10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-09-27 03:51:01 +02:00

fixed rs_ks_scf density

This commit is contained in:
Emmanuel Giner 2019-01-09 18:38:44 +01:00
parent 2425201c81
commit e327757118
5 changed files with 60 additions and 103 deletions

View File

@ -12,6 +12,9 @@ BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_for_dft, (mo_num,mo_num,
else if (density_for_dft .EQ. "WFT")then
provide mo_coef
one_body_dm_mo_alpha_for_dft = one_body_dm_mo_alpha
else if (density_for_dft .EQ. "KS")then
provide mo_coef
one_body_dm_mo_alpha_for_dft = one_body_dm_mo_alpha_one_det
endif
END_PROVIDER
@ -30,6 +33,9 @@ BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_for_dft, (mo_num,mo_num, N
else if (density_for_dft .EQ. "WFT")then
provide mo_coef
one_body_dm_mo_beta_for_dft = one_body_dm_mo_beta
else if (density_for_dft .EQ. "KS")then
provide mo_coef
one_body_dm_mo_beta_for_dft = one_body_dm_mo_beta_one_det
endif
END_PROVIDER
@ -53,25 +59,37 @@ END_PROVIDER
! one body density matrix on the AO basis based on one_body_dm_mo_alpha_for_dft
END_DOC
implicit none
integer :: i,j,k,l,istate
integer :: istate
double precision :: mo_alpha,mo_beta
one_body_dm_alpha_ao_for_dft = 0.d0
one_body_dm_beta_ao_for_dft = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_num
do j = 1, mo_num
do istate = 1, N_states
mo_alpha = one_body_dm_mo_alpha_for_dft(j,i,istate)
mo_beta = one_body_dm_mo_beta_for_dft(j,i,istate)
one_body_dm_alpha_ao_for_dft(l,k,istate) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha
one_body_dm_beta_ao_for_dft(l,k,istate) += mo_coef(k,i) * mo_coef(l,j) * mo_beta
enddo
enddo
enddo
enddo
do istate = 1, N_states
call mo_to_ao_no_overlap( one_body_dm_mo_alpha_for_dft(1,1,istate), &
size(one_body_dm_mo_alpha_for_dft,1), &
one_body_dm_alpha_ao_for_dft(1,1,istate), &
size(one_body_dm_alpha_ao_for_dft,1) )
call mo_to_ao_no_overlap( one_body_dm_mo_beta_for_dft(1,1,istate), &
size(one_body_dm_mo_beta_for_dft,1), &
one_body_dm_beta_ao_for_dft(1,1,istate), &
size(one_body_dm_beta_ao_for_dft,1) )
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_one_det, (mo_num,mo_num, N_states)]
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_one_det, (mo_num,mo_num, N_states)]
implicit none
BEGIN_DOC
! One body density matrix on the |MO| basis for a single determinant
END_DOC
integer :: i
one_body_dm_mo_alpha_one_det = 0.d0
one_body_dm_mo_beta_one_det = 0.d0
do i =1, elec_alpha_num
one_body_dm_mo_alpha_one_det(i,i, 1:N_states) = 1.d0
enddo
do i =1, elec_beta_num
one_body_dm_mo_beta_one_det(i,i, 1:N_states) = 1.d0
enddo
END_PROVIDER

View File

@ -231,89 +231,6 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! $\alpha$ and $\beta$ one-body density matrix for each state
END_DOC
integer :: j,k,l,m
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ_alpha
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
integer :: degree_respect_to_HF_k
integer :: degree_respect_to_HF_l
PROVIDE elec_alpha_num elec_beta_num
one_body_single_double_dm_mo_alpha = 0.d0
one_body_single_double_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,&
!$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)&
!$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,&
!$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,&
!$OMP mo_num)
allocate(tmp_a(mo_num,mo_num), tmp_b(mo_num,mo_num) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
do k=1,N_det
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int)
do m=1,N_states
ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m)
call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int)
if(degree_respect_to_HF_l.le.0)then
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j) += ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j) += ck
enddo
endif
enddo
do l=1,k-1
call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int)
if(degree_respect_to_HF_k.ne.0)cycle
if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m)
if (s1==1) then
tmp_a(h1,p1) += ckl
tmp_a(p1,h1) += ckl
else
tmp_b(h1,p1) += ckl
tmp_b(p1,h1) += ckl
endif
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a
!$OMP END CRITICAL
!$OMP CRITICAL
one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b
!$OMP END CRITICAL
deallocate(tmp_a,tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_num,mo_num) ]
implicit none
BEGIN_DOC

View File

@ -10,10 +10,8 @@ program srs_ks_cf
touch io_mo_one_e_integrals
io_ao_one_e_integrals = "None"
touch io_ao_one_e_integrals
read_wf = .False.
density_for_dft ="WFT"
density_for_dft ="KS"
touch density_for_dft
touch read_wf
print*, '**************************'
print*, 'mu_erf_dft = ',mu_erf_dft
print*, '**************************'

View File

@ -12,9 +12,8 @@ program rs_ks_scf
touch io_ao_one_e_integrals
read_wf = .False.
density_for_dft ="WFT"
density_for_dft ="KS"
touch density_for_dft
touch read_wf
print*, '**************************'
print*, 'mu_erf_dft = ',mu_erf_dft
print*, '**************************'

View File

@ -3,7 +3,7 @@ subroutine mo_to_ao(A_mo,LDA_mo,A_ao,LDA_ao)
BEGIN_DOC
! Transform A from the MO basis to the AO basis
!
! (S.C).A_mo.(S.C)t
! $(S.C).A_{mo}.(S.C)^\dagger$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
double precision, intent(in) :: A_mo(LDA_mo,mo_num)
@ -25,6 +25,31 @@ subroutine mo_to_ao(A_mo,LDA_mo,A_ao,LDA_ao)
deallocate(T)
end
subroutine mo_to_ao_no_overlap(A_mo,LDA_mo,A_ao,LDA_ao)
implicit none
BEGIN_DOC
! $C.A_{mo}.C^\dagger$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
double precision, intent(in) :: A_mo(LDA_mo,mo_num)
double precision, intent(out) :: A_ao(LDA_ao,ao_num)
double precision, allocatable :: T(:,:)
allocate ( T(mo_num,ao_num) )
call dgemm('N','T', mo_num, ao_num, mo_num, &
1.d0, A_mo,size(A_mo,1), &
mo_coef, size(mo_coef,1), &
0.d0, T, size(T,1))
call dgemm('N','N', ao_num, ao_num, mo_num, &
1.d0, mo_coef, size(mo_coef,1), &
T, size(T,1), &
0.d0, A_ao, size(A_ao,1))
deallocate(T)
end
BEGIN_PROVIDER [ double precision, S_mo_coef, (ao_num, mo_num) ]
implicit none
BEGIN_DOC