|
||||
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
|
||||
! '----- ---------- -----------------------------------'
|
||||
! do iquad= 1, n_quad
|
||||
! write(6,'(1X,A,i5,4e12.3)') trim(l_here)//'-d : ',&
|
||||
! iquad,weight(iquad),quad(iquad,1:3)
|
||||
! enddo
|
||||
! write(6,'(1X,a)') trim(l_here)//'-d : '//&
|
||||
! '------------------------------------------------------'
|
||||
! write(6,*)
|
||||
! endif
|
||||
|
||||
! call exit (l_here,3)
|
||||
|
||||
end subroutine cal_quad
|
@ -268,8 +268,6 @@ BEGIN_PROVIDER [double precision, two_body_dm_ab_big_array, (n_act_orb,n_act_orb
|
||||
enddo
|
||||
print*,'Big array for density matrix provided !'
|
||||
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine insert_into_two_body_dm_big_array(big_array,dim1,dim2,dim3,dim4,contrib,h1,p1,h2,p2)
|
||||
@ -291,3 +289,30 @@ subroutine insert_into_two_body_dm_big_array(big_array,dim1,dim2,dim3,dim4,contr
|
||||
!endif
|
||||
|
||||
end
|
||||
|
||||
double precision function compute_two_body_dm_ab(r1,r2)
|
||||
implicit none
|
||||
double precision :: r1(3),r2(3)
|
||||
integer :: i,j,k,l
|
||||
double precision :: mos_array_r1(mo_tot_num),mos_array_r2(mo_tot_num)
|
||||
double precision :: contrib
|
||||
compute_two_body_dm_ab = 0.d0
|
||||
call give_all_mos_at_r(r1,mos_array_r1)
|
||||
call give_all_mos_at_r(r2,mos_array_r2)
|
||||
do l = 1, n_act_orb ! p2
|
||||
contrib = mos_array_r2(l)
|
||||
if(dabs(contrib).lt.1.d-6)cycle
|
||||
do k = 1, n_act_orb ! h2
|
||||
contrib *= mos_array_r2(k)
|
||||
if(dabs(contrib).lt.1.d-6)cycle
|
||||
do j = 1, n_act_orb ! p1
|
||||
contrib *= mos_array_r1(j)
|
||||
if(dabs(contrib).lt.1.d-6)cycle
|
||||
do i = 1,n_act_orb ! h1
|
||||
compute_two_body_dm_ab += two_body_dm_ab_big_array(i,j,k,l) * mos_array_r1(i) * contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user