10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

Almost working

This commit is contained in:
Pierre-Francois Loos 2017-06-02 14:20:59 +02:00 committed by loos
parent f7da26ff09
commit e15fbd2371
9 changed files with 147 additions and 98 deletions

View File

@ -1,4 +1,6 @@
begin_provider [double precision, FPS_SPF_Matrix_AO, (AO_num_align, AO_num)]
begin_template
begin_provider [double precision, FPS_SPF_Matrix_AO_$alpha, (AO_num, AO_num)]
implicit none
begin_doc
! Commutator FPS - SPF
@ -12,8 +14,8 @@ begin_provider [double precision, FPS_SPF_Matrix_AO, (AO_num_align, AO_num)]
call dgemm('N','N',AO_num,AO_num,AO_num, &
1.d0, &
Fock_Matrix_AO,Size(Fock_Matrix_AO,1), &
HF_Density_Matrix_AO,Size(HF_Density_Matrix_AO,1), &
Fock_Matrix_AO_$alpha,Size(Fock_Matrix_AO_$alpha,1), &
HF_Density_Matrix_AO_$alpha,Size(HF_Density_Matrix_AO_$alpha,1), &
0.d0, &
scratch,Size(scratch,1))
@ -24,14 +26,14 @@ begin_provider [double precision, FPS_SPF_Matrix_AO, (AO_num_align, AO_num)]
scratch,Size(scratch,1), &
AO_Overlap,Size(AO_Overlap,1), &
0.d0, &
FPS_SPF_Matrix_AO,Size(FPS_SPF_Matrix_AO,1))
FPS_SPF_Matrix_AO_$alpha,Size(FPS_SPF_Matrix_AO_$alpha,1))
! Compute SP
call dgemm('N','N',AO_num,AO_num,AO_num, &
1.d0, &
AO_Overlap,Size(AO_Overlap,1), &
HF_Density_Matrix_AO,Size(HF_Density_Matrix_AO,1), &
HF_Density_Matrix_AO_$alpha,Size(HF_Density_Matrix_AO_$alpha,1), &
0.d0, &
scratch,Size(scratch,1))
@ -40,12 +42,27 @@ begin_provider [double precision, FPS_SPF_Matrix_AO, (AO_num_align, AO_num)]
call dgemm('N','N',AO_num,AO_num,AO_num, &
-1.d0, &
scratch,Size(scratch,1), &
Fock_Matrix_AO,Size(Fock_Matrix_AO,1), &
Fock_Matrix_AO_$alpha,Size(Fock_Matrix_AO_$alpha,1), &
1.d0, &
FPS_SPF_Matrix_AO,Size(FPS_SPF_Matrix_AO,1))
FPS_SPF_Matrix_AO_$alpha,Size(FPS_SPF_Matrix_AO_$alpha,1))
end_provider
begin_provider [double precision, FPS_SPF_Matrix_MO_$alpha, (AO_num, mo_tot_num)]
implicit none
begin_doc
! Commutator FPS - SPF in MO basis
end_doc
call ao_to_mo(FPS_SPF_Matrix_AO_$alpha, size(FPS_SPF_Matrix_AO_$alpha,1), &
FPS_SPF_Matrix_MO_$alpha, size(FPS_SPF_Matrix_MO_$alpha,1))
end_provider
subst [alpha]
alpha ;;
beta ;;
end_template
BEGIN_PROVIDER [ double precision, eigenvalues_Fock_matrix_AO, (AO_num) ]
&BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_AO, (AO_num_align,AO_num) ]
@ -122,12 +139,13 @@ BEGIN_PROVIDER [ double precision, X_matrix_AO, (AO_num_align,AO_num) ]
implicit none
integer :: num_linear_dependencies
integer :: LDA, LDC
double precision, allocatable :: U(:,:),Vt(:,:), D(:)
integer :: info, i, j, k
LDA = size(AO_overlap,1)
LDC = size(AO_overlap,1)
LDC = size(X_matrix_AO,1)
allocate( &
U(LDC,AO_num), &
@ -141,9 +159,12 @@ BEGIN_PROVIDER [ double precision, X_matrix_AO, (AO_num_align,AO_num) ]
Vt,LDA, &
AO_num,AO_num)
num_linear_dependencies = 0
do i=1,AO_num
print*,D(i)
if(abs(D(i)) < threshold_overlap_AO_eigenvalues) then
D(i) = 0.d0
num_linear_dependencies += 1
else
D(i) = 1.d0/sqrt(D(i))
endif
@ -151,11 +172,13 @@ BEGIN_PROVIDER [ double precision, X_matrix_AO, (AO_num_align,AO_num) ]
X_matrix_AO(j,i) = 0.d0
enddo
enddo
write(*,*) 'linear dependencies',num_linear_dependencies
! stop
do k=1,AO_num
if(D(k) /= 0.d0) then
do j=1,AO_num
do i=1,MO_tot_num
do i=1,AO_num
X_matrix_AO(i,j) = X_matrix_AO(i,j) + U(i,k)*D(k)*Vt(k,j)
enddo
enddo

View File

@ -14,13 +14,13 @@ default: 15
type: Threshold
doc: Threshold on the convergence of the DIIS error vector during a Hartree-Fock calculation
interface: ezfio,provider,ocaml
default: 1.e-5
default: 1.e-6
[thresh_scf]
type: Threshold
doc: Threshold on the convergence of the Hartree Fock energy
interface: ezfio,provider,ocaml
default: 1.e-10
default: 1.e-12
[n_it_scf_max]
type: Strictly_positive_int
@ -32,13 +32,13 @@ default: 128
type: Positive_float
doc: Energy shift on the virtual MOs to improve SCF convergence
interface: ezfio,provider,ocaml
default: 0.5
default: 0.4
[scf_algorithm]
type: character*(32)
doc: Type of SCF algorithm used. Possible choices are [ damp | DIIS]
doc: Type of SCF algorithm used. Possible choices are [ Damp | DIIS]
interface: ezfio,provider,ocaml
default: damp
default: Damp
[mo_guess_type]
type: MO_guess

View File

@ -18,57 +18,57 @@
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo = Fock_matrix_alpha_mo
Fock_matrix_mo = Fock_matrix_mo_alpha
else
do j=1,elec_beta_num
! F-K
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F+K/2
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F
do i=elec_alpha_num+1, mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
enddo
do j=elec_beta_num+1,elec_alpha_num
! F+K/2
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
+ 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
! F-K/2
do i=elec_alpha_num+1, mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
enddo
do j=elec_alpha_num+1, mo_tot_num
! F
do i=1,elec_beta_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
enddo
! F-K/2
do i=elec_beta_num+1,elec_alpha_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j))&
- 0.5d0*(Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
! F+K
do i=elec_alpha_num+1,mo_tot_num
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_alpha_mo(i,j)+Fock_matrix_beta_mo(i,j)) &
+ (Fock_matrix_beta_mo(i,j) - Fock_matrix_alpha_mo(i,j))
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
+ (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
enddo
enddo
@ -81,8 +81,8 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_ao, (ao_num_align, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_ao, (ao_num_align, ao_num) ]
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num_align, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num_align, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
@ -92,8 +92,8 @@ END_PROVIDER
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num
Fock_matrix_alpha_ao(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_alpha(i,j)
Fock_matrix_beta_ao (i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_beta (i,j)
Fock_matrix_ao_alpha(i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_alpha(i,j)
Fock_matrix_ao_beta (i,j) = ao_mono_elec_integral(i,j) + ao_bi_elec_integral_beta (i,j)
enddo
enddo
@ -261,12 +261,7 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_mo, (mo_tot_num_align,mo_tot_num) ]
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_alpha, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
@ -275,18 +270,18 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_mo, (mo_tot_num_align,mo_to
allocate ( T(ao_num_align,mo_tot_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, Fock_matrix_alpha_ao,size(Fock_matrix_alpha_ao,1), &
1.d0, Fock_matrix_ao_alpha,size(Fock_matrix_ao_alpha,1), &
mo_coef, size(mo_coef,1), &
0.d0, T, ao_num_align)
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, size(T,1), &
0.d0, Fock_matrix_alpha_mo, mo_tot_num_align)
0.d0, Fock_matrix_mo_alpha, mo_tot_num_align)
deallocate(T)
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_beta_mo, (mo_tot_num_align,mo_tot_num) ]
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_beta, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
@ -295,13 +290,13 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_beta_mo, (mo_tot_num_align,mo_tot
allocate ( T(ao_num_align,mo_tot_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, mo_tot_num, ao_num, &
1.d0, Fock_matrix_beta_ao,size(Fock_matrix_beta_ao,1), &
1.d0, Fock_matrix_ao_beta,size(Fock_matrix_ao_beta,1), &
mo_coef, size(mo_coef,1), &
0.d0, T, ao_num_align)
call dgemm('T','N', mo_tot_num, mo_tot_num, ao_num, &
1.d0, mo_coef,size(mo_coef,1), &
T, size(T,1), &
0.d0, Fock_matrix_beta_mo, mo_tot_num_align)
0.d0, Fock_matrix_mo_beta, mo_tot_num_align)
deallocate(T)
END_PROVIDER
@ -316,8 +311,8 @@ BEGIN_PROVIDER [ double precision, HF_energy ]
do j=1,ao_num
do i=1,ao_num
HF_energy += 0.5d0 * ( &
(ao_mono_elec_integral(i,j) + Fock_matrix_alpha_ao(i,j) ) * HF_density_matrix_ao_alpha(i,j) +&
(ao_mono_elec_integral(i,j) + Fock_matrix_beta_ao (i,j) ) * HF_density_matrix_ao_beta (i,j) )
(ao_mono_elec_integral(i,j) + Fock_matrix_ao_alpha(i,j) ) * HF_density_matrix_ao_alpha(i,j) +&
(ao_mono_elec_integral(i,j) + Fock_matrix_ao_beta (i,j) ) * HF_density_matrix_ao_beta (i,j) )
enddo
enddo
@ -337,7 +332,7 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num_align, ao_num) ]
do j=1,ao_num
!DIR$ VECTOR ALIGNED
do i=1,ao_num_align
Fock_matrix_ao(i,j) = Fock_matrix_alpha_ao(i,j)
Fock_matrix_ao(i,j) = Fock_matrix_ao_alpha(i,j)
enddo
enddo
else

View File

@ -6,16 +6,21 @@ END_DOC
implicit none
double precision :: energy_SCF,energy_SCF_previous,Delta_energy_SCF,max_error_DIIS
double precision, allocatable :: Fock_matrix_DIIS(:,:,:),error_matrix_DIIS(:,:,:)
double precision :: energy_SCF,energy_SCF_previous,Delta_energy_SCF
double precision :: max_error_DIIS,max_error_DIIS_alpha,max_error_DIIS_beta
double precision, allocatable :: Fock_matrix_DIIS_alpha(:,:,:),error_matrix_DIIS_alpha(:,:,:)
double precision, allocatable :: Fock_matrix_DIIS_beta (:,:,:),error_matrix_DIIS_beta (:,:,:)
integer :: iteration_SCF,dim_DIIS,index_dim_DIIS
integer :: dim_DIIS_alpha, dim_DIIS_beta
integer :: i,j
allocate( &
Fock_matrix_DIIS(AO_num,AO_num,max_dim_DIIS), &
error_matrix_DIIS(AO_num,AO_num,max_dim_DIIS) &
Fock_matrix_DIIS_alpha(ao_num,ao_num,max_dim_DIIS), &
Fock_matrix_DIIS_beta (ao_num,ao_num,max_dim_DIIS), &
error_matrix_DIIS_alpha(ao_num,ao_num,max_dim_DIIS), &
error_matrix_DIIS_beta (ao_num,ao_num,max_dim_DIIS) &
)
call write_time(output_hartree_fock)
@ -32,6 +37,8 @@ END_DOC
energy_SCF_previous = HF_energy
Delta_energy_SCF = 0.d0
iteration_SCF = 0
dim_DIIS_alpha = 0
dim_DIIS_beta = 0
dim_DIIS = 0
max_error_DIIS = 1.d0
@ -50,35 +57,44 @@ END_DOC
! Store Fock and error matrices at each iteration
do j=1,AO_num
do i=1,AO_num
do j=1,ao_num
do i=1,ao_num
index_dim_DIIS = mod(dim_DIIS-1,max_dim_DIIS)+1
Fock_matrix_DIIS(i,j,index_dim_DIIS) = Fock_matrix_AO(i,j)
error_matrix_DIIS(i,j,index_dim_DIIS) = FPS_SPF_Matrix_AO(i,j)
Fock_matrix_DIIS_alpha (i,j,index_dim_DIIS) = Fock_matrix_AO_alpha(i,j)
Fock_matrix_DIIS_beta (i,j,index_dim_DIIS) = Fock_matrix_AO_beta (i,j)
error_matrix_DIIS_alpha(i,j,index_dim_DIIS) = FPS_SPF_matrix_AO_alpha(i,j)
error_matrix_DIIS_beta (i,j,index_dim_DIIS) = FPS_SPF_matrix_AO_beta (i,j)
enddo
enddo
! Compute the extrapolated Fock matrix
dim_DIIS_alpha = dim_DIIS
call extrapolate_Fock_matrix( &
error_matrix_DIIS,Fock_matrix_DIIS, &
iteration_SCF,dim_DIIS &
error_matrix_DIIS_alpha,Fock_matrix_DIIS_alpha, &
Fock_matrix_AO_alpha,size(Fock_matrix_AO_alpha,1), &
iteration_SCF,dim_DIIS_alpha &
)
touch Fock_matrix_AO
dim_DIIS_beta = dim_DIIS
call extrapolate_Fock_matrix( &
error_matrix_DIIS_beta,Fock_matrix_DIIS_beta, &
Fock_matrix_AO_beta,size(Fock_matrix_AO_beta,1), &
iteration_SCF,dim_DIIS_beta &
)
MO_coef = eigenvectors_Fock_matrix_AO
dim_DIIS = min(dim_DIIS_alpha,dim_DIIS_beta)
touch Fock_matrix_AO_alpha Fock_matrix_AO_beta
! This algorithm still have an issue with linear dependencies
! do i=1,AO_num
! write(*,*) i,eigenvalues_Fock_matrix_AO(i)
! enddo
MO_coef = eigenvectors_Fock_matrix_MO
touch MO_coef
! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_AO))
max_error_DIIS_alpha = maxval(Abs(FPS_SPF_Matrix_MO_alpha))
max_error_DIIS_beta = maxval(Abs(FPS_SPF_Matrix_MO_beta ))
max_error_DIIS = max(max_error_DIIS_alpha,max_error_DIIS_beta)
! SCF energy
@ -88,8 +104,8 @@ END_DOC
! Print results at the end of each iteration
write(output_hartree_fock,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS
write(output_hartree_fock,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, dim_DIIS
enddo
@ -114,6 +130,7 @@ end
subroutine extrapolate_Fock_matrix( &
error_matrix_DIIS,Fock_matrix_DIIS, &
Fock_matrix_AO_,size_Fock_matrix_AO, &
iteration_SCF,dim_DIIS &
)
@ -123,11 +140,13 @@ END_DOC
implicit none
double precision,intent(in) :: Fock_matrix_DIIS(AO_num,AO_num,*),error_matrix_DIIS(AO_num,AO_num,*)
integer,intent(in) :: iteration_SCF
double precision,intent(in) :: Fock_matrix_DIIS(ao_num,ao_num,*),error_matrix_DIIS(ao_num,ao_num,*)
integer,intent(in) :: iteration_SCF, size_Fock_matrix_AO
double precision,intent(inout):: Fock_matrix_AO_(size_Fock_matrix_AO,ao_num)
integer,intent(inout) :: dim_DIIS
double precision,allocatable :: B_matrix_DIIS(:,:),X_vector_DIIS(:)
double precision,allocatable :: C_vector_DIIS(:)
double precision,allocatable :: scratch(:,:)
integer :: i,j,k,i_DIIS,j_DIIS
@ -135,7 +154,8 @@ END_DOC
allocate( &
B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), &
X_vector_DIIS(dim_DIIS+1), &
scratch(AO_num,AO_num) &
C_vector_DIIS(dim_DIIS+1), &
scratch(ao_num,ao_num) &
)
! Compute the matrices B and X
@ -147,7 +167,7 @@ END_DOC
! Compute product of two errors vectors
call dgemm('N','N',AO_num,AO_num,AO_num, &
call dgemm('N','N',ao_num,ao_num,ao_num, &
1.d0, &
error_matrix_DIIS(1,1,i_DIIS),size(error_matrix_DIIS,1), &
error_matrix_DIIS(1,1,j_DIIS),size(error_matrix_DIIS,1), &
@ -157,7 +177,7 @@ END_DOC
! Compute Trace
B_matrix_DIIS(i,j) = 0.d0
do k=1,AO_num
do k=1,ao_num
B_matrix_DIIS(i,j) += scratch(k,k)
enddo
enddo
@ -168,10 +188,10 @@ END_DOC
do i=1,dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
X_vector_DIIS(i) = 0.d0
C_vector_DIIS(i) = 0.d0
enddo
B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1) = 0.d0
X_vector_DIIS(dim_DIIS+1) = -1.d0
C_vector_DIIS(dim_DIIS+1) = -1.d0
! Solve the linear system C = B.X
@ -182,24 +202,39 @@ END_DOC
ipiv(dim_DIIS+1) &
)
call dsysv('U',dim_DIIS+1,1, &
double precision, allocatable :: AF(:,:)
allocate (AF(dim_DIIS+1,dim_DIIS+1))
double precision :: rcond, ferr, berr
integer :: iwork(dim_DIIS+1)
call dsysvx('N','U',dim_DIIS+1,1, &
B_matrix_DIIS,size(B_matrix_DIIS,1), &
AF, size(AF,1), &
ipiv, &
C_vector_DIIS,size(C_vector_DIIS,1), &
X_vector_DIIS,size(X_vector_DIIS,1), &
rcond, &
ferr, &
berr, &
scratch,size(scratch), &
iwork, &
info &
)
if(info == 0) then
if(info < 0) then
stop 'bug in DIIS'
endif
if (rcond > 1.d-8) then
! Compute extrapolated Fock matrix
Fock_matrix_AO(:,:) = 0.d0
Fock_matrix_AO_(:,:) = 0.d0
do k=1,dim_DIIS
do j=1,AO_num
do i=1,AO_num
Fock_matrix_AO(i,j) += X_vector_DIIS(k)*Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
do j=1,ao_num
do i=1,ao_num
Fock_matrix_AO_(i,j) += X_vector_DIIS(k)*Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
@ -209,9 +244,9 @@ END_DOC
dim_DIIS = 0
endif
! do i=1,AO_num
! do j=1,AO_num
! write(*,*) Fock_matrix_AO(i,j)
! do i=1,ao_num
! do j=1,ao_num
! write(*,*) Fock_matrix_AO_(i,j)
! enddo
! enddo

View File

@ -114,7 +114,6 @@ subroutine damping_SCF
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
enddo
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') '====','================','================','================', '===='
write(output_hartree_fock,*)

View File

@ -22,7 +22,7 @@ subroutine huckel_guess
Fock_matrix_ao(i,j) = c*ao_overlap(i,j)*(ao_mono_elec_integral_diag(i) + &
ao_mono_elec_integral_diag(j))
enddo
Fock_matrix_ao(j,j) = Fock_matrix_alpha_ao(j,j)
Fock_matrix_ao(j,j) = Fock_matrix_ao_alpha(j,j)
enddo
TOUCH Fock_matrix_ao
mo_coef = eigenvectors_fock_matrix_mo

View File

@ -139,8 +139,6 @@ BEGIN_PROVIDER [ double precision, mo_occ, (mo_tot_num) ]
endif
END_PROVIDER
subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC

View File

@ -200,7 +200,7 @@ subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m)
!
! LDC : leftmost dimension of C
!
! m : Coefficients matrix is MxN, ( array is (LDC,N) )
! M : Coefficients matrix is MxN, ( array is (LDC,N) )
!
END_DOC
@ -211,7 +211,6 @@ subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m)
double precision, allocatable :: Vt(:,:)
double precision, allocatable :: D(:)
double precision, allocatable :: S_half(:,:)
!DEC$ ATTRIBUTES ALIGN : 64 :: U, Vt, D
integer :: info, i, j, k
if (n < 2) then