10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-10 13:08:23 +01:00

Merge branch 'master' into develop

This commit is contained in:
Anthony Scemama 2016-07-06 11:31:04 +02:00
commit e09386b43a
51 changed files with 3664 additions and 1009 deletions

View File

@ -1,11 +1,7 @@
Quantum package
===============
![QP](https://raw.githubusercontent.com/LCPQ/quantum_package/master/data/qp.png)
[![Build Status](https://travis-ci.org/LCPQ/quantum_package.svg?branch=master)](https://travis-ci.org/LCPQ/quantum_package)
[![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/LCPQ/quantum_package?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Set of quantum chemistry programs and libraries.
(under GNU GENERAL PUBLIC LICENSE v2)

View File

@ -31,13 +31,14 @@ OPENMP : 1 ; Append OpenMP flags
# -ftz : Flushes denormal results to zero
#
[OPT]
FCFLAGS : -xSSE4.2 -O2 -ip -ftz -g
FC : -traceback
FCFLAGS : -xSSE4.2 -O2 -ip -ftz -g -traceback
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FC : -p -g -traceback
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
@ -51,13 +52,13 @@ FCFLAGS : -xSSE4.2 -O2 -ip -ftz
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0
FCFLAGS : -xSSE2 -C
IRPF90_FLAGS : --openmp
# OpenMP flags
#################
#
[OPENMP]
FC : -openmp
FC : -qopenmp
IRPF90_FLAGS : --openmp

BIN
data/qp.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

View File

@ -8,10 +8,9 @@ s.unset_skip()
s.filter_only_1h1p()
print s
s = H_apply("just_mono")
s = H_apply("just_mono",do_double_exc=False)
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
s.unset_double_excitations()
print s
END_SHELL

View File

@ -15,7 +15,7 @@ subroutine routine
integer :: N_st, degree
double precision,allocatable :: E_before(:)
integer :: n_det_before
N_st = N_states
N_st = N_states_diag
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
i = 0
print*,'N_det = ',N_det

View File

@ -20,22 +20,18 @@ print s
s = H_apply("CAS_S",do_double_exc=False)
s.unset_double_excitations()
print s
s = H_apply("CAS_S_selected_no_skip",do_double_exc=False)
s.unset_double_excitations()
s.set_selection_pt2("epstein_nesbet_2x2")
s.unset_skip()
print s
s = H_apply("CAS_S_selected",do_double_exc=False)
s.unset_double_excitations()
s.set_selection_pt2("epstein_nesbet_2x2")
print s
s = H_apply("CAS_S_PT2",do_double_exc=False)
s.unset_double_excitations()
s.set_perturbation("epstein_nesbet_2x2")
print s

View File

@ -3,10 +3,10 @@ program ddci
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:),E_before(:)
integer :: N_st, degree
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st))
N_st = N_states_diag
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
character*(64) :: perturbation
pt2 = 1.d0
@ -27,6 +27,8 @@ program ddci
print *, 'E+PT2 = ', CI_energy+pt2
print *, '-----'
endif
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
do while (N_det < N_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
call H_apply_DDCI_selection(pt2, norm_pert, H_pert_diag, N_st)
@ -47,8 +49,21 @@ program ddci
print *, 'N_states = ', N_states
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E+PT2 = ', CI_energy+pt2
print *, 'E+PT2 = ', E_before+pt2
print *, '-----'
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
call ezfio_set_ddci_selected_energy(CI_energy)
enddo
if(do_pt2_end)then

View File

@ -1,6 +1,13 @@
[threshold_singles]
[threshold_lmct]
type: double precision
doc: threshold to select the pertinent single excitations at second order
doc: threshold to select the pertinent LMCT excitations at second order
interface: ezfio,provider,ocaml
default: 0.01
[threshold_mlct]
type: double precision
doc: threshold to select the pertinent MLCT excitations at second order
interface: ezfio,provider,ocaml
default: 0.01
@ -16,6 +23,20 @@ doc: if true, you do the FOBOCI calculation perturbatively
interface: ezfio,provider,ocaml
default: .False.
[speed_up_convergence_foboscf]
type: logical
doc: if true, the threshold of the FOBO-SCF algorithms are increased with the iterations
interface: ezfio,provider,ocaml
default: .True.
[dressing_2h2p]
type: logical
doc: if true, you do dress with 2h2p excitations each FOBOCI matrix
interface: ezfio,provider,ocaml
default: .False.
[second_order_h]
type: logical
doc: if true, you do the FOBOCI calculation using second order intermediate Hamiltonian

View File

@ -18,8 +18,22 @@ print s
s = H_apply("standard")
s = H_apply("only_1h2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_1h2p()
s.unset_skip()
print s
s = H_apply("only_2h2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_2h2p()
s.unset_skip()
print s
s = H_apply("only_2p")
s.set_selection_pt2("epstein_nesbet")
s.filter_only_2p()
s.unset_skip()
print s

View File

@ -1 +1 @@
Perturbation Generators_restart Selectors_no_sorted
Perturbation Selectors_no_sorted Hartree_Fock

View File

@ -6,9 +6,9 @@ subroutine all_single
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 1.d-8
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
threshold_davidson = 1.d-9
soft_touch threshold_davidson davidson_criterion
i = 0
print*,'Doing all the mono excitations !'
@ -52,10 +52,173 @@ subroutine all_single
enddo
endif
E_before = CI_energy
!!!!!!!!!!!!!!!!!!!!!!!!!!! DOING ONLY ONE ITERATION OF SELECTION AS THE SELECTION CRITERION IS SET TO ZERO
exit
enddo
threshold_davidson = 1.d-10
! threshold_davidson = 1.d-8
! soft_touch threshold_davidson davidson_criterion
! call diagonalize_CI
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
do i = 1, max(2,N_det_generators)
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(pt2,norm_pert,E_before)
end
subroutine all_1h2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 1h2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_1h2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2h2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2h2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_2h2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
@ -67,10 +230,89 @@ subroutine all_single
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
! call save_wavefunction
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_only_2p(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
deallocate(pt2,norm_pert,E_before)
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
end
subroutine all_single_no_1h_or_1p
implicit none
integer :: i,k
@ -79,6 +321,8 @@ subroutine all_single_no_1h_or_1p
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
@ -124,7 +368,7 @@ subroutine all_single_no_1h_or_1p
endif
E_before = CI_energy
enddo
threshold_davidson = 1.d-10
threshold_davidson = 1.d-16
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
print*,'Final Step '
@ -215,85 +459,6 @@ subroutine all_single_no_1h_or_1p_or_2p
deallocate(pt2,norm_pert,E_before)
end
subroutine all_2p
implicit none
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, degree
double precision,allocatable :: E_before(:)
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st),H_pert_diag(N_st),E_before(N_st))
selection_criterion = 0.d0
soft_touch selection_criterion
threshold_davidson = 1.d-5
soft_touch threshold_davidson davidson_criterion
i = 0
print*,''
print*,''
print*,''
print*,''
print*,''
print*,'*****************************'
print*,'Doing all the 2P excitations'
print*,'*****************************'
print*,''
print*,''
print*,'N_det = ',N_det
print*,'n_det_max = ',n_det_max
print*,'pt2_max = ',pt2_max
print*,'N_det_generators = ',N_det_generators
pt2=-1.d0
E_before = ref_bitmask_energy
print*,'Initial Step '
print*,'Inital determinants '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
n_det_max = 100000
i = 0
do while (N_det < n_det_max.and.maxval(abs(pt2(1:N_st))) > pt2_max)
i += 1
print*,'-----------------------'
print*,'i = ',i
call H_apply_standard(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
print*,'N_det = ',N_det
print*,'E = ',CI_energy(1)
print*,'pt2 = ',pt2(1)
print*,'E+PT2 = ',E_before + pt2(1)
if(N_states_diag.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_st
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_st
print*,'Delta E = ',E_before(i)+ pt2(i) - (E_before(1) + pt2(1))
enddo
endif
E_before = CI_energy
enddo
print*,'Final Step '
print*,'N_det = ',N_det
do i = 1, N_states_diag
print*,''
print*,'i = ',i
print*,'E = ',CI_energy(i)
print*,'S^2 = ',CI_eigenvectors_s2(i)
enddo
! call save_wavefunction
deallocate(pt2,norm_pert,E_before)
end
subroutine all_1h_1p_routine
implicit none
integer :: i,k

View File

@ -5,7 +5,7 @@ subroutine all_single_split(psi_det_generators_input,psi_coef_generators_input,N
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,Ndet_generators_input)
double precision, intent(inout) :: dressing_matrix(Ndet_generators_input,Ndet_generators_input)
double precision, intent(in) :: psi_coef_generators_input(ndet_generators_input,n_states)
integer :: i,i_hole
integer :: i,i_hole,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
do i = 1, n_inact_orb
@ -22,56 +22,339 @@ subroutine all_single_split(psi_det_generators_input,psi_coef_generators_input,N
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
threshold_davidson = 1.d-10
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
do i = 1, n_act_orb
i_hole = list_act(i)
print*,''
print*,'Doing all the single excitations from the orbital '
print*,i_hole
print*,''
print*,''
threshold_davidson = 1.d-4
soft_touch threshold_davidson davidson_criterion
call modify_bitmasks_for_hole(i_hole)
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
do i = 1, n_virt_orb
i_hole = list_virt(i)
print*,''
print*,'Doing all the single excitations from the orbital '
print*,i_hole
print*,''
print*,''
threshold_davidson = 1.d-4
soft_touch threshold_davidson davidson_criterion
call modify_bitmasks_for_hole(i_hole)
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_generators_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call set_psi_det_as_input_psi(ndet_generators_input,psi_det_generators_input,psi_coef_generators_input)
call all_single
! call diagonalize_CI_SC2
! call update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,Diag_H_elements_SC2)
call provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det_generators_input)
enddo
n_det_max_jacobi = 1000
soft_touch n_det_max_jacobi
end
subroutine all_single_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
subroutine all_single_for_1p(i_particl,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
implicit none
use bitmasks
integer, intent(in) :: i_particl
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_2h1p(N_det_generators,N_det_generators)
integer :: i,i_hole
double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
integer :: i,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
integer :: n_det_1h1p,n_det_2h1p
integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
integer(bit_kind), allocatable :: psi_2h1p(:,:,:)
double precision, allocatable :: psi_ref_coef_out(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_2h1p(:,:)
call all_single_no_1h_or_1p
call all_single
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
call give_n_1h1p_and_n_2h1p_in_psi_det(n_det_1h1p,n_det_2h1p)
allocate(psi_ref_out(N_int,2,N_det_generators))
allocate(psi_1h1p(N_int,2,n_det_1h1p))
allocate(psi_2h1p(N_int,2,n_det_2h1p))
allocate(psi_ref_coef_out(N_det_generators,N_states))
allocate(psi_coef_1h1p(n_det_1h1p,N_states))
allocate(psi_coef_2h1p(n_det_2h1p,N_states))
call split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p)
call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h1p,psi_coef_1h1p,n_det_1h1p)
call provide_matrix_dressing_general(dressing_matrix_2h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_2h1p,psi_coef_2h1p,n_det_2h1p)
deallocate(psi_ref_out)
deallocate(psi_1h1p)
deallocate(psi_2h1p)
deallocate(psi_ref_coef_out)
deallocate(psi_coef_1h1p)
deallocate(psi_coef_2h1p)
double precision, allocatable :: matrix_ref_1h_1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h2p(:,:)
double precision, allocatable :: psi_coef_ref_1h_1p(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_1h2p(:,:)
integer(bit_kind), allocatable :: psi_det_1h2p(:,:,:)
integer(bit_kind), allocatable :: psi_det_ref_1h_1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_1h1p(:,:,:)
integer :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
double precision :: hka
double precision,allocatable :: eigenvectors(:,:), eigenvalues(:)
call give_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p)
allocate(matrix_ref_1h_1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h2p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p), psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states))
allocate(psi_det_1h2p(N_int,2,n_det_1h2p), psi_coef_1h2p(n_det_1h2p,N_states))
allocate(psi_det_1h1p(N_int,2,n_det_1h1p), psi_coef_1h1p(n_det_1h1p,N_states))
call give_wf_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_1h2p,psi_coef_1h2p,psi_det_1h1p,psi_coef_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
call i_h_j(psi_det_ref_1h_1p(1,1,i),psi_det_ref_1h_1p(1,1,j),N_int,hka)
matrix_ref_1h_1p(i,j) = hka
enddo
enddo
matrix_ref_1h_1p_dressing_1h1p = 0.d0
matrix_ref_1h_1p_dressing_1h2p = 0.d0
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h2p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h2p,psi_coef_1h2p,n_det_1h2p)
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h1p,psi_coef_1h1p,n_det_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
matrix_ref_1h_1p(i,j) += matrix_ref_1h_1p_dressing_1h2p(i,j) + matrix_ref_1h_1p_dressing_1h1p(i,j)
enddo
enddo
allocate(eigenvectors(n_det_ref_1h_1p,n_det_ref_1h_1p), eigenvalues(n_det_ref_1h_1p))
call lapack_diag(eigenvalues,eigenvectors,matrix_ref_1h_1p,n_det_ref_1h_1p,n_det_ref_1h_1p)
!do j = 1, n_det_ref_1h_1p
! print*,'coef = ',eigenvectors(j,1)
!enddo
print*,''
print*,'-----------------------'
print*,'-----------------------'
print*,'e_dressed = ',eigenvalues(1)+nuclear_repulsion
print*,'-----------------------'
! Extract the
integer, allocatable :: index_generator(:)
integer :: n_det_generators_tmp,degree
n_det_generators_tmp = 0
allocate(index_generator(n_det_ref_1h_1p))
do i = 1, n_det_ref_1h_1p
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det_ref_1h_1p(1,1,i), degree, N_int)
if(degree == 0)then
n_det_generators_tmp +=1
index_generator(n_det_generators_tmp) = i
endif
enddo
enddo
if(n_det_generators_tmp .ne. n_det_generators)then
print*,'PB !!!'
print*,'if(n_det_generators_tmp .ne. n_det_genrators)then'
stop
endif
do i = 1, N_det_generators
print*,'psi_coef_dressed = ',eigenvectors(index_generator(i),1)
do j = 1, N_det_generators
dressing_matrix_1h1p(i,j) += matrix_ref_1h_1p_dressing_1h1p(index_generator(i),index_generator(j))
dressing_matrix_1h2p(i,j) += matrix_ref_1h_1p_dressing_1h2p(index_generator(i),index_generator(j))
enddo
enddo
print*,'-----------------------'
print*,'-----------------------'
deallocate(matrix_ref_1h_1p)
deallocate(matrix_ref_1h_1p_dressing_1h1p)
deallocate(matrix_ref_1h_1p_dressing_1h2p)
deallocate(psi_det_ref_1h_1p, psi_coef_ref_1h_1p)
deallocate(psi_det_1h2p, psi_coef_1h2p)
deallocate(psi_det_1h1p, psi_coef_1h1p)
deallocate(eigenvectors,eigenvalues)
deallocate(index_generator)
end
subroutine all_single_for_1h(i_hole,dressing_matrix_1h1p,dressing_matrix_2h1p,dressing_matrix_extra_1h_or_1p)
implicit none
use bitmasks
integer, intent(in) :: i_hole
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_2h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
integer :: i,j
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
call all_single
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
double precision, allocatable :: matrix_ref_1h_1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_1h1p(:,:)
double precision, allocatable :: matrix_ref_1h_1p_dressing_2h1p(:,:)
double precision, allocatable :: psi_coef_ref_1h_1p(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_2h1p(:,:)
integer(bit_kind), allocatable :: psi_det_2h1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_ref_1h_1p(:,:,:)
integer(bit_kind), allocatable :: psi_det_1h1p(:,:,:)
integer :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
double precision :: hka
double precision,allocatable :: eigenvectors(:,:), eigenvalues(:)
call give_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p)
allocate(matrix_ref_1h_1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_1h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(matrix_ref_1h_1p_dressing_2h1p(n_det_ref_1h_1p,n_det_ref_1h_1p))
allocate(psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p), psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states))
allocate(psi_det_2h1p(N_int,2,n_det_2h1p), psi_coef_2h1p(n_det_2h1p,N_states))
allocate(psi_det_1h1p(N_int,2,n_det_1h1p), psi_coef_1h1p(n_det_1h1p,N_states))
call give_wf_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_2h1p,psi_coef_2h1p,psi_det_1h1p,psi_coef_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
call i_h_j(psi_det_ref_1h_1p(1,1,i),psi_det_ref_1h_1p(1,1,j),N_int,hka)
matrix_ref_1h_1p(i,j) = hka
enddo
enddo
matrix_ref_1h_1p_dressing_1h1p = 0.d0
matrix_ref_1h_1p_dressing_2h1p = 0.d0
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_2h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_2h1p,psi_coef_2h1p,n_det_2h1p)
call provide_matrix_dressing_general(matrix_ref_1h_1p_dressing_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,n_det_ref_1h_1p, &
psi_det_1h1p,psi_coef_1h1p,n_det_1h1p)
do i = 1, n_det_ref_1h_1p
do j = 1, n_det_ref_1h_1p
matrix_ref_1h_1p(i,j) += matrix_ref_1h_1p_dressing_2h1p(i,j) + matrix_ref_1h_1p_dressing_1h1p(i,j)
enddo
enddo
allocate(eigenvectors(n_det_ref_1h_1p,n_det_ref_1h_1p), eigenvalues(n_det_ref_1h_1p))
call lapack_diag(eigenvalues,eigenvectors,matrix_ref_1h_1p,n_det_ref_1h_1p,n_det_ref_1h_1p)
!do j = 1, n_det_ref_1h_1p
! print*,'coef = ',eigenvectors(j,1)
!enddo
print*,''
print*,'-----------------------'
print*,'-----------------------'
print*,'e_dressed = ',eigenvalues(1)+nuclear_repulsion
print*,'-----------------------'
! Extract the
integer, allocatable :: index_generator(:)
integer :: n_det_generators_tmp,degree
n_det_generators_tmp = 0
allocate(index_generator(n_det_ref_1h_1p))
do i = 1, n_det_ref_1h_1p
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det_ref_1h_1p(1,1,i), degree, N_int)
if(degree == 0)then
n_det_generators_tmp +=1
index_generator(n_det_generators_tmp) = i
endif
enddo
enddo
if(n_det_generators_tmp .ne. n_det_generators)then
print*,'PB !!!'
print*,'if(n_det_generators_tmp .ne. n_det_genrators)then'
stop
endif
do i = 1, N_det_generators
print*,'psi_coef_dressed = ',eigenvectors(index_generator(i),1)
do j = 1, N_det_generators
dressing_matrix_1h1p(i,j) += matrix_ref_1h_1p_dressing_1h1p(index_generator(i),index_generator(j))
dressing_matrix_2h1p(i,j) += matrix_ref_1h_1p_dressing_2h1p(index_generator(i),index_generator(j))
enddo
enddo
print*,'-----------------------'
print*,'-----------------------'
deallocate(matrix_ref_1h_1p)
deallocate(matrix_ref_1h_1p_dressing_1h1p)
deallocate(matrix_ref_1h_1p_dressing_2h1p)
deallocate(psi_det_ref_1h_1p, psi_coef_ref_1h_1p)
deallocate(psi_det_2h1p, psi_coef_2h1p)
deallocate(psi_det_1h1p, psi_coef_1h1p)
deallocate(eigenvectors,eigenvalues)
deallocate(index_generator)
!return
!
!integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
!integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
!integer(bit_kind), allocatable :: psi_2h1p(:,:,:)
!integer(bit_kind), allocatable :: psi_extra_1h_or_1p(:,:,:)
!double precision, allocatable :: psi_ref_coef_out(:,:)
!double precision, allocatable :: psi_coef_extra_1h_or_1p(:,:)
!call all_single_no_1h_or_1p
!call give_n_1h1p_and_n_2h1p_in_psi_det(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p)
!allocate(psi_ref_out(N_int,2,N_det_generators))
!allocate(psi_1h1p(N_int,2,n_det_1h1p))
!allocate(psi_2h1p(N_int,2,n_det_2h1p))
!allocate(psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p))
!allocate(psi_ref_coef_out(N_det_generators,N_states))
!allocate(psi_coef_1h1p(n_det_1h1p,N_states))
!allocate(psi_coef_2h1p(n_det_2h1p,N_states))
!allocate(psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p,N_states))
!call split_wf_generators_and_1h1p_and_2h1p(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
!do i = 1, n_det_extra_1h_or_1p
! print*,'----'
! print*,'c = ',psi_coef_extra_1h_or_1p(i,1)
! call debug_det(psi_extra_1h_or_1p(1,1,i),N_int)
! print*,'----'
!enddo
!call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h1p,psi_coef_1h1p,n_det_1h1p)
!print*,'Dressing 1h1p '
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_1h1p(j,:)
!enddo
!call provide_matrix_dressing_general(dressing_matrix_2h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_2h1p,psi_coef_2h1p,n_det_2h1p)
!print*,'Dressing 2h1p '
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_2h1p(j,:)
!enddo
!call provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix_extra_1h_or_1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p,n_det_extra_1h_or_1p)
!print*,',dressing_matrix_extra_1h_or_1p'
!do j =1, N_det_generators
! print*,' dressing ',dressing_matrix_extra_1h_or_1p(j,:)
!enddo
!deallocate(psi_ref_out)
!deallocate(psi_1h1p)
!deallocate(psi_2h1p)
!deallocate(psi_extra_1h_or_1p)
!deallocate(psi_ref_coef_out)
!deallocate(psi_coef_1h1p)
!deallocate(psi_coef_2h1p)
!deallocate(psi_coef_extra_1h_or_1p)
end
@ -197,47 +480,56 @@ subroutine all_single_split_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
soft_touch n_det_max_jacobi
end
subroutine all_single_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
implicit none
use bitmasks
double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
integer :: i,i_hole
n_det_max_jacobi = 50
soft_touch n_det_max_jacobi
integer :: n_det_1h1p,n_det_1h2p
integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
integer(bit_kind), allocatable :: psi_1h2p(:,:,:)
double precision, allocatable :: psi_ref_coef_out(:,:)
double precision, allocatable :: psi_coef_1h1p(:,:)
double precision, allocatable :: psi_coef_1h2p(:,:)
call all_single_no_1h_or_1p_or_2p
threshold_davidson = 1.d-12
soft_touch threshold_davidson davidson_criterion
call diagonalize_CI
call give_n_1h1p_and_n_1h2p_in_psi_det(n_det_1h1p,n_det_1h2p)
allocate(psi_ref_out(N_int,2,N_det_generators))
allocate(psi_1h1p(N_int,2,n_det_1h1p))
allocate(psi_1h2p(N_int,2,n_det_1h2p))
allocate(psi_ref_coef_out(N_det_generators,N_states))
allocate(psi_coef_1h1p(n_det_1h1p,N_states))
allocate(psi_coef_1h2p(n_det_1h2p,N_states))
call split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p)
call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h1p,psi_coef_1h1p,n_det_1h1p)
call provide_matrix_dressing_general(dressing_matrix_1h2p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
psi_1h2p,psi_coef_1h2p,n_det_1h2p)
deallocate(psi_ref_out)
deallocate(psi_1h1p)
deallocate(psi_1h2p)
deallocate(psi_ref_coef_out)
deallocate(psi_coef_1h1p)
deallocate(psi_coef_1h2p)
end
! subroutine all_single_for_1p(i_particl,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
! implicit none
! use bitmasks
! integer, intent(in ) :: i_particl
! double precision, intent(inout) :: dressing_matrix_1h1p(N_det_generators,N_det_generators)
! double precision, intent(inout) :: dressing_matrix_1h2p(N_det_generators,N_det_generators)
! double precision, intent(inout) :: dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators)
! integer :: i
! n_det_max_jacobi = 50
! soft_touch n_det_max_jacobi
!
! integer :: n_det_1h1p,n_det_1h2p,n_det_extra_1h_or_1p
! integer(bit_kind), allocatable :: psi_ref_out(:,:,:)
! integer(bit_kind), allocatable :: psi_1h1p(:,:,:)
! integer(bit_kind), allocatable :: psi_1h2p(:,:,:)
! integer(bit_kind), allocatable :: psi_extra_1h_or_1p(:,:,:)
! double precision, allocatable :: psi_ref_coef_out(:,:)
! double precision, allocatable :: psi_coef_1h1p(:,:)
! double precision, allocatable :: psi_coef_1h2p(:,:)
! double precision, allocatable :: psi_coef_extra_1h_or_1p(:,:)
!!!!call all_single_no_1h_or_1p_or_2p
! call all_single
!
! threshold_davidson = 1.d-12
! soft_touch threshold_davidson davidson_criterion
! call diagonalize_CI
! call give_n_1h1p_and_n_1h2p_in_psi_det(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p)
! allocate(psi_ref_out(N_int,2,N_det_generators))
! allocate(psi_1h1p(N_int,2,n_det_1h1p))
! allocate(psi_1h2p(N_int,2,n_det_1h2p))
! allocate(psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p))
! allocate(psi_ref_coef_out(N_det_generators,N_states))
! allocate(psi_coef_1h1p(n_det_1h1p,N_states))
! allocate(psi_coef_1h2p(n_det_1h2p,N_states))
! allocate(psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p,N_states))
! call split_wf_generators_and_1h1p_and_1h2p(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
! call provide_matrix_dressing_general(dressing_matrix_1h1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h1p,psi_coef_1h1p,n_det_1h1p)
! call provide_matrix_dressing_general(dressing_matrix_1h2p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_1h2p,psi_coef_1h2p,n_det_1h2p)
! call provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix_extra_1h_or_1p,psi_ref_out,psi_ref_coef_out,N_det_generators, &
! psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p,n_det_extra_1h_or_1p)
!
! deallocate(psi_ref_out)
! deallocate(psi_1h1p)
! deallocate(psi_1h2p)
! deallocate(psi_ref_coef_out)
! deallocate(psi_coef_1h1p)
! deallocate(psi_coef_1h2p)
!
! end

View File

@ -0,0 +1,436 @@
use bitmasks
subroutine collect_lmct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
print*,'COLLECTING THE PERTINENT LMCT (1h)'
double precision, allocatable :: tmp(:,:)
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-2)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_mlct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
print*,'COLLECTING THE PERTINENT MLCT (1p)'
double precision, allocatable :: tmp(:,:)
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-3)then
n_couples +=1
hole_particle(n_couples,1) = iorb
hole_particle(n_couples,2) = jorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_lmct_mlct(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
double precision, allocatable :: tmp(:,:)
print*,'COLLECTING THE PERTINENT LMCT (1h)'
print*,'AND THE PERTINENT MLCT (1p)'
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
n_couples +=1
hole_particle(n_couples,1) = iorb
hole_particle(n_couples,2) = jorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine collect_1h1p(hole_particle,n_couples)
implicit none
integer, intent(out) :: hole_particle(1000,2), n_couples
BEGIN_DOC
! Collect all the couple holes/particles of the important LMCT
! hole_particle(i,1) = ith hole
! hole_particle(i,2) = ith particle
! n_couples is the number of important excitations
END_DOC
double precision, allocatable :: tmp(:,:)
print*,'COLLECTING THE PERTINENT 1h1p'
allocate(tmp(size(one_body_dm_mo_alpha_osoci,1),size(one_body_dm_mo_alpha_osoci,2)))
tmp = one_body_dm_mo_alpha_osoci + one_body_dm_mo_beta_osoci
integer :: i,j,iorb,jorb
n_couples = 0
do i = 1,n_virt_orb
iorb = list_virt(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.1.d-2)then
n_couples +=1
hole_particle(n_couples,1) = jorb
hole_particle(n_couples,2) = iorb
print*,'DM'
print*,hole_particle(n_couples,1),hole_particle(n_couples,2),tmp(iorb,jorb)
endif
enddo
enddo
deallocate(tmp)
print*,'number of meaning full couples of holes/particles '
print*,'n_couples = ',n_couples
end
subroutine set_lmct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
print*,'i_hole,i_particle 2 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
print*,'i_hole,i_particle 1 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_mlct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_mlct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
print*,'i_hole,i_particle 2 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
print*,'i_hole,i_particle 1 = ',i_hole,i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
print*,'i_ok = ',i_ok
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_lmct_mlct_to_generators_restart
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct_mlct(hole_particle,n_couples)
call set_generators_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_cas
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_cas(n,1,m)
key_tmp(n,2) = psi_cas(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det_generators(n,1,N_det_total) = key_tmp(n,1)
psi_det_generators(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det_generators = N_det_total
do i = 1, N_det_generators
psi_coef_generators(i,1) = 1.d0/dsqrt(dble(N_det_total))
enddo
print*,'number of generators in total = ',N_det_generators
touch N_det_generators psi_coef_generators psi_det_generators
end
subroutine set_lmct_mlct_to_psi_det
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_lmct_mlct(hole_particle,n_couples)
call set_psi_det_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_generators_restart
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det = N_det_total
integer :: k
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = 1.d0/dsqrt(dble(N_det_total))
enddo
enddo
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
call remove_duplicates_in_psi_det(found_duplicates)
end
subroutine set_1h1p_to_psi_det
implicit none
integer :: i,j,m,n,i_hole,i_particle
integer :: hole_particle(1000,2), n_couples
integer(bit_kind) :: key_tmp(N_int,2)
integer :: N_det_total,i_ok
call collect_1h1p(hole_particle,n_couples)
call set_psi_det_to_generators_restart
N_det_total = N_det_generators_restart
do i = 1, n_couples
i_hole = hole_particle(i,1)
i_particle = hole_particle(i,2)
do m = 1, N_det_generators_restart
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the beta electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,2,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
do n = 1, N_int
key_tmp(n,1) = psi_det_generators_restart(n,1,m)
key_tmp(n,2) = psi_det_generators_restart(n,2,m)
enddo
! You excite the alpha electron from i_hole to i_particle
call do_mono_excitation(key_tmp,i_hole,i_particle,1,i_ok)
if(i_ok==1)then
N_det_total +=1
do n = 1, N_int
psi_det(n,1,N_det_total) = key_tmp(n,1)
psi_det(n,2,N_det_total) = key_tmp(n,2)
enddo
endif
enddo
enddo
N_det = N_det_total
integer :: k
do k = 1, N_states
do i = 1, N_det
psi_coef(i,k) = 1.d0/dsqrt(dble(N_det_total))
enddo
enddo
SOFT_TOUCH N_det psi_det psi_coef
logical :: found_duplicates
call remove_duplicates_in_psi_det(found_duplicates)
end

View File

@ -0,0 +1,425 @@
BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_ab_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_bb_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_a, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_b, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_for_1h1p_double, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h2p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_2h2p]
use bitmasks
print*,''
print*,'Providing the 2h2p correlation energy'
print*,''
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_2h2p = 0.d0
corr_energy_2h2p_ab_2_orb = 0.d0
corr_energy_2h2p_bb_2_orb = 0.d0
corr_energy_2h2p_per_orb_ab = 0.d0
corr_energy_2h2p_per_orb_aa = 0.d0
corr_energy_2h2p_per_orb_bb = 0.d0
corr_energy_2h2p_for_1h1p_a = 0.d0
corr_energy_2h2p_for_1h1p_b = 0.d0
corr_energy_2h2p_for_1h1p_double = 0.d0
do i = 1, n_inact_orb ! beta
i_hole = list_inact(i)
do k = 1, n_virt_orb ! beta
k_part = list_virt(k)
do j = 1, n_inact_orb ! alpha
j_hole = list_inact(j)
do l = 1, n_virt_orb ! alpha
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = (ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = hij*hij/delta_e
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_ab(i_hole) += contrib
corr_energy_2h2p_per_orb_ab(k_part) += contrib
! Couple of orbital contribution for the single 1h1p
corr_energy_2h2p_for_1h1p_a(j_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_a(l_part,j_hole) += contrib
corr_energy_2h2p_for_1h1p_b(j_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_b(l_part,j_hole) += contrib
! Couple of orbital contribution for the double 1h1p
corr_energy_2h2p_for_1h1p_double(i_hole,l_part) += contrib
corr_energy_2h2p_for_1h1p_double(l_part,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(i_hole,j_hole) += contrib
corr_energy_2h2p_ab_2_orb(j_hole,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(i_hole,k_part) += contrib
corr_energy_2h2p_ab_2_orb(k_part,i_hole) += contrib
corr_energy_2h2p_ab_2_orb(k_part,l_part) += contrib
corr_energy_2h2p_ab_2_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! alpha alpha correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_virt_orb
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_aa(i_hole) += contrib
corr_energy_2h2p_per_orb_aa(k_part) += contrib
! Couple of orbital contribution for the single 1h1p
corr_energy_2h2p_for_1h1p_a(i_hole,k_part) += contrib
corr_energy_2h2p_for_1h1p_a(k_part,i_hole) += contrib
enddo
enddo
enddo
enddo
! beta beta correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_virt_orb
k_part = list_virt(k)
do l = k+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h2p += contrib
! Single orbital contribution
corr_energy_2h2p_per_orb_bb(i_hole) += contrib
corr_energy_2h2p_per_orb_bb(k_part) += contrib
corr_energy_2h2p_for_1h1p_b(i_hole,k_part) += contrib
corr_energy_2h2p_for_1h1p_b(k_part,i_hole) += contrib
! Two particle correlation energy
corr_energy_2h2p_bb_2_orb(i_hole,j_hole) += contrib
corr_energy_2h2p_bb_2_orb(j_hole,i_hole) += contrib
corr_energy_2h2p_bb_2_orb(i_hole,k_part) += contrib
corr_energy_2h2p_bb_2_orb(k_part,i_hole) += contrib
corr_energy_2h2p_bb_2_orb(k_part,l_part) += contrib
corr_energy_2h2p_bb_2_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_2h1p_ab_bb_per_2_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_a, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_b, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_for_1h1p_double, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_2h1p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_2h1p]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_2h1p = 0.d0
corr_energy_2h1p_per_orb_ab = 0.d0
corr_energy_2h1p_per_orb_aa = 0.d0
corr_energy_2h1p_per_orb_bb = 0.d0
corr_energy_2h1p_ab_bb_per_2_orb = 0.d0
corr_energy_2h1p_for_1h1p_a = 0.d0
corr_energy_2h1p_for_1h1p_b = 0.d0
corr_energy_2h1p_for_1h1p_double = 0.d0
do i = 1, n_inact_orb
i_hole = list_inact(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h1p += contrib
corr_energy_2h1p_ab_bb_per_2_orb(i_hole,j_hole) += contrib
corr_energy_2h1p_per_orb_ab(i_hole) += contrib
corr_energy_2h1p_per_orb_ab(l_part) += contrib
enddo
enddo
enddo
enddo
! Alpha Alpha spin correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_2h1p += contrib
corr_energy_2h1p_per_orb_aa(i_hole) += contrib
corr_energy_2h1p_per_orb_aa(l_part) += contrib
enddo
enddo
enddo
enddo
! Beta Beta correlation energy
do i = 1, n_inact_orb
i_hole = list_inact(i)
do j = i+1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = 1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
corr_energy_2h1p_ab_bb_per_2_orb(i_hole,j_hole) += contrib
total_corr_e_2h1p += contrib
corr_energy_2h1p_per_orb_bb(i_hole) += contrib
corr_energy_2h1p_per_orb_aa(l_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_ab, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_two_orb, (mo_tot_num,mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_aa, (mo_tot_num)]
&BEGIN_PROVIDER [double precision, corr_energy_1h2p_per_orb_bb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_1h2p]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_1h2p = 0.d0
corr_energy_1h2p_per_orb_ab = 0.d0
corr_energy_1h2p_per_orb_aa = 0.d0
corr_energy_1h2p_per_orb_bb = 0.d0
do i = 1, n_virt_orb
i_hole = list_virt(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_ab(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! Alpha Alpha correlation energy
do i = 1, n_virt_orb
i_hole = list_virt(i)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 1
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_aa(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
! Beta Beta correlation energy
do i = 1, n_virt_orb
i_hole = list_virt(i)
do j = 1, n_inact_orb
j_hole = list_inact(j)
do k = 1, n_act_orb
k_part = list_act(k)
do l = i+1,n_virt_orb
l_part = list_virt(l)
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
exc = get_mo_bielec_integral_schwartz(i_hole,j_hole,l_part,k_part,mo_integrals_map)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 2
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = hij - exc
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h2p += contrib
corr_energy_1h2p_per_orb_bb(i_hole) += contrib
corr_energy_1h2p_per_orb_ab(j_hole) += contrib
corr_energy_1h2p_two_orb(k_part,l_part) += contrib
corr_energy_1h2p_two_orb(l_part,k_part) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, corr_energy_1h1p_spin_flip_per_orb, (mo_tot_num)]
&BEGIN_PROVIDER [ double precision, total_corr_e_1h1p_spin_flip]
use bitmasks
implicit none
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i,j,k,l
integer :: i_hole,j_hole,k_part,l_part
double precision :: get_mo_bielec_integral_schwartz,hij,delta_e,exc,contrib
double precision :: diag_H_mat_elem
integer :: i_ok,ispin
! Alpha - Beta correlation energy
total_corr_e_1h1p_spin_flip = 0.d0
corr_energy_1h1p_spin_flip_per_orb = 0.d0
do i = 1, n_inact_orb
i_hole = list_inact(i)
do k = 1, n_act_orb
k_part = list_act(k)
do j = 1, n_act_orb
j_hole = list_act(j)
do l = 1, n_virt_orb
l_part = list_virt(l)
key_tmp = ref_bitmask
ispin = 2
call do_mono_excitation(key_tmp,i_hole,k_part,ispin,i_ok)
if(i_ok .ne.1)cycle
ispin = 1
call do_mono_excitation(key_tmp,j_hole,l_part,ispin,i_ok)
if(i_ok .ne.1)cycle
delta_e = -(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
hij = get_mo_bielec_integral_schwartz(i_hole,j_hole,k_part,l_part,mo_integrals_map)
contrib = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij*hij))
total_corr_e_1h1p_spin_flip += contrib
corr_energy_1h1p_spin_flip_per_orb(i_hole) += contrib
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -3,6 +3,7 @@ subroutine diag_inactive_virt_and_update_mos
integer :: i,j,i_inact,j_inact,i_virt,j_virt
double precision :: tmp(mo_tot_num_align,mo_tot_num)
character*(64) :: label
print*,'Diagonalizing the occ and virt Fock operator'
tmp = 0.d0
do i = 1, mo_tot_num
tmp(i,i) = Fock_matrix_mo(i,i)
@ -33,3 +34,50 @@ subroutine diag_inactive_virt_and_update_mos
end
subroutine diag_inactive_virt_new_and_update_mos
implicit none
integer :: i,j,i_inact,j_inact,i_virt,j_virt,k,k_act
double precision :: tmp(mo_tot_num_align,mo_tot_num),accu,get_mo_bielec_integral_schwartz
character*(64) :: label
tmp = 0.d0
do i = 1, mo_tot_num
tmp(i,i) = Fock_matrix_mo(i,i)
enddo
do i = 1, n_inact_orb
i_inact = list_inact(i)
do j = i+1, n_inact_orb
j_inact = list_inact(j)
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_inact,k_act,j_inact,k_act,mo_integrals_map)
accu -= get_mo_bielec_integral_schwartz(i_inact,k_act,k_act,j_inact,mo_integrals_map)
enddo
tmp(i_inact,j_inact) = Fock_matrix_mo(i_inact,j_inact) + accu
tmp(j_inact,i_inact) = Fock_matrix_mo(j_inact,i_inact) + accu
enddo
enddo
do i = 1, n_virt_orb
i_virt = list_virt(i)
do j = i+1, n_virt_orb
j_virt = list_virt(j)
accu =0.d0
do k = 1, n_act_orb
k_act = list_act(k)
accu += get_mo_bielec_integral_schwartz(i_virt,k_act,j_virt,k_act,mo_integrals_map)
enddo
tmp(i_virt,j_virt) = Fock_matrix_mo(i_virt,j_virt) - accu
tmp(j_virt,i_virt) = Fock_matrix_mo(j_virt,i_virt) - accu
enddo
enddo
label = "Canonical"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
end

View File

@ -58,24 +58,24 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
call i_h_j(det_buffer(1,1,i),det_buffer(1,1,i),Nint,haa)
f = 1.d0/(E_ref-haa)
if(second_order_h)then
! if(second_order_h)then
lambda_i = f
else
! You write the new Hamiltonian matrix
do k = 1, Ndet_generators
H_matrix_tmp(k,Ndet_generators+1) = H_array(k)
H_matrix_tmp(Ndet_generators+1,k) = H_array(k)
enddo
H_matrix_tmp(Ndet_generators+1,Ndet_generators+1) = haa
! Then diagonalize it
call lapack_diag(eigenvalues,eigenvectors,H_matrix_tmp,Ndet_generators+1,Ndet_generators+1)
! Then you extract the effective denominator
accu = 0.d0
do k = 1, Ndet_generators
accu += eigenvectors(k,1) * H_array(k)
enddo
lambda_i = eigenvectors(Ndet_generators+1,1)/accu
endif
! else
! ! You write the new Hamiltonian matrix
! do k = 1, Ndet_generators
! H_matrix_tmp(k,Ndet_generators+1) = H_array(k)
! H_matrix_tmp(Ndet_generators+1,k) = H_array(k)
! enddo
! H_matrix_tmp(Ndet_generators+1,Ndet_generators+1) = haa
! ! Then diagonalize it
! call lapack_diag(eigenvalues,eigenvectors,H_matrix_tmp,Ndet_generators+1,Ndet_generators+1)
! ! Then you extract the effective denominator
! accu = 0.d0
! do k = 1, Ndet_generators
! accu += eigenvectors(k,1) * H_array(k)
! enddo
! lambda_i = eigenvectors(Ndet_generators+1,1)/accu
! endif
do k=1,idx(0)
contrib = H_array(idx(k)) * H_array(idx(k)) * lambda_i
delta_ij_generators_(idx(k), idx(k)) += contrib
@ -85,33 +85,6 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
delta_ij_generators_(idx(j), idx(k)) += contrib
enddo
enddo
! H_matrix_tmp_bis(idx(k),idx(k)) += contrib
! H_matrix_tmp_bis(idx(k),idx(j)) += contrib
! H_matrix_tmp_bis(idx(j),idx(k)) += contrib
! do k = 1, Ndet_generators
! do j = 1, Ndet_generators
! H_matrix_tmp_bis(k,j) = H_matrix_tmp(k,j)
! enddo
! enddo
! double precision :: H_matrix_tmp_bis(Ndet_generators,Ndet_generators)
! double precision :: eigenvectors_bis(Ndet_generators,Ndet_generators), eigenvalues_bis(Ndet_generators)
! call lapack_diag(eigenvalues_bis,eigenvectors_bis,H_matrix_tmp_bis,Ndet_generators,Ndet_generators)
! print*,'f,lambda_i = ',f,lambda_i
! print*,'eigenvalues_bi(1)',eigenvalues_bis(1)
! print*,'eigenvalues ',eigenvalues(1)
! do k = 1, Ndet_generators
! print*,'coef,coef_dres = ', eigenvectors(k,1), eigenvectors_bis(k,1)
! enddo
! pause
! accu = 0.d0
! do k = 1, Ndet_generators
! do j = 1, Ndet_generators
! accu += eigenvectors(k,1) * eigenvectors(j,1) * (H_matrix_tmp(k,j) + delta_ij_generators_(k,j))
! enddo
! enddo
! print*,'accu,eigv = ',accu,eigenvalues(1)
! pause
enddo
end

View File

@ -0,0 +1,59 @@
program foboscf
implicit none
call run_prepare
no_oa_or_av_opt = .True.
touch no_oa_or_av_opt
call routine_fobo_scf
call save_mos
end
subroutine run_prepare
implicit none
no_oa_or_av_opt = .False.
touch no_oa_or_av_opt
call damping_SCF
call diag_inactive_virt_and_update_mos
end
subroutine routine_fobo_scf
implicit none
integer :: i,j
print*,''
print*,''
character*(64) :: label
label = "Natural"
do i = 1, 5
print*,'*******************************************************************************'
print*,'*******************************************************************************'
print*,'FOBO-SCF Iteration ',i
print*,'*******************************************************************************'
print*,'*******************************************************************************'
if(speed_up_convergence_foboscf)then
if(i==3)then
threshold_lmct = max(threshold_lmct,0.001)
threshold_mlct = max(threshold_mlct,0.05)
soft_touch threshold_lmct threshold_mlct
endif
if(i==4)then
threshold_lmct = max(threshold_lmct,0.005)
threshold_mlct = max(threshold_mlct,0.07)
soft_touch threshold_lmct threshold_mlct
endif
if(i==5)then
threshold_lmct = max(threshold_lmct,0.01)
threshold_mlct = max(threshold_mlct,0.1)
soft_touch threshold_lmct threshold_mlct
endif
endif
call FOBOCI_lmct_mlct_old_thr
call save_osoci_natural_mos
call damping_SCF
call diag_inactive_virt_and_update_mos
call clear_mo_map
call provide_properties
enddo
end

View File

@ -9,12 +9,9 @@ subroutine FOBOCI_lmct_mlct_old_thr
double precision :: norm_tmp(N_states),norm_total(N_states)
logical :: test_sym
double precision :: thr,hij
double precision :: threshold
double precision, allocatable :: dressing_matrix(:,:)
logical :: verbose,is_ok
verbose = .True.
threshold = threshold_singles
print*,'threshold = ',threshold
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -36,7 +33,14 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,''
print*,''
print*,'DOING FIRST LMCT !!'
print*,'Threshold_lmct = ',threshold_lmct
integer(bit_kind) , allocatable :: zero_bitmask(:,:)
integer(bit_kind) , allocatable :: psi_singles(:,:,:)
logical :: lmct
double precision, allocatable :: psi_singles_coef(:,:)
allocate( zero_bitmask(N_int,2) )
do i = 1, n_inact_orb
lmct = .True.
integer :: i_hole_osoci
i_hole_osoci = list_inact(i)
print*,'--------------------------'
@ -51,27 +55,91 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,'Passed set generators'
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! so all the mono excitation on the new generators
allocate(dressing_matrix(N_det_generators,N_det_generators))
dressing_matrix = 0.d0
if(.not.do_it_perturbative)then
! call all_single
dressing_matrix = 0.d0
do k = 1, N_det_generators
do l = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,k),psi_det_generators(1,1,l),N_int,hkl)
dressing_matrix(k,l) = hkl
enddo
enddo
double precision :: hkl
! call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
call debug_det(reunion_of_bitmask,N_int)
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Naked matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! Do all the single excitations on top of the CAS and 1h determinants
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_hole_osoci,lmct)
! endif
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that starts from the active space in order
! ! to introduce the Coulomb hole in the active space
! ! These are the 1h2p excitations that have the i_hole_osoci hole in common
! ! and the 2p if there is more than one electron in the active space
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! ! and in the active space
! do k = 1, n_act_orb
! call set_bit_to_integer(list_act(k),zero_bitmask(1,1),N_int)
! call set_bit_to_integer(list_act(k),zero_bitmask(1,2),N_int)
! enddo
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call all_1h2p
! call diagonalize_CI_SC2
! call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
! ! Change the mask of the holes and particles to perform all the
! ! double excitations that from the orbital i_hole_osoci
! do k = 1, N_int
! zero_bitmask(k,1) = 0_bit_kind
! zero_bitmask(k,2) = 0_bit_kind
! enddo
! ! hole is possible only in the orbital i_hole_osoci
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,1),N_int)
! call set_bit_to_integer(i_hole_osoci,zero_bitmask(1,2),N_int)
! call set_bitmask_hole_as_input(zero_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call set_psi_det_to_generators
! call all_2h2p
! call diagonalize_CI_SC2
double precision :: hkl
call provide_matrix_dressing(dressing_matrix,n_det_generators,psi_det_generators)
hkl = dressing_matrix(1,1)
do k = 1, N_det_generators
dressing_matrix(k,k) = dressing_matrix(k,k) - hkl
enddo
print*,'Dressed matrix'
do k = 1, N_det_generators
write(*,'(100(F12.5,X))')dressing_matrix(k,:)
enddo
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
endif
call set_intermediate_normalization_lmct_old(norm_tmp,i_hole_osoci)
do k = 1, N_states
print*,'norm_tmp = ',norm_tmp(k)
norm_total(k) += norm_tmp(k)
@ -83,9 +151,12 @@ subroutine FOBOCI_lmct_mlct_old_thr
if(.True.)then
print*,''
print*,'DOING THEN THE MLCT !!'
print*,'Threshold_mlct = ',threshold_mlct
lmct = .False.
do i = 1, n_virt_orb
integer :: i_particl_osoci
i_particl_osoci = list_virt(i)
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
@ -107,7 +178,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
allocate(dressing_matrix(N_det_generators,N_det_generators))
@ -122,6 +193,9 @@ subroutine FOBOCI_lmct_mlct_old_thr
! call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
! call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
call all_single
! if(dressing_2h2p)then
! call diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_particl_osoci,lmct)
! endif
endif
call set_intermediate_normalization_mlct_old(norm_tmp,i_particl_osoci)
do k = 1, N_states
@ -132,24 +206,6 @@ subroutine FOBOCI_lmct_mlct_old_thr
deallocate(dressing_matrix)
enddo
endif
if(.False.)then
print*,'LAST loop for all the 1h-1p'
print*,'--------------------------'
! First set the current generators to the one of restart
call set_generators_to_generators_restart
call set_psi_det_to_generators
call initialize_bitmask_to_restart_ones
! Impose that only the hole i_hole_osoci can be done
call set_bitmask_particl_as_input(inact_virt_bitmask)
call set_bitmask_hole_as_input(inact_virt_bitmask)
! call set_bitmask_particl_as_input(reunion_of_bitmask)
! call set_bitmask_hole_as_input(reunion_of_bitmask)
call all_single
call set_intermediate_normalization_1h1p(norm_tmp)
norm_total += norm_tmp
call update_density_matrix_osoci
endif
print*,'norm_total = ',norm_total
norm_total = norm_generators_restart
@ -174,10 +230,8 @@ subroutine FOBOCI_mlct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
double precision :: threshold
logical :: verbose,is_ok
verbose = .False.
threshold = 1.d-2
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -216,7 +270,7 @@ subroutine FOBOCI_mlct_old
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
print*,'is_ok = ',is_ok
is_ok =.True.
if(.not.is_ok)cycle
@ -250,10 +304,8 @@ subroutine FOBOCI_lmct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
double precision :: threshold
logical :: verbose,is_ok
verbose = .False.
threshold = 1.d-2
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
allocate (occ(N_int*bit_kind_size,2))
@ -290,7 +342,7 @@ subroutine FOBOCI_lmct_old
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! ! so all the mono excitation on the new generators

View File

@ -0,0 +1,18 @@
program osoci_program
implicit none
do_it_perturbative = .True.
touch do_it_perturbative
call FOBOCI_lmct_mlct_old_thr
call provide_all_the_rest
end
subroutine provide_all_the_rest
implicit none
integer :: i
call update_one_body_dm_mo
call set_lmct_mlct_to_psi_det
call diagonalize_CI
call save_wavefunction
end

View File

@ -1,126 +1,74 @@
use bitmasks
BEGIN_PROVIDER [ integer, N_det_generators_restart ]
implicit none
BEGIN_DOC
! Number of determinants in the wave function
! Read the wave function
END_DOC
logical :: exists
character*64 :: label
integer :: i
integer, save :: ifirst = 0
!if(ifirst == 0)then
PROVIDE ezfio_filename
call ezfio_has_determinants_n_det(exists)
print*,'exists = ',exists
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed N_det_generators_restart'
call ezfio_get_determinants_n_det(N_det_generators_restart)
ASSERT (N_det_generators_restart > 0)
double precision :: norm
if(ifirst == 0)then
call ezfio_get_determinants_n_det(N_det_generators_restart)
ifirst = 1
!endif
else
print*,'PB in generators_restart restart !!!'
endif
call write_int(output_determinants,N_det_generators_restart,'Number of generators_restart')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators_restart, (N_int,2,psi_det_size) ]
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators_restart, (N_int,2,N_det_generators_restart) ]
&BEGIN_PROVIDER [ integer(bit_kind), ref_generators_restart, (N_int,2) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators_restart, (N_det_generators_restart,N_states) ]
implicit none
BEGIN_DOC
! The wave function determinants. Initialized with Hartree-Fock if the EZFIO file
! is empty
! read wf
!
END_DOC
integer :: i
logical :: exists
character*64 :: label
integer :: i, k
integer, save :: ifirst = 0
!if(ifirst == 0)then
provide N_det_generators_restart
if(.True.)then
call ezfio_has_determinants_N_int(exists)
if (exists) then
call ezfio_has_determinants_bit_kind(exists)
if (exists) then
call ezfio_has_determinants_N_det(exists)
if (exists) then
call ezfio_has_determinants_N_states(exists)
if (exists) then
call ezfio_has_determinants_psi_det(exists)
endif
endif
endif
endif
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed psi_det_generators_restart'
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
do i = 1, N_int
ref_generators_restart(i,1) = psi_det_generators_restart(i,1,1)
ref_generators_restart(i,2) = psi_det_generators_restart(i,2,1)
enddo
endif
double precision, allocatable :: psi_coef_read(:,:)
if(ifirst == 0)then
call read_dets(psi_det_generators_restart,N_int,N_det_generators_restart)
do k = 1, N_int
ref_generators_restart(k,1) = psi_det_generators_restart(k,1,1)
ref_generators_restart(k,2) = psi_det_generators_restart(k,2,1)
enddo
allocate (psi_coef_read(N_det_generators_restart,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k = 1, N_states
do i = 1, N_det_generators_restart
psi_coef_generators_restart(i,k) = psi_coef_read(i,k)
enddo
enddo
ifirst = 1
!endif
deallocate(psi_coef_read)
else
print*,'PB in generators_restart restart !!!'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_coef_generators_restart, (psi_det_size,N_states_diag) ]
implicit none
BEGIN_DOC
! The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file
! is empty
END_DOC
integer :: i,k, N_int2
logical :: exists
double precision, allocatable :: psi_coef_read(:,:)
character*(64) :: label
integer, save :: ifirst = 0
!if(ifirst == 0)then
psi_coef_generators_restart = 0.d0
do i=1,N_states_diag
psi_coef_generators_restart(i,i) = 1.d0
enddo
call ezfio_has_determinants_psi_coef(exists)
if(.not.exists)then
print*,'The OSOCI needs a restart WF'
print*,'There are none in the EZFIO file ...'
print*,'Stopping ...'
stop
endif
print*,'passed psi_coef_generators_restart'
if (exists) then
allocate (psi_coef_read(N_det_generators_restart,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k=1,N_states
do i=1,N_det_generators_restart
psi_coef_generators_restart(i,k) = psi_coef_read(i,k)
enddo
enddo
deallocate(psi_coef_read)
endif
ifirst = 1
!endif
BEGIN_PROVIDER [ integer, size_select_max]
implicit none
BEGIN_DOC
! Size of the select_max array
END_DOC
size_select_max = 10000
END_PROVIDER
BEGIN_PROVIDER [ double precision, select_max, (size_select_max) ]
implicit none
BEGIN_DOC
! Memo to skip useless selectors
END_DOC
select_max = huge(1.d0)
END_PROVIDER
BEGIN_PROVIDER [ integer, N_det_generators ]
&BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,10000) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (10000,N_states) ]
END_PROVIDER

View File

@ -0,0 +1,83 @@
program test_sc2
implicit none
read_wf = .True.
touch read_wf
call routine
end
subroutine routine
implicit none
double precision, allocatable :: energies(:),diag_H_elements(:)
double precision, allocatable :: H_matrix(:,:)
allocate(energies(N_states),diag_H_elements(N_det))
call diagonalize_CI
call test_hcc
call test_mulliken
! call SC2_1h1p(psi_det,psi_coef,energies, &
! diag_H_elements,size(psi_coef,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
allocate(H_matrix(N_det,N_det))
call SC2_1h1p_full(psi_det,psi_coef,energies, &
H_matrix,size(psi_coef,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
deallocate(H_matrix)
integer :: i,j
double precision :: accu,coef_hf
! coef_hf = 1.d0/psi_coef(1,1)
! do i = 1, N_det
! psi_coef(i,1) *= coef_hf
! enddo
touch psi_coef
call pouet
end
subroutine pouet
implicit none
double precision :: accu,coef_hf
! provide one_body_dm_mo_alpha one_body_dm_mo_beta
! call density_matrix_1h1p(psi_det,psi_coef,one_body_dm_mo_alpha,one_body_dm_mo_beta,accu,size(psi_coef,1),N_det,N_states_diag,N_int)
! touch one_body_dm_mo_alpha one_body_dm_mo_beta
call test_hcc
call test_mulliken
! call save_wavefunction
end
subroutine test_hcc
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end
subroutine test_mulliken
double precision :: accu
integer :: i
integer :: j
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
!print*,'AO SPIN POPULATIONS'
accu = 0.d0
!do i = 1, ao_num
! accu += spin_gross_orbital_product(i)
! write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
!enddo
!print*,'sum = ',accu
!accu = 0.d0
!print*,'Angular momentum analysis'
!do i = 0, ao_l_max
! accu += spin_population_angular_momentum(i)
! print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
!print*,'sum = ',accu
!enddo
end

View File

@ -6,6 +6,7 @@ subroutine set_generators_to_psi_det
END_DOC
N_det_generators = N_det
integer :: i,k
print*,'N_det = ',N_det
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_det(k,1,i)

View File

@ -24,6 +24,7 @@ subroutine new_approach
double precision, allocatable :: dressing_matrix_1h1p(:,:)
double precision, allocatable :: dressing_matrix_2h1p(:,:)
double precision, allocatable :: dressing_matrix_1h2p(:,:)
double precision, allocatable :: dressing_matrix_extra_1h_or_1p(:,:)
double precision, allocatable :: H_matrix_tmp(:,:)
logical :: verbose,is_ok
@ -45,7 +46,7 @@ subroutine new_approach
verbose = .True.
threshold = threshold_singles
threshold = threshold_lmct
print*,'threshold = ',threshold
thr = 1.d-12
print*,''
@ -81,12 +82,14 @@ subroutine new_approach
! so all the mono excitation on the new generators
allocate(dressing_matrix_1h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_2h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators))
dressing_matrix_1h1p = 0.d0
dressing_matrix_2h1p = 0.d0
dressing_matrix_extra_1h_or_1p = 0.d0
if(.not.do_it_perturbative)then
n_good_hole +=1
! call all_single_split_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
call all_single_for_1h(dressing_matrix_1h1p,dressing_matrix_2h1p)
call all_single_for_1h(i_hole_foboci,dressing_matrix_1h1p,dressing_matrix_2h1p,dressing_matrix_extra_1h_or_1p)
allocate(H_matrix_tmp(N_det_generators,N_det_generators))
do j = 1,N_det_generators
do k = 1, N_det_generators
@ -96,7 +99,7 @@ subroutine new_approach
enddo
do j = 1, N_det_generators
do k = 1, N_det_generators
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_2h1p(j,k)
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_2h1p(j,k) + dressing_matrix_extra_1h_or_1p(j,k)
enddo
enddo
hjk = H_matrix_tmp(1,1)
@ -130,6 +133,7 @@ subroutine new_approach
endif
deallocate(dressing_matrix_1h1p)
deallocate(dressing_matrix_2h1p)
deallocate(dressing_matrix_extra_1h_or_1p)
enddo
print*,''
@ -155,12 +159,14 @@ subroutine new_approach
! so all the mono excitation on the new generators
allocate(dressing_matrix_1h1p(N_det_generators,N_det_generators))
allocate(dressing_matrix_1h2p(N_det_generators,N_det_generators))
allocate(dressing_matrix_extra_1h_or_1p(N_det_generators,N_det_generators))
dressing_matrix_1h1p = 0.d0
dressing_matrix_1h2p = 0.d0
dressing_matrix_extra_1h_or_1p = 0.d0
if(.not.do_it_perturbative)then
n_good_hole +=1
! call all_single_split_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
call all_single_for_1p(dressing_matrix_1h1p,dressing_matrix_1h2p)
call all_single_for_1p(i_particl_osoci,dressing_matrix_1h1p,dressing_matrix_1h2p,dressing_matrix_extra_1h_or_1p)
allocate(H_matrix_tmp(N_det_generators,N_det_generators))
do j = 1,N_det_generators
do k = 1, N_det_generators
@ -170,7 +176,7 @@ subroutine new_approach
enddo
do j = 1, N_det_generators
do k = 1, N_det_generators
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_1h2p(j,k)
H_matrix_tmp(j,k) += dressing_matrix_1h1p(j,k) + dressing_matrix_1h2p(j,k) + dressing_matrix_extra_1h_or_1p(j,k)
enddo
enddo
hjk = H_matrix_tmp(1,1)
@ -205,7 +211,10 @@ subroutine new_approach
endif
deallocate(dressing_matrix_1h1p)
deallocate(dressing_matrix_1h2p)
deallocate(dressing_matrix_extra_1h_or_1p)
enddo
double precision, allocatable :: H_matrix_total(:,:)
integer :: n_det_total
n_det_total = N_det_generators_restart + n_good_det
@ -221,7 +230,7 @@ subroutine new_approach
!!! Adding the averaged dressing coming from the 1h1p that are redundant for each of the "n_good_hole" 1h
H_matrix_total(i,j) += dressing_matrix_restart_1h1p(i,j)/dble(n_good_hole+n_good_particl)
!!! Adding the dressing coming from the 2h1p that are not redundant for the any of CI calculations
H_matrix_total(i,j) += dressing_matrix_restart_2h1p(i,j)
H_matrix_total(i,j) += dressing_matrix_restart_2h1p(i,j) + dressing_matrix_restart_1h2p(i,j)
enddo
enddo
do i = 1, n_good_det
@ -244,25 +253,79 @@ subroutine new_approach
H_matrix_total(n_det_generators_restart+j,n_det_generators_restart+i) = hij
enddo
enddo
print*,'H matrix to diagonalize'
double precision :: href
href = H_matrix_total(1,1)
do i = 1, n_det_total
H_matrix_total(i,i) -= href
! Adding the correlation energy
logical :: orb_taken_good_det(mo_tot_num)
double precision :: phase
integer :: n_h,n_p,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
integer :: h1,h2,p1,p2,s1,s2
logical, allocatable :: one_hole_or_one_p(:)
integer, allocatable :: holes_or_particle(:)
allocate(one_hole_or_one_p(n_good_det), holes_or_particle(n_good_det))
orb_taken_good_det = .False.
do i = 1, n_good_det
n_h = number_of_holes(psi_good_det(1,1,i))
n_p = number_of_particles(psi_good_det(1,1,i))
call get_excitation(ref_bitmask,psi_good_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if(n_h == 0 .and. n_p == 1)then
orb_taken_good_det(h1) = .True.
one_hole_or_one_p(i) = .True.
holes_or_particle(i) = h1
endif
if(n_h == 1 .and. n_p == 0)then
orb_taken_good_det(p1) = .True.
one_hole_or_one_p(i) = .False.
holes_or_particle(i) = p1
endif
enddo
do i = 1, n_det_total
write(*,'(100(X,F16.8))')H_matrix_total(i,:)
enddo
double precision, allocatable :: eigvalues(:),eigvectors(:,:)
allocate(eigvalues(n_det_total),eigvectors(n_det_total,n_det_total))
call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion + href
do i = 1, n_det_total
print*,'coef = ',eigvectors(i,1)
enddo
integer(bit_kind), allocatable :: psi_det_final(:,:,:)
double precision, allocatable :: psi_coef_final(:,:)
double precision :: norm
do i = 1, N_det_generators_restart
! Add the 2h2p, 2h1p and 1h2p correlation energy
H_matrix_total(i,i) += total_corr_e_2h2p + total_corr_e_2h1p + total_corr_e_1h2p + total_corr_e_1h1p_spin_flip
! Substract the 2h1p part that have already been taken into account
do j = 1, n_inact_orb
iorb = list_inact(j)
if(.not.orb_taken_good_det(iorb))cycle
H_matrix_total(i,i) -= corr_energy_2h1p_per_orb_ab(iorb) - corr_energy_2h1p_per_orb_bb(iorb) - corr_energy_1h1p_spin_flip_per_orb(iorb)
enddo
! Substract the 1h2p part that have already been taken into account
do j = 1, n_virt_orb
iorb = list_virt(j)
if(.not.orb_taken_good_det(iorb))cycle
H_matrix_total(i,i) -= corr_energy_1h2p_per_orb_ab(iorb) - corr_energy_1h2p_per_orb_aa(iorb)
enddo
enddo
do i = 1, N_good_det
! Repeat the 2h2p correlation energy
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += total_corr_e_2h2p
! Substract the part that can not be repeated
! If it is a 1h
if(one_hole_or_one_p(i))then
! 2h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h2p_per_orb_bb(holes_or_particle(i))
! You can repeat a certain part of the 1h2p correlation energy
! that is everything except the part that involves the hole of the 1h
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += total_corr_e_1h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_1h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_1h2p_per_orb_bb(holes_or_particle(i))
else
! 2h2p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h2p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h2p_per_orb_aa(holes_or_particle(i))
! You can repeat a certain part of the 2h1p correlation energy
! that is everything except the part that involves the hole of the 1p
! 2h1p
H_matrix_total(N_det_generators_restart+i,N_det_generators_restart+i) += -corr_energy_2h1p_per_orb_ab(holes_or_particle(i)) &
-corr_energy_2h1p_per_orb_aa(holes_or_particle(i))
endif
enddo
allocate(psi_coef_final(n_det_total, N_states))
allocate(psi_det_final(N_int,2,n_det_total))
do i = 1, N_det_generators_restart
@ -277,22 +340,222 @@ subroutine new_approach
psi_det_final(j,2,n_det_generators_restart+i) = psi_good_det(j,2,i)
enddo
enddo
norm = 0.d0
double precision :: href
double precision, allocatable :: eigvalues(:),eigvectors(:,:)
integer(bit_kind), allocatable :: psi_det_final(:,:,:)
double precision, allocatable :: psi_coef_final(:,:)
double precision :: norm
allocate(eigvalues(n_det_total),eigvectors(n_det_total,n_det_total))
call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
print*,''
print*,''
print*,'H_matrix_total(1,1) = ',H_matrix_total(1,1)
print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion
do i = 1, n_det_total
do j = 1, N_states
psi_coef_final(i,j) = eigvectors(i,j)
enddo
norm += psi_coef_final(i,1)**2
! call debug_det(psi_det_final(1, 1, i), N_int)
print*,'coef = ',eigvectors(i,1),H_matrix_total(i,i) - H_matrix_total(1,1)
enddo
print*,'norm = ',norm
integer(bit_kind), allocatable :: psi_det_remaining_1h_or_1p(:,:,:)
integer(bit_kind), allocatable :: key_tmp(:,:)
integer :: n_det_remaining_1h_or_1p
integer :: ispin,i_ok
allocate(key_tmp(N_int,2),psi_det_remaining_1h_or_1p(N_int,2,n_inact_orb*n_act_orb+n_virt_orb*n_act_orb))
logical :: is_already_present
logical, allocatable :: one_hole_or_one_p_bis(:)
integer, allocatable :: holes_or_particle_bis(:)
double precision,allocatable :: H_array(:)
allocate(one_hole_or_one_p_bis(n_inact_orb*n_act_orb+n_virt_orb*n_act_orb), holes_or_particle_bis(n_inact_orb*n_act_orb+n_virt_orb*n_act_orb))
allocate(H_array(n_det_total))
! Dressing with the remaining 1h determinants
print*,''
print*,''
print*,'Dressing with the remaining 1h determinants'
n_det_remaining_1h_or_1p = 0
do i = 1, n_inact_orb
iorb = list_inact(i)
if(orb_taken_good_det(iorb))cycle
do j = 1, n_act_orb
jorb = list_act(j)
ispin = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,iorb,jorb,ispin,i_ok)
if(i_ok .ne.1)cycle
is_already_present = .False.
H_array = 0.d0
call i_h_j(key_tmp,key_tmp,N_int,hij)
href = ref_bitmask_energy - hij
href = 1.d0/href
do k = 1, n_det_total
call get_excitation_degree(psi_det_final(1,1,k),key_tmp,degree,N_int)
if(degree == 0)then
is_already_present = .True.
exit
endif
enddo
if(is_already_present)cycle
n_det_remaining_1h_or_1p +=1
one_hole_or_one_p_bis(n_det_remaining_1h_or_1p) = .True.
holes_or_particle_bis(n_det_remaining_1h_or_1p) = iorb
do k = 1, N_int
psi_det_remaining_1h_or_1p(k,1,n_det_remaining_1h_or_1p) = key_tmp(k,1)
psi_det_remaining_1h_or_1p(k,2,n_det_remaining_1h_or_1p) = key_tmp(k,2)
enddo
! do k = 1, n_det_total
! call i_h_j(psi_det_final(1,1,k),key_tmp,N_int,hij)
! H_array(k) = hij
! enddo
! do k = 1, n_det_total
! do l = 1, n_det_total
! H_matrix_total(k,l) += H_array(k) * H_array(l) * href
! enddo
! enddo
enddo
enddo
! Dressing with the remaining 1p determinants
print*,'n_det_remaining_1h_or_1p = ',n_det_remaining_1h_or_1p
print*,'Dressing with the remaining 1p determinants'
do i = 1, n_virt_orb
iorb = list_virt(i)
if(orb_taken_good_det(iorb))cycle
do j = 1, n_act_orb
jorb = list_act(j)
ispin = 1
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,jorb,iorb,ispin,i_ok)
if(i_ok .ne.1)cycle
is_already_present = .False.
H_array = 0.d0
call i_h_j(key_tmp,key_tmp,N_int,hij)
href = ref_bitmask_energy - hij
href = 1.d0/href
do k = 1, n_det_total
call get_excitation_degree(psi_det_final(1,1,k),key_tmp,degree,N_int)
if(degree == 0)then
is_already_present = .True.
exit
endif
enddo
if(is_already_present)cycle
n_det_remaining_1h_or_1p +=1
one_hole_or_one_p_bis(n_det_remaining_1h_or_1p) = .False.
holes_or_particle_bis(n_det_remaining_1h_or_1p) = iorb
do k = 1, N_int
psi_det_remaining_1h_or_1p(k,1,n_det_remaining_1h_or_1p) = key_tmp(k,1)
psi_det_remaining_1h_or_1p(k,2,n_det_remaining_1h_or_1p) = key_tmp(k,2)
enddo
! do k = 1, n_det_total
! call i_h_j(psi_det_final(1,1,k),key_tmp,N_int,hij)
! H_array(k) = hij
! enddo
! do k = 1, n_det_total
! do l = 1, n_det_total
! H_matrix_total(k,l) += H_array(k) * H_array(l) * href
! enddo
! enddo
enddo
enddo
print*,'n_det_remaining_1h_or_1p = ',n_det_remaining_1h_or_1p
deallocate(key_tmp,H_array)
double precision, allocatable :: eigvalues_bis(:),eigvectors_bis(:,:),H_matrix_total_bis(:,:)
integer :: n_det_final
n_det_final = n_det_total + n_det_remaining_1h_or_1p
allocate(eigvalues_bis(n_det_final),eigvectors_bis(n_det_final,n_det_final),H_matrix_total_bis(n_det_final,n_det_final))
print*,'passed the allocate, building the big matrix'
do i = 1, n_det_total
do j = 1, n_det_total
H_matrix_total_bis(i,j) = H_matrix_total(i,j)
enddo
enddo
do i = 1, n_det_remaining_1h_or_1p
do j = 1, n_det_remaining_1h_or_1p
call i_h_j(psi_det_remaining_1h_or_1p(1,1,i),psi_det_remaining_1h_or_1p(1,1,j),N_int,hij)
H_matrix_total_bis(n_det_total+i,n_det_total+j) = hij
enddo
enddo
do i = 1, n_det_total
do j = 1, n_det_remaining_1h_or_1p
call i_h_j(psi_det_final(1,1,i),psi_det_remaining_1h_or_1p(1,1,j),N_int,hij)
H_matrix_total_bis(i,n_det_total+j) = hij
H_matrix_total_bis(n_det_total+j,i) = hij
enddo
enddo
print*,'passed the matrix'
do i = 1, n_det_remaining_1h_or_1p
if(one_hole_or_one_p_bis(i))then
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_2h2p -corr_energy_2h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h2p_per_orb_bb(holes_or_particle_bis(i))
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_1h2p -corr_energy_1h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_1h2p_per_orb_bb(holes_or_particle_bis(i))
else
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_2h2p -corr_energy_2h2p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h2p_per_orb_aa(holes_or_particle_bis(i))
H_matrix_total_bis(n_det_total+i,n_det_total+i) += total_corr_e_1h2p -corr_energy_2h1p_per_orb_ab(holes_or_particle_bis(i)) &
-corr_energy_2h1p_per_orb_aa(holes_or_particle_bis(i))
endif
enddo
do i = 2, n_det_final
do j = i+1, n_det_final
H_matrix_total_bis(i,j) = 0.d0
H_matrix_total_bis(j,i) = 0.d0
enddo
enddo
do i = 1, n_det_final
write(*,'(500(F10.5,X))')H_matrix_total_bis(i,:)
enddo
call lapack_diag(eigvalues_bis,eigvectors_bis,H_matrix_total_bis,n_det_final,n_det_final)
print*,'e_dressed = ',eigvalues_bis(1) + nuclear_repulsion
do i = 1, n_det_final
print*,'coef = ',eigvectors_bis(i,1),H_matrix_total_bis(i,i) - H_matrix_total_bis(1,1)
enddo
do j = 1, N_states
do i = 1, n_det_total
psi_coef_final(i,j) = eigvectors_bis(i,j)
norm += psi_coef_final(i,j)**2
enddo
norm = 1.d0/dsqrt(norm)
do i = 1, n_det_total
psi_coef_final(i,j) = psi_coef_final(i,j) * norm
enddo
enddo
deallocate(eigvalues_bis,eigvectors_bis,H_matrix_total_bis)
!print*,'H matrix to diagonalize'
!href = H_matrix_total(1,1)
!do i = 1, n_det_total
! H_matrix_total(i,i) -= href
!enddo
!do i = 1, n_det_total
! write(*,'(100(X,F16.8))')H_matrix_total(i,:)
!enddo
!call lapack_diag(eigvalues,eigvectors,H_matrix_total,n_det_total,n_det_total)
!print*,'H_matrix_total(1,1) = ',H_matrix_total(1,1)
!print*,'e_dressed = ',eigvalues(1) + nuclear_repulsion
!do i = 1, n_det_total
! print*,'coef = ',eigvectors(i,1),H_matrix_total(i,i) - H_matrix_total(1,1)
!enddo
!norm = 0.d0
!do i = 1, n_det_total
! do j = 1, N_states
! psi_coef_final(i,j) = eigvectors(i,j)
! enddo
! norm += psi_coef_final(i,1)**2
!enddo
!print*,'norm = ',norm
call set_psi_det_as_input_psi(n_det_total,psi_det_final,psi_coef_final)
print*,''
!do i = 1, N_det
! call debug_det(psi_det(1,1,i),N_int)
! print*,'coef = ',psi_coef(i,1)
!enddo
do i = 1, N_det
call debug_det(psi_det(1,1,i),N_int)
print*,'coef = ',psi_coef(i,1)
enddo
provide one_body_dm_mo
integer :: i_core,iorb,jorb,i_inact,j_inact,i_virt,j_virt,j_core
@ -360,14 +623,14 @@ subroutine new_approach
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_singles)then
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(one_body_dm_mo(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_singles)then
if(dabs(one_body_dm_mo(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(one_body_dm_mo(iorb,jorb))
endif

View File

@ -0,0 +1,132 @@
program test_new_new
implicit none
read_wf = .True.
touch read_wf
call test
end
subroutine test
implicit none
integer :: i,j,k,l
call diagonalize_CI
call set_generators_to_psi_det
print*,'Initial coefficients'
do i = 1, N_det
print*,''
call debug_det(psi_det(1,1,i),N_int)
print*,'psi_coef = ',psi_coef(i,1)
print*,''
enddo
double precision, allocatable :: dressing_matrix(:,:)
double precision :: hij
double precision :: phase
integer :: n_h,n_p,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
integer :: h1,h2,p1,p2,s1,s2
allocate(dressing_matrix(N_det_generators,N_det_generators))
do i = 1, N_det_generators
do j = 1, N_det_generators
call i_h_j(psi_det_generators(1,1,i),psi_det_generators(1,1,j),N_int,hij)
dressing_matrix(i,j) = hij
enddo
enddo
href = dressing_matrix(1,1)
print*,'Diagonal part of the dressing'
do i = 1, N_det_generators
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
call all_single_split(psi_det_generators,psi_coef_generators,N_det_generators,dressing_matrix)
double precision :: href
print*,''
! One considers that the following excitation classes are not repeatable on the 1h and 1p determinants :
! + 1h1p spin flip
! + 2h1p
! + 1h2p
! But the 2h2p are correctly taken into account
!dressing_matrix(1,1) += total_corr_e_1h2p + total_corr_e_2h1p + total_corr_e_1h1p_spin_flip
!do i = 1, N_det_generators
! dressing_matrix(i,i) += total_corr_e_2h2p
! n_h = number_of_holes(psi_det(1,1,i))
! n_p = number_of_particles(psi_det(1,1,i))
! if(n_h == 1 .and. n_p ==0)then
!
! call get_excitation(ref_bitmask,psi_det_generators(1,1,i),exc,degree,phase,N_int)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! print*,''
! print*,' 1h det '
! print*,''
! call debug_det(psi_det_generators(1,1,i),N_int)
! print*,'h1,p1 = ',h1,p1
! print*,'total_corr_e_2h2p ',total_corr_e_2h2p
! print*,'corr_energy_2h2p_per_orb_ab(h1)',corr_energy_2h2p_per_orb_ab(h1)
! print*,'corr_energy_2h2p_per_orb_bb(h1)',corr_energy_2h2p_per_orb_bb(h1)
! dressing_matrix(i,i) += -corr_energy_2h2p_per_orb_ab(h1) - corr_energy_2h2p_per_orb_bb(h1)
! dressing_matrix(1,1) += -corr_energy_2h1p_per_orb_aa(h1) - corr_energy_2h1p_per_orb_ab(h1) -corr_energy_2h1p_per_orb_bb(h1) &
! -corr_energy_1h1p_spin_flip_per_orb(h1)
! endif
! if(n_h == 0 .and. n_p ==1)then
! call get_excitation(ref_bitmask,psi_det_generators(1,1,i),exc,degree,phase,N_int)
! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
! print*,''
! print*,' 1p det '
! print*,''
! call debug_det(psi_det_generators(1,1,i),N_int)
! print*,'h1,p1 = ',h1,p1
! print*,'total_corr_e_2h2p ',total_corr_e_2h2p
! print*,'corr_energy_2h2p_per_orb_ab(p1)',corr_energy_2h2p_per_orb_ab(p1)
! print*,'corr_energy_2h2p_per_orb_aa(p1)',corr_energy_2h2p_per_orb_aa(p1)
! dressing_matrix(i,i) += -corr_energy_2h2p_per_orb_ab(p1) - corr_energy_2h2p_per_orb_aa(p1)
! dressing_matrix(1,1) += -corr_energy_1h2p_per_orb_aa(p1) - corr_energy_1h2p_per_orb_ab(p1) -corr_energy_1h2p_per_orb_bb(p1)
! endif
!enddo
!href = dressing_matrix(1,1)
!print*,'Diagonal part of the dressing'
!do i = 1, N_det_generators
! print*,'delta e = ',dressing_matrix(i,i) - href
!enddo
call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
print*,'After dressing matrix'
print*,''
print*,''
do i = 1, N_det
print*,'psi_coef = ',psi_coef(i,1)
enddo
!print*,''
!print*,''
!print*,'Canceling the dressing part of the interaction between 1h and 1p'
!do i = 2, N_det_generators
! do j = i+1, N_det_generators
! call i_h_j(psi_det_generators(1,1,i),psi_det_generators(1,1,j),N_int,hij)
! dressing_matrix(i,j) = hij
! dressing_matrix(j,i) = hij
! enddo
!enddo
!call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
!print*,''
!print*,''
!do i = 1, N_det
! print*,'psi_coef = ',psi_coef(i,1)
!enddo
!print*,''
!print*,''
!print*,'Canceling the interaction between 1h and 1p'
!print*,''
!print*,''
!do i = 2, N_det_generators
! do j = i+1, N_det_generators
! dressing_matrix(i,j) = 0.d0
! dressing_matrix(j,i) = 0.d0
! enddo
!enddo
!call diag_dressed_matrix_and_set_to_psi_det(psi_det_generators,N_det_generators,dressing_matrix)
!do i = 1, N_det
! print*,'psi_coef = ',psi_coef(i,1)
!enddo
call save_natural_mos
deallocate(dressing_matrix)
end

View File

@ -55,15 +55,11 @@ subroutine provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det
i_pert = 0
endif
do j = 1, ndet_generators_input
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
if(dabs(H_array(j)*lambda_i).gt.0.1d0)then
i_pert = 1
exit
endif
enddo
! print*,''
! print*,'lambda_i,f = ',lambda_i,f
! print*,'i_pert = ',i_pert
! print*,''
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
@ -79,9 +75,122 @@ subroutine provide_matrix_dressing(dressing_matrix,ndet_generators_input,psi_det
enddo
enddo
enddo
href = dressing_matrix(1,1)
print*,'Diagonal part of the dressing'
do i = 1, ndet_generators_input
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
!print*,'i_pert_count = ',i_pert_count
end
subroutine update_matrix_dressing_sc2(dressing_matrix,ndet_generators_input,psi_det_generators_input,H_jj_in)
use bitmasks
implicit none
integer, intent(in) :: ndet_generators_input
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,ndet_generators_input)
double precision, intent(in) :: H_jj_in(N_det)
double precision, intent(inout) :: dressing_matrix(ndet_generators_input,ndet_generators_input)
integer :: i,j,n_det_ref_tmp,degree
double precision :: href
n_det_ref_tmp = 0
do i = 1, N_det
do j = 1, Ndet_generators_input
call get_excitation_degree(psi_det(1,1,i),psi_det_generators_input(1,1,j),degree,N_int)
if(degree == 0)then
dressing_matrix(j,j) += H_jj_in(i)
n_det_ref_tmp +=1
exit
endif
enddo
enddo
if( ndet_generators_input .ne. n_det_ref_tmp)then
print*,'Problem !!!! '
print*,' ndet_generators .ne. n_det_ref_tmp !!!'
print*,'ndet_generators,n_det_ref_tmp'
print*,ndet_generators_input,n_det_ref_tmp
stop
endif
href = dressing_matrix(1,1)
print*,''
print*,'Update with the SC2 dressing'
print*,''
print*,'Diagonal part of the dressing'
do i = 1, ndet_generators_input
print*,'delta e = ',dressing_matrix(i,i) - href
enddo
end
subroutine provide_matrix_dressing_for_extra_1h_or_1p(dressing_matrix,psi_det_ref_input,psi_coef_ref_input,n_det_ref_input, &
psi_det_outer_input,psi_coef_outer_input,n_det_outer_input)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_input
integer(bit_kind), intent(in) :: psi_det_ref_input(N_int,2,n_det_ref_input)
double precision, intent(in) :: psi_coef_ref_input(n_det_ref_input,N_states)
integer, intent(in) :: n_det_outer_input
integer(bit_kind), intent(in) :: psi_det_outer_input(N_int,2,n_det_outer_input)
double precision, intent(in) :: psi_coef_outer_input(n_det_outer_input,N_states)
double precision, intent(inout) :: dressing_matrix(n_det_ref_input,n_det_ref_input)
integer :: i_pert, i_pert_count,i,j,k
double precision :: f,href,hka,lambda_i
double precision :: H_array(n_det_ref_input),accu
integer :: n_h_out,n_p_out,n_p_in,n_h_in,number_of_holes,number_of_particles
call i_h_j(psi_det_ref_input(1,1,1),psi_det_ref_input(1,1,1),N_int,href)
i_pert_count = 0
do i = 1, n_det_outer_input
call i_h_j(psi_det_outer_input(1,1,i),psi_det_outer_input(1,1,i),N_int,hka)
f = 1.d0/(href - hka)
H_array = 0.d0
accu = 0.d0
! n_h_out = number_of_holes(psi_det_outer_input(1,1,i))
! n_p_out = number_of_particles(psi_det_outer_input(1,1,i))
do j=1,n_det_ref_input
n_h_in = number_of_holes(psi_det_ref_input(1,1,j))
n_p_in = number_of_particles(psi_det_ref_input(1,1,j))
! if(n_h_in == 0 .and. n_h_in == 0)then
call i_h_j(psi_det_outer_input(1,1,i),psi_det_ref_input(1,1,j),N_int,hka)
! else
! hka = 0.d0
! endif
H_array(j) = hka
accu += psi_coef_ref_input(j,1) * hka
enddo
lambda_i = psi_coef_outer_input(i,1)/accu
i_pert = 1
if(accu * f / psi_coef_outer_input(i,1) .gt. 0.5d0 .and. accu * f/psi_coef_outer_input(i,1).gt.0.d0)then
i_pert = 0
endif
do j = 1, n_det_ref_input
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
i_pert = 1
exit
endif
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! i_pert = 0
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
endif
do k=1,n_det_ref_input
double precision :: contrib
contrib = H_array(k) * H_array(k) * lambda_i
dressing_matrix(k, k) += contrib
do j=k+1,n_det_ref_input
contrib = H_array(k) * H_array(j) * lambda_i
dressing_matrix(k, j) += contrib
dressing_matrix(j, k) += contrib
enddo
enddo
enddo
end
subroutine provide_matrix_dressing_general(dressing_matrix,psi_det_ref_input,psi_coef_ref_input,n_det_ref_input, &
psi_det_outer_input,psi_coef_outer_input,n_det_outer_input)
use bitmasks
@ -112,16 +221,17 @@ subroutine provide_matrix_dressing_general(dressing_matrix,psi_det_ref_input,psi
accu += psi_coef_ref_input(j,1) * hka
enddo
lambda_i = psi_coef_outer_input(i,1)/accu
i_pert = 1
i_pert = 0
if(accu * f / psi_coef_outer_input(i,1) .gt. 0.5d0 .and. accu * f/psi_coef_outer_input(i,1).gt.0.d0)then
i_pert = 0
endif
do j = 1, n_det_ref_input
if(dabs(H_array(j)*lambda_i).gt.0.3d0)then
if(dabs(H_array(j)*lambda_i).gt.0.5d0)then
i_pert = 1
exit
endif
enddo
! i_pert = 0
if(i_pert==1)then
lambda_i = f
i_pert_count +=1
@ -170,114 +280,379 @@ subroutine diag_dressed_matrix_and_set_to_psi_det(psi_det_generators_input,Ndet_
end
subroutine give_n_1h1p_and_n_2h1p_in_psi_det(n_det_1h1p,n_det_2h1p)
subroutine give_n_1h1p_and_n_2h1p_in_psi_det(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_1h1p, n_det_2h1p
integer, intent(in) :: i_hole
integer, intent(out) :: n_det_1h1p, n_det_2h1p,n_det_extra_1h_or_1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
n_det_ref_restart_tmp = 0
n_det_1h = 0
n_det_1h1p = 0
n_det_2h1p = 0
n_det_extra_1h_or_1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
else if (n_h ==1 .and. n_p==0)then
n_det_1h +=1
if(is_the_hole_in_det(psi_det(1,1,i),1,i_hole).or.is_the_hole_in_det(psi_det(1,1,i),2,i_hole))then
n_det_1h +=1
else
n_det_extra_1h_or_1p +=1
endif
else if (n_h ==0 .and. n_p==1)then
n_det_extra_1h_or_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1h1p or 2h1p'
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
! if(n_det_1h.ne.1)then
! print*,'PB !! You have more than one 1h'
! stop
! endif
if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
stop
endif
if(n_det_2h1p + n_det_1h1p + n_det_extra_1h_or_1p + n_det_generators .ne. N_det)then
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
stop
endif
end
subroutine give_n_1h1p_and_n_1h2p_in_psi_det(n_det_1h1p,n_det_1h2p)
subroutine give_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_1h1p, n_det_1h2p
integer, intent(out) :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
n_det_ref_restart_tmp = 0
n_det_1h = 0
logical :: is_the_hole_in_det
n_det_ref_1h_1p = 0
n_det_2h1p = 0
n_det_1h1p = 0
n_det_1h2p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p +=1
else if (n_h ==0 .and. n_p==1)then
n_det_1h +=1
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
end
subroutine give_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p)
use bitmasks
implicit none
integer, intent(out) :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
n_det_ref_1h_1p = 0
n_det_1h2p = 0
n_det_1h1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p +=1
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1p, 1h1p or 1h2p'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
end
subroutine give_wf_n_ref_1h_1p_and_n_2h1p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_2h1p,psi_coef_2h1p,psi_det_1h1p,psi_coef_1h1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_1h_1p,n_det_2h1p,n_det_1h1p
integer(bit_kind), intent(out) :: psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p)
integer(bit_kind), intent(out) :: psi_det_2h1p(N_int,2,n_det_2h1p)
integer(bit_kind), intent(out) :: psi_det_1h1p(N_int,2,n_det_1h1p)
double precision, intent(out) :: psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states)
double precision, intent(out) :: psi_coef_2h1p(n_det_2h1p,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p,N_states)
integer :: n_det_ref_1h_1p_tmp,n_det_2h1p_tmp,n_det_1h1p_tmp
integer :: i,j
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
integer, allocatable :: index_ref_1h_1p(:)
integer, allocatable :: index_2h1p(:)
integer, allocatable :: index_1h1p(:)
allocate(index_ref_1h_1p(n_det))
allocate(index_2h1p(n_det))
allocate(index_1h1p(n_det))
n_det_ref_1h_1p_tmp = 0
n_det_2h1p_tmp = 0
n_det_1h1p_tmp = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p_tmp +=1
index_1h1p(n_det_1h1p_tmp) = i
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p_tmp +=1
index_2h1p(n_det_2h1p_tmp) = i
else
print*,'PB !!!!'
print*,'You have forgotten something in your generators ... '
print*,'You have something else than a 1h, 1p, 1h1p or 2h1p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
endif
enddo
do i = 1, n_det_2h1p
do j = 1, N_int
psi_det_2h1p(j,1,i) = psi_det(j,1,index_2h1p(i))
psi_det_2h1p(j,2,i) = psi_det(j,2,index_2h1p(i))
enddo
do j = 1, N_states
psi_coef_2h1p(i,j) = psi_coef(index_2h1p(i),j)
enddo
enddo
do i = 1, n_det_1h1p
do j = 1, N_int
psi_det_1h1p(j,1,i) = psi_det(j,1,index_1h1p(i))
psi_det_1h1p(j,2,i) = psi_det(j,2,index_1h1p(i))
enddo
do j = 1, N_states
psi_coef_1h1p(i,j) = psi_coef(index_1h1p(i),j)
enddo
enddo
do i = 1, n_det_ref_1h_1p
do j = 1, N_int
psi_det_ref_1h_1p(j,1,i) = psi_det(j,1,index_ref_1h_1p(i))
psi_det_ref_1h_1p(j,2,i) = psi_det(j,2,index_ref_1h_1p(i))
enddo
do j = 1, N_states
psi_coef_ref_1h_1p(i,j) = psi_coef(index_ref_1h_1p(i),j)
enddo
enddo
end
subroutine give_wf_n_ref_1h_1p_and_n_1h2p_1h1p_in_psi_det(n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p,psi_det_ref_1h_1p,psi_coef_ref_1h_1p,&
psi_det_1h2p,psi_coef_1h2p,psi_det_1h1p,psi_coef_1h1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_ref_1h_1p,n_det_1h2p,n_det_1h1p
integer(bit_kind), intent(out) :: psi_det_ref_1h_1p(N_int,2,n_det_ref_1h_1p)
integer(bit_kind), intent(out) :: psi_det_1h2p(N_int,2,n_det_1h2p)
integer(bit_kind), intent(out) :: psi_det_1h1p(N_int,2,n_det_1h1p)
double precision, intent(out) :: psi_coef_ref_1h_1p(n_det_ref_1h_1p,N_states)
double precision, intent(out) :: psi_coef_1h2p(n_det_1h2p,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p,N_states)
integer :: n_det_ref_1h_1p_tmp,n_det_1h2p_tmp,n_det_1h1p_tmp
integer :: i,j
integer :: n_det_ref_restart_tmp,n_det_1h
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_hole_in_det
integer, allocatable :: index_ref_1h_1p(:)
integer, allocatable :: index_1h2p(:)
integer, allocatable :: index_1h1p(:)
allocate(index_ref_1h_1p(n_det))
allocate(index_1h2p(n_det))
allocate(index_1h1p(n_det))
n_det_ref_1h_1p_tmp = 0
n_det_1h2p_tmp = 0
n_det_1h1p_tmp = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_ref_1h_1p_tmp +=1
index_ref_1h_1p(n_det_ref_1h_1p_tmp) = i
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p_tmp +=1
index_1h1p(n_det_1h1p_tmp) = i
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p_tmp +=1
index_1h2p(n_det_1h2p_tmp) = i
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
print*,'n_h,n_p = ',n_h,n_p
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
do i = 1, n_det_1h2p
do j = 1, N_int
psi_det_1h2p(j,1,i) = psi_det(j,1,index_1h2p(i))
psi_det_1h2p(j,2,i) = psi_det(j,2,index_1h2p(i))
enddo
do j = 1, N_states
psi_coef_1h2p(i,j) = psi_coef(index_1h2p(i),j)
enddo
enddo
do i = 1, n_det_1h1p
do j = 1, N_int
psi_det_1h1p(j,1,i) = psi_det(j,1,index_1h1p(i))
psi_det_1h1p(j,2,i) = psi_det(j,2,index_1h1p(i))
enddo
do j = 1, N_states
psi_coef_1h1p(i,j) = psi_coef(index_1h1p(i),j)
enddo
enddo
do i = 1, n_det_ref_1h_1p
do j = 1, N_int
psi_det_ref_1h_1p(j,1,i) = psi_det(j,1,index_ref_1h_1p(i))
psi_det_ref_1h_1p(j,2,i) = psi_det(j,2,index_ref_1h_1p(i))
enddo
do j = 1, N_states
psi_coef_ref_1h_1p(i,j) = psi_coef(index_ref_1h_1p(i),j)
enddo
enddo
end
subroutine give_n_1h1p_and_n_1h2p_in_psi_det(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p)
use bitmasks
implicit none
integer, intent(in) ::i_particl
integer, intent(out) :: n_det_1h1p, n_det_1h2p,n_det_extra_1h_or_1p
integer :: i
integer :: n_det_ref_restart_tmp,n_det_1p
integer :: number_of_holes,n_h, number_of_particles,n_p
logical :: is_the_particl_in_det
n_det_ref_restart_tmp = 0
n_det_1p = 0
n_det_1h1p = 0
n_det_1h2p = 0
n_det_extra_1h_or_1p = 0
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
if(n_h == 0 .and. n_p == 0)then
n_det_ref_restart_tmp +=1
else if (n_h ==0 .and. n_p==1)then
if(is_the_particl_in_det(psi_det(1,1,i),1,i_particl).or.is_the_particl_in_det(psi_det(1,1,i),2,i_particl))then
n_det_1p +=1
else
n_det_extra_1h_or_1p +=1
endif
else if (n_h ==1 .and. n_p==0)then
n_det_extra_1h_or_1p +=1
else if (n_h ==1 .and. n_p==1)then
n_det_1h1p +=1
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p +=1
else
print*,'PB !!!!'
print*,'You have something else than a 1h, 1p, 1h1p or 1h2p'
call debug_det(psi_det(1,1,i),N_int)
stop
endif
enddo
!if(n_det_ref_restart_tmp + n_det_1h .ne. n_det_generators)then
! print*,'PB !!!!'
! print*,'You have forgotten something in your generators ... '
! stop
!endif
end
subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p)
subroutine split_wf_generators_and_1h1p_and_2h1p(i_hole,n_det_extra_1h_or_1p,n_det_1h1p,n_det_2h1p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_2h1p,psi_coef_2h1p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_1h1p,n_det_2h1p
integer, intent(in) :: n_det_1h1p,n_det_2h1p,n_det_extra_1h_or_1p,i_hole
integer(bit_kind), intent(out) :: psi_ref_out(N_int,2,N_det_generators)
integer(bit_kind), intent(out) :: psi_1h1p(N_int,2,n_det_1h1p)
integer(bit_kind), intent(out) :: psi_2h1p(N_int,2,n_det_2h1p)
integer(bit_kind), intent(out) :: psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p)
double precision, intent(out) :: psi_ref_coef_out(N_det_generators,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p, N_states)
double precision, intent(out) :: psi_coef_2h1p(n_det_2h1p, N_states)
double precision, intent(out) :: psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p, N_states)
integer :: i,j
integer :: degree
integer :: number_of_holes,n_h, number_of_particles,n_p
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_2h1p_tmp
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_2h1p_tmp,n_det_extra_1h_or_1p_tmp
integer :: n_det_1h_tmp
integer, allocatable :: index_generator(:)
integer, allocatable :: index_1h1p(:)
integer, allocatable :: index_2h1p(:)
integer, allocatable :: index_extra_1h_or_1p(:)
logical :: is_the_hole_in_det
allocate(index_1h1p(n_det))
allocate(index_2h1p(n_det))
allocate(index_extra_1h_or_1p(n_det))
allocate(index_generator(N_det))
n_det_generators_tmp = 0
n_det_1h1p_tmp = 0
n_det_2h1p_tmp = 0
n_det_extra_1h_or_1p_tmp = 0
n_det_1h_tmp = 0
do i = 1, n_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
@ -287,6 +662,16 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
else if (n_h ==2 .and. n_p==1)then
n_det_2h1p_tmp +=1
index_2h1p(n_det_2h1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
if(is_the_hole_in_det(psi_det(1,1,i),1,i_hole).or.is_the_hole_in_det(psi_det(1,1,i),2,i_hole))then
n_det_1h_tmp +=1
else
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
endif
endif
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det(1,1,i), degree, N_int)
@ -315,6 +700,12 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
stop
endif
if(n_det_extra_1h_or_1p.ne.n_det_extra_1h_or_1p_tmp)then
print*,'PB !!!'
print*,'n_det_extra_1h_or_1p.ne.n_det_extra_1h_or_1p_tmp'
stop
endif
do i = 1,N_det_generators
do j = 1, N_int
psi_ref_out(j,1,i) = psi_det(j,1,index_generator(i))
@ -345,41 +736,59 @@ subroutine split_wf_generators_and_1h1p_and_2h1p(n_det_1h1p,n_det_2h1p,psi_ref_o
enddo
enddo
do i = 1, n_det_extra_1h_or_1p
do j = 1, N_int
psi_extra_1h_or_1p(j,1,i) = psi_det(j,1,index_extra_1h_or_1p(i))
psi_extra_1h_or_1p(j,2,i) = psi_det(j,2,index_extra_1h_or_1p(i))
enddo
do j = 1, N_states
psi_coef_extra_1h_or_1p(i,j) = psi_coef(index_extra_1h_or_1p(i),j)
enddo
enddo
deallocate(index_generator)
deallocate(index_1h1p)
deallocate(index_2h1p)
deallocate(index_extra_1h_or_1p)
end
subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p)
subroutine split_wf_generators_and_1h1p_and_1h2p(i_particl,n_det_extra_1h_or_1p,n_det_1h1p,n_det_1h2p,psi_ref_out,psi_ref_coef_out,psi_1h1p,psi_coef_1h1p,psi_1h2p,psi_coef_1h2p,psi_extra_1h_or_1p,psi_coef_extra_1h_or_1p)
use bitmasks
implicit none
integer, intent(in) :: n_det_1h1p,n_det_1h2p
integer, intent(in) :: n_det_1h1p,n_det_1h2p,n_det_extra_1h_or_1p,i_particl
integer(bit_kind), intent(out) :: psi_ref_out(N_int,2,N_det_generators)
integer(bit_kind), intent(out) :: psi_1h1p(N_int,2,n_det_1h1p)
integer(bit_kind), intent(out) :: psi_1h2p(N_int,2,n_det_1h2p)
integer(bit_kind), intent(out) :: psi_extra_1h_or_1p(N_int,2,n_det_extra_1h_or_1p)
double precision, intent(out) :: psi_ref_coef_out(N_det_generators,N_states)
double precision, intent(out) :: psi_coef_1h1p(n_det_1h1p, N_states)
double precision, intent(out) :: psi_coef_1h2p(n_det_1h2p, N_states)
double precision, intent(out) :: psi_coef_extra_1h_or_1p(n_det_extra_1h_or_1p, N_states)
integer :: i,j
integer :: degree
integer :: number_of_holes,n_h, number_of_particles,n_p
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_1h2p_tmp
integer :: n_det_generators_tmp,n_det_1h1p_tmp,n_det_1h2p_tmp,n_det_extra_1h_or_1p_tmp
integer, allocatable :: index_generator(:)
integer, allocatable :: index_1h1p(:)
integer, allocatable :: index_1h2p(:)
integer, allocatable :: index_extra_1h_or_1p(:)
logical :: is_the_particl_in_det
integer :: n_det_1p_tmp
allocate(index_1h1p(n_det))
allocate(index_1h2p(n_det))
allocate(index_extra_1h_or_1p(n_det))
allocate(index_generator(N_det))
n_det_generators_tmp = 0
n_det_1h1p_tmp = 0
n_det_1h2p_tmp = 0
n_det_extra_1h_or_1p_tmp = 0
n_det_1p_tmp = 0
do i = 1, n_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
@ -389,6 +798,15 @@ subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_o
else if (n_h ==1 .and. n_p==2)then
n_det_1h2p_tmp +=1
index_1h2p(n_det_1h2p_tmp) = i
else if (n_h ==1 .and. n_p==0)then
n_det_extra_1h_or_1p_tmp +=1
index_extra_1h_or_1p(n_det_extra_1h_or_1p_tmp) = i
else if (n_h ==0 .and. n_p==1)then
if(is_the_particl_in_det(psi_det(1,1,i),1,i_particl).or.is_the_particl_in_det(psi_det(1,1,i),2,i_particl))then
n_det_1p_tmp +=1
else
n_det_extra_1h_or_1p_tmp +=1
endif
endif
do j = 1, N_det_generators
call get_excitation_degree(psi_det_generators(1,1,j),psi_det(1,1,i), degree, N_int)
@ -448,9 +866,20 @@ subroutine split_wf_generators_and_1h1p_and_1h2p(n_det_1h1p,n_det_1h2p,psi_ref_o
enddo
do i = 1, n_det_extra_1h_or_1p
do j = 1, N_int
psi_extra_1h_or_1p(j,1,i) = psi_det(j,1,index_extra_1h_or_1p(i))
psi_extra_1h_or_1p(j,2,i) = psi_det(j,2,index_extra_1h_or_1p(i))
enddo
do j = 1, N_states
psi_coef_extra_1h_or_1p(i,j) = psi_coef(index_extra_1h_or_1p(i),j)
enddo
enddo
deallocate(index_generator)
deallocate(index_1h1p)
deallocate(index_1h2p)
deallocate(index_extra_1h_or_1p)
end

View File

@ -332,20 +332,20 @@ subroutine save_osoci_natural_mos
enddo
tmp = tmp_bis
!! Symetrization act-virt
do j = 1, n_virt_orb
j_virt= list_virt(j)
accu = 0.d0
do i = 1, n_act_orb
jorb = list_act(i)
accu += dabs(tmp_bis(j_virt,jorb))
enddo
do i = 1, n_act_orb
iorb = list_act(i)
tmp(j_virt,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
tmp(iorb,j_virt) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
enddo
enddo
!!! Symetrization act-virt
! do j = 1, n_virt_orb
! j_virt= list_virt(j)
! accu = 0.d0
! do i = 1, n_act_orb
! jorb = list_act(i)
! accu += dabs(tmp_bis(j_virt,jorb))
! enddo
! do i = 1, n_act_orb
! iorb = list_act(i)
! tmp(j_virt,iorb) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
! tmp(iorb,j_virt) = dsign(accu/dble(n_act_orb),tmp_bis(j_virt,iorb))
! enddo
! enddo
!! Symetrization act-inact
!do j = 1, n_inact_orb
@ -387,16 +387,16 @@ subroutine save_osoci_natural_mos
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
enddo
@ -410,8 +410,9 @@ subroutine save_osoci_natural_mos
enddo
label = "Natural"
call mo_as_eigvectors_of_mo_matrix(tmp,size(tmp,1),size(tmp,2),label,1)
soft_touch mo_coef
!soft_touch mo_coef
deallocate(tmp,occ)
@ -518,16 +519,16 @@ subroutine set_osoci_natural_mos
print*,'ACTIVE ORBITAL ',iorb
do j = 1, n_inact_orb
jorb = list_inact(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_lmct)then
print*,'INACTIVE '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
if(dabs(tmp(iorb,jorb)).gt.threshold_singles)then
if(dabs(tmp(iorb,jorb)).gt.threshold_mlct)then
print*,'VIRT '
print*,'DM ',iorb,jorb,dabs(tmp(iorb,jorb))
print*,'DM ',iorb,jorb,(tmp(iorb,jorb))
endif
enddo
enddo
@ -602,15 +603,210 @@ end
subroutine provide_properties
implicit none
integer :: i
double precision :: accu
if(.True.)then
accu= 0.d0
do i = 1, nucl_num
accu += mulliken_spin_densities(i)
print*,i,nucl_charge(i),mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
endif
call print_mulliken_sd
call print_hcc
end
subroutine dress_diag_elem_2h1p(dressing_H_mat_elem,ndet,lmct,i_hole)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet,i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 0.and.n_p==0)then ! CAS
dressing_H_mat_elem(i)+= total_corr_e_2h1p
if(lmct)then
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(i_hole) - corr_energy_2h1p_per_orb_bb(i_hole)
endif
endif
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(p1) - corr_energy_2h1p_per_orb_aa(p1)
else if (n_h == 1.and.n_p==1)then ! 1h1p
! if(degree==1)then
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i)+= - corr_energy_2h1p_per_orb_ab(h1)
! else
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
! dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
! endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i)+= total_corr_e_2h1p
dressing_H_mat_elem(i) += - corr_energy_2h1p_per_orb_ab(h1)
endif
enddo
end
subroutine dress_diag_elem_1h2p(dressing_H_mat_elem,ndet,lmct,i_hole)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet,i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 0.and.n_p==0)then ! CAS
dressing_H_mat_elem(i)+= total_corr_e_1h2p
if(.not.lmct)then
dressing_H_mat_elem(i) += - corr_energy_1h2p_per_orb_ab(i_hole) - corr_energy_1h2p_per_orb_aa(i_hole)
endif
endif
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i)+= total_corr_e_1h2p - corr_energy_1h2p_per_orb_ab(h1)
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i)+= 0.d0
else if (n_h == 1.and.n_p==1)then ! 1h1p
if(degree==1)then
dressing_H_mat_elem(i)+= total_corr_e_1h2p
dressing_H_mat_elem(i)+= - corr_energy_1h2p_per_orb_ab(h1)
else
dressing_H_mat_elem(i) +=0.d0
endif
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
! dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
! - 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
! dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
! endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i)+= total_corr_e_1h2p
dressing_H_mat_elem(i)+= - corr_energy_1h2p_per_orb_ab(h1) - corr_energy_1h2p_per_orb_ab(h1)
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i) += 0.d0
endif
enddo
end
subroutine dress_diag_elem_2h2p(dressing_H_mat_elem,ndet)
use bitmasks
double precision, intent(inout) :: dressing_H_mat_elem(Ndet)
integer, intent(in) :: ndet
implicit none
integer :: i
integer :: n_p,n_h,number_of_holes,number_of_particles
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2
do i = 1, N_det
dressing_H_mat_elem(i)+= total_corr_e_2h2p
n_h = number_of_holes(psi_det(1,1,i))
n_p = number_of_particles(psi_det(1,1,i))
call get_excitation(ref_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if (n_h == 1.and.n_p==0)then ! 1h
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
else if (n_h == 0.and.n_p==1)then ! 1p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
else if (n_h == 1.and.n_p==1)then ! 1h1p
if(degree==1)then
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_a(h1,p1) + corr_energy_2h2p_for_1h1p_b(h1,p1))
else
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
dressing_H_mat_elem(i) += 0.5d0 * (corr_energy_2h2p_for_1h1p_double(h1,p1))
endif
else if (n_h == 2.and.n_p==1)then ! 2h1p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) - corr_energy_2h2p_per_orb_bb(h1) &
- corr_energy_2h2p_per_orb_ab(h2) &
- 0.5d0 * ( corr_energy_2h2p_per_orb_bb(h2) + corr_energy_2h2p_per_orb_bb(h2))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1)
if(s1.ne.s2)then
dressing_H_mat_elem(i) += corr_energy_2h2p_ab_2_orb(h1,h2)
else
dressing_H_mat_elem(i) += corr_energy_2h2p_bb_2_orb(h1,h2)
endif
else if (n_h == 1.and.n_p==2)then ! 1h2p
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(h1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(h1) + corr_energy_2h2p_per_orb_bb(h1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p1) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p1) + corr_energy_2h2p_per_orb_bb(p1))
dressing_H_mat_elem(i) += - corr_energy_2h2p_per_orb_ab(p2) &
- 0.5d0 * (corr_energy_2h2p_per_orb_aa(p2) + corr_energy_2h2p_per_orb_bb(p2))
if(s1.ne.s2)then
dressing_H_mat_elem(i) += corr_energy_2h2p_ab_2_orb(p1,p2)
else
dressing_H_mat_elem(i) += corr_energy_2h2p_bb_2_orb(p1,p2)
endif
endif
enddo
end
subroutine diag_dressed_2h2p_hamiltonian_and_update_psi_det(i_hole,lmct)
implicit none
double precision, allocatable :: dressing_H_mat_elem(:),energies(:)
integer, intent(in) :: i_hole
logical, intent(in) :: lmct
! if lmct = .True. ===> LMCT
! else ===> MLCT
integer :: i
double precision :: hij
allocate(dressing_H_mat_elem(N_det),energies(N_states_diag))
print*,''
print*,'dressing with the 2h2p in a CC logic'
print*,''
do i = 1, N_det
call i_h_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
dressing_H_mat_elem(i) = hij
enddo
call dress_diag_elem_2h2p(dressing_H_mat_elem,N_det)
call dress_diag_elem_2h1p(dressing_H_mat_elem,N_det,lmct,i_hole)
call dress_diag_elem_1h2p(dressing_H_mat_elem,N_det,lmct,i_hole)
call davidson_diag_hjj(psi_det,psi_coef,dressing_H_mat_elem,energies,size(psi_coef,1),N_det,N_states_diag,N_int,output_determinants)
do i = 1, 2
print*,'psi_coef = ',psi_coef(i,1)
enddo
deallocate(dressing_H_mat_elem)
end

View File

@ -8,17 +8,18 @@ BEGIN_PROVIDER [ integer, N_det_generators ]
integer :: i
integer, save :: ifirst = 0
double precision :: norm
read_wf = .True.
if(ifirst == 0)then
N_det_generators = N_det
call ezfio_get_determinants_n_det(N_det_generators)
ifirst = 1
else
print*,'PB in generators restart !!!'
endif
call write_int(output_determinants,N_det_generators,'Number of generators')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (psi_det_size,N_states) ]
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,N_det_generators) ]
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (N_det_generators,N_states) ]
implicit none
BEGIN_DOC
! read wf
@ -26,17 +27,20 @@ END_PROVIDER
END_DOC
integer :: i, k
integer, save :: ifirst = 0
double precision, allocatable :: psi_coef_read(:,:)
if(ifirst == 0)then
do i=1,N_det_generators
do k=1,N_int
psi_det_generators(k,1,i) = psi_det(k,1,i)
psi_det_generators(k,2,i) = psi_det(k,2,i)
enddo
call read_dets(psi_det_generators,N_int,N_det_generators)
allocate (psi_coef_read(N_det_generators,N_states))
call ezfio_get_determinants_psi_coef(psi_coef_read)
do k = 1, N_states
psi_coef_generators(i,k) = psi_coef(i,k)
do i = 1, N_det_generators
psi_coef_generators(i,k) = psi_coef_read(i,k)
enddo
enddo
enddo
ifirst = 1
deallocate(psi_coef_read)
else
print*,'PB in generators restart !!!'
endif
END_PROVIDER

View File

@ -119,7 +119,9 @@ subroutine damping_SCF
write(output_hartree_fock,'(A4,1X,A16, 1X, A16, 1X, A16, 1X, A4 )') '====','================','================','================', '===='
write(output_hartree_fock,*)
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
if(.not.no_oa_or_av_opt)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1)
endif
call write_double(output_hartree_fock, E_min, 'Hartree-Fock energy')
call ezfio_set_hartree_fock_energy(E_min)

View File

@ -1,196 +0,0 @@
BEGIN_PROVIDER [ character*(128), ao_l_char, (ao_num) ]
implicit none
BEGIN_DOC
! ao_l = l value of the AO: a+b+c in x^a y^b z^c
END_DOC
integer :: i
do i=1,ao_num
ao_l_char(i) = l_to_character(ao_l(i))
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(128), l_to_character, (0:4)]
BEGIN_DOC
! character corresponding to the "L" value of an AO orbital
END_DOC
implicit none
l_to_character(0)='S'
l_to_character(1)='P'
l_to_character(2)='D'
l_to_character(3)='F'
l_to_character(4)='G'
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_N_Aos, (nucl_num)]
&BEGIN_PROVIDER [ integer, N_AOs_max ]
implicit none
integer :: i
BEGIN_DOC
! Number of AOs per atom
END_DOC
Nucl_N_Aos = 0
do i = 1, ao_num
Nucl_N_Aos(ao_nucl(i)) +=1
enddo
N_AOs_max = maxval(Nucl_N_Aos)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_Aos, (nucl_num,N_AOs_max)]
implicit none
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
Nucl_Aos = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i))+=1
Nucl_Aos(ao_nucl(i),nucl_tmp(ao_nucl(i))) = i
enddo
deallocate(nucl_tmp)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_list_shell_Aos, (nucl_num,N_AOs_max)]
&BEGIN_PROVIDER [ integer, Nucl_num_shell_Aos, (nucl_num)]
implicit none
integer :: i,j,k
BEGIN_DOC
! Index of the shell type Aos and of the corresponding Aos
! Per convention, for P,D,F and G AOs, we take the index
! of the AO with the the corresponding power in the "X" axis
END_DOC
do i = 1, nucl_num
Nucl_num_shell_Aos(i) = 0
do j = 1, Nucl_N_Aos(i)
if(ao_l(Nucl_Aos(i,j))==0)then
! S type function
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
elseif(ao_l(Nucl_Aos(i,j))==1)then
! P type function
if(ao_power(Nucl_Aos(i,j),1)==1)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==2)then
! D type function
if(ao_power(Nucl_Aos(i,j),1)==2)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==3)then
! F type function
if(ao_power(Nucl_Aos(i,j),1)==3)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==4)then
! G type function
if(ao_power(Nucl_Aos(i,j),1)==4)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(4), ao_l_char_space, (ao_num) ]
implicit none
integer :: i
character*(4) :: give_ao_character_space
do i=1,ao_num
if(ao_l(i)==0)then
! S type AO
give_ao_character_space = 'S '
elseif(ao_l(i) == 1)then
! P type AO
if(ao_power(i,1)==1)then
give_ao_character_space = 'X '
elseif(ao_power(i,2) == 1)then
give_ao_character_space = 'Y '
else
give_ao_character_space = 'Z '
endif
elseif(ao_l(i) == 2)then
! D type AO
if(ao_power(i,1)==2)then
give_ao_character_space = 'XX '
elseif(ao_power(i,2) == 2)then
give_ao_character_space = 'YY '
elseif(ao_power(i,3) == 2)then
give_ao_character_space = 'ZZ '
elseif(ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XY '
elseif(ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XZ '
else
give_ao_character_space = 'YZ '
endif
elseif(ao_l(i) == 3)then
! F type AO
if(ao_power(i,1)==3)then
give_ao_character_space = 'XXX '
elseif(ao_power(i,2) == 3)then
give_ao_character_space = 'YYY '
elseif(ao_power(i,3) == 3)then
give_ao_character_space = 'ZZZ '
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXY '
elseif(ao_power(i,1) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXZ '
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYX '
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYZ '
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZX '
elseif(ao_power(i,3) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZY '
elseif(ao_power(i,3) == 1 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XYZ '
endif
elseif(ao_l(i) == 4)then
! G type AO
if(ao_power(i,1)==4)then
give_ao_character_space = 'XXXX'
elseif(ao_power(i,2) == 4)then
give_ao_character_space = 'YYYY'
elseif(ao_power(i,3) == 4)then
give_ao_character_space = 'ZZZZ'
elseif(ao_power(i,1) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXXY'
elseif(ao_power(i,1) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXXZ'
elseif(ao_power(i,2) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYYX'
elseif(ao_power(i,2) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYYZ'
elseif(ao_power(i,3) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZZX'
elseif(ao_power(i,3) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZZY'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 2)then
give_ao_character_space = 'XXYY'
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 2)then
give_ao_character_space = 'YYZZ'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXYZ'
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYXZ'
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZXY'
endif
endif
ao_l_char_space(i) = give_ao_character_space
enddo
END_PROVIDER

View File

@ -104,6 +104,8 @@ subroutine write_Ao_basis(i_unit_output)
write(i_unit_output,*)''
write(i_unit_output,'(A47,2X,I3)')'TOTAL NUMBER OF BASIS SET SHELLS =', i_shell
write(i_unit_output,'(A47,2X,I3)')'NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS =', ao_num
! this is for the new version of molden
write(i_unit_output,'(A12)')'PP =NONE'
write(i_unit_output,*)''
@ -126,7 +128,9 @@ subroutine write_Mo_basis(i_unit_output)
write(i_unit_output,'(18X,F8.5)')-1.d0
write(i_unit_output,*)''
do i = 1, ao_num
write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F9.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F9.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! F12.6 for larger coefficients...
write(i_unit_output,'(2X,I3, 2X A1, I3, 2X A4 , F12.6)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i)),mo_coef(i,j)
! write(i_unit_output,'(I3, X A1, X I3, X A4 X F16.8)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),(ao_l_char_space(i))
enddo
write(i_unit_output,*)''

View File

@ -125,6 +125,8 @@ subroutine pt2_moller_plesset ($arguments)
delta_e = (Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)) + &
(Fock_matrix_diag_mo(h2) - Fock_matrix_diag_mo(p2))
delta_e = 1.d0/delta_e
! print*,'h1,p1',h1,p1
! print*,'h2,p2',h2,p2
else if (degree == 1) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)

View File

@ -133,3 +133,16 @@ END_PROVIDER
enddo
END_PROVIDER
subroutine print_hcc
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end

View File

@ -105,3 +105,34 @@ END_PROVIDER
enddo
END_PROVIDER
subroutine print_mulliken_sd
implicit none
double precision :: accu
integer :: i
integer :: j
print*,'Mulliken spin densities'
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
print*,'AO SPIN POPULATIONS'
accu = 0.d0
do i = 1, ao_num
accu += spin_gross_orbital_product(i)
write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
enddo
print*,'sum = ',accu
accu = 0.d0
print*,'Angular momentum analysis'
do i = 0, ao_l_max
accu += spin_population_angular_momentum(i)
print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
print*,'sum = ',accu
enddo
end

View File

@ -1,17 +1,6 @@
program print_hcc
program print_hcc_main
implicit none
read_wf = .True.
touch read_wf
call test
call print_hcc
end
subroutine test
implicit none
double precision :: accu
integer :: i,j
print*,'Z AU GAUSS MHZ cm^-1'
do i = 1, nucl_num
write(*,'(I2,X,F3.1,X,4(F16.6,X))')i,nucl_charge(i),spin_density_at_nucleous(i),iso_hcc_gauss(i),iso_hcc_mhz(i),iso_hcc_cm_1(i)
enddo
end

View File

@ -2,34 +2,5 @@ program print_mulliken
implicit none
read_wf = .True.
touch read_wf
print*,'Mulliken spin densities'
call test
call print_mulliken_sd
end
subroutine test
double precision :: accu
integer :: i
integer :: j
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),mulliken_spin_densities(i)
accu += mulliken_spin_densities(i)
enddo
print*,'Sum of Mulliken SD = ',accu
print*,'AO SPIN POPULATIONS'
accu = 0.d0
do i = 1, ao_num
accu += spin_gross_orbital_product(i)
write(*,'(X,I3,X,A4,X,I2,X,A4,X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_charater(ao_l(i))),spin_gross_orbital_product(i)
enddo
print*,'sum = ',accu
accu = 0.d0
print*,'Angular momentum analysis'
do i = 0, ao_l_max
accu += spin_population_angular_momentum(i)
print*,' ',trim(l_to_charater(i)),spin_population_angular_momentum(i)
print*,'sum = ',accu
enddo
end

View File

@ -17,9 +17,11 @@ C
data small/1.d-6/
zprt=.true.
niter=500
niter=1000000
conv=1.d-8
C niter=1000000
C conv=1.d-6
write (6,5) n,m,conv
5 format (//5x,'Unitary transformation of',i3,' vectors'/
* 5x,'following the principle of maximum overlap with a set of',

View File

@ -92,13 +92,182 @@
nrot(1) = 6 ! number of orbitals to be localized
nrot(1) = 64 ! number of orbitals to be localized
integer :: index_rot(1000,1)
cmoref = 0.d0
irot = 0
! H2 molecule for the mixed localization
do i=1,64
irot(i,1) = i+2
enddo
do i=1,17
cmoref(i+1,i,1)=1.d0
enddo
cmoref(19,19-1,1)=1.d0
cmoref(20,19-1,1)=-1.d0
cmoref(19,20-1,1)=-1.d0
cmoref(20,20-1,1)=-1.d0
cmoref(21,20-1,1)=2.d0
cmoref(22,21-1,1)=1.d0
cmoref(23,22-1,1)=1.d0
cmoref(24,23-1,1)=1.d0
cmoref(25,24-1,1)=1.d0
cmoref(26,24-1,1)=-1.d0
cmoref(25,25-1,1)=-1.d0
cmoref(26,25-1,1)=-1.d0
cmoref(27,25-1,1)=2.d0
cmoref(28,26-1,1)=1.d0
cmoref(29,27-1,1)=1.d0
cmoref(30,28-1,1)=1.d0
cmoref(31,29-1,1)=1.d0
cmoref(32,29-1,1)=-1.d0
cmoref(31,30-1,1)=-1.d0
cmoref(32,30-1,1)=-1.d0
cmoref(33,30-1,1)=2.d0
cmoref(34,31-1,1)=1.d0
cmoref(35,32-1,1)=1.d0
cmoref(36,33-1,1)=1.d0
do i=33,49
cmoref(i+5,i,1)= 1.d0
enddo
cmoref(55,52-2,1)=1.d0
cmoref(56,52-2,1)=-1.d0
cmoref(55,53-2,1)=-1.d0
cmoref(56,53-2,1)=-1.d0
cmoref(57,53-2,1)=2.d0
cmoref(58,54-2,1)=1.d0
cmoref(59,55-2,1)=1.d0
cmoref(60,56-2,1)=1.d0
cmoref(61,57-2,1)=1.d0
cmoref(62,57-2,1)=-1.d0
cmoref(61,58-2,1)=-1.d0
cmoref(62,58-2,1)=-1.d0
cmoref(63,58-2,1)=2.d0
cmoref(64,59-2,1)=1.d0
cmoref(65,60-2,1)=1.d0
cmoref(66,61-2,1)=1.d0
cmoref(67,62-2,1)=1.d0
cmoref(68,62-2,1)=-1.d0
cmoref(67,63-2,1)=-1.d0
cmoref(68,63-2,1)=-1.d0
cmoref(69,63-2,1)=2.d0
cmoref(70,64-2,1)=1.d0
cmoref(71,65-2,1)=1.d0
cmoref(72,66-2,1)=1.d0
! H2 molecule
! do i=1,66
! irot(i,1) = i
! enddo
!
! do i=1,18
! cmoref(i,i,1)=1.d0
! enddo
! cmoref(19,19,1)=1.d0
! cmoref(20,19,1)=-1.d0
! cmoref(19,20,1)=-1.d0
! cmoref(20,20,1)=-1.d0
! cmoref(21,20,1)=2.d0
! cmoref(22,21,1)=1.d0
! cmoref(23,22,1)=1.d0
! cmoref(24,23,1)=1.d0
!
!
! cmoref(25,24,1)=1.d0
! cmoref(26,24,1)=-1.d0
! cmoref(25,25,1)=-1.d0
! cmoref(26,25,1)=-1.d0
! cmoref(27,25,1)=2.d0
! cmoref(28,26,1)=1.d0
! cmoref(29,27,1)=1.d0
! cmoref(30,28,1)=1.d0
!
! cmoref(31,29,1)=1.d0
! cmoref(32,29,1)=-1.d0
! cmoref(31,30,1)=-1.d0
! cmoref(32,30,1)=-1.d0
! cmoref(33,30,1)=2.d0
! cmoref(34,31,1)=1.d0
! cmoref(35,32,1)=1.d0
! cmoref(36,33,1)=1.d0
!
! do i=34,51
! cmoref(i+3,i,1)= 1.d0
! enddo
!
! cmoref(55,52,1)=1.d0
! cmoref(56,52,1)=-1.d0
! cmoref(55,53,1)=-1.d0
! cmoref(56,53,1)=-1.d0
! cmoref(57,53,1)=2.d0
! cmoref(58,54,1)=1.d0
! cmoref(59,55,1)=1.d0
! cmoref(60,56,1)=1.d0
!
! cmoref(61,57,1)=1.d0
! cmoref(62,57,1)=-1.d0
! cmoref(61,58,1)=-1.d0
! cmoref(62,58,1)=-1.d0
! cmoref(63,58,1)=2.d0
! cmoref(64,59,1)=1.d0
! cmoref(65,60,1)=1.d0
! cmoref(66,61,1)=1.d0
!
! cmoref(67,62,1)=1.d0
! cmoref(68,62,1)=-1.d0
! cmoref(67,63,1)=-1.d0
! cmoref(68,63,1)=-1.d0
! cmoref(69,63,1)=2.d0
! cmoref(70,64,1)=1.d0
! cmoref(71,65,1)=1.d0
! cmoref(72,66,1)=1.d0
! H atom
! do i=1,33
! irot(i,1) = i
! enddo
!
! do i=1,18
! cmoref(i,i,1)=1.d0
! enddo
! cmoref(19,19,1)=1.d0
! cmoref(20,19,1)=-1.d0
! cmoref(19,20,1)=-1.d0
! cmoref(20,20,1)=-1.d0
! cmoref(21,20,1)=2.d0
! cmoref(22,21,1)=1.d0
! cmoref(23,22,1)=1.d0
! cmoref(24,23,1)=1.d0
! cmoref(25,24,1)=1.d0
! cmoref(26,24,1)=-1.d0
! cmoref(25,25,1)=-1.d0
! cmoref(26,25,1)=-1.d0
! cmoref(27,25,1)=2.d0
! cmoref(28,26,1)=1.d0
! cmoref(29,27,1)=1.d0
! cmoref(30,28,1)=1.d0
!
! cmoref(31,29,1)=1.d0
! cmoref(32,29,1)=-1.d0
! cmoref(31,30,1)=-1.d0
! cmoref(32,30,1)=-1.d0
! cmoref(33,30,1)=2.d0
! cmoref(34,31,1)=1.d0
! cmoref(35,32,1)=1.d0
! cmoref(36,33,1)=1.d0
! Definition of the index of the MO to be rotated
! irot(2,1) = 21 ! the first mo to be rotated is the 21 th MO
@ -106,25 +275,67 @@
! irot(4,1) = 23 !
! irot(5,1) = 24 !
! irot(6,1) = 25 !
! do i = 1,12
! irot(i,1) = i+6
! enddo
irot(1,1) = 5
irot(2,1) = 6
irot(3,1) = 7
irot(4,1) = 8
irot(5,1) = 9
irot(6,1) = 10
!N2
! irot(1,1) = 5
! irot(2,1) = 6
! irot(3,1) = 7
! irot(4,1) = 8
! irot(5,1) = 9
! irot(6,1) = 10
!
! cmoref(5,1,1) = 1.d0 !
! cmoref(6,2,1) = 1.d0 !
! cmoref(7,3,1) = 1.d0 !
! cmoref(40,4,1) = 1.d0 !
! cmoref(41,5,1) = 1.d0 !
! cmoref(42,6,1) = 1.d0 !
!END N2
!HEXATRIENE
! irot(1,1) = 20
! irot(2,1) = 21
! irot(3,1) = 22
! irot(4,1) = 23
! irot(5,1) = 24
! irot(6,1) = 25
!
! cmoref(7,1,1) = 1.d0 !
! cmoref(26,1,1) = 1.d0 !
! cmoref(45,2,1) = 1.d0 !
! cmoref(64,2,1) = 1.d0 !
! cmoref(83,3,1) = 1.d0 !
! cmoref(102,3,1) = 1.d0 !
! cmoref(7,4,1) = 1.d0 !
! cmoref(26,4,1) = -1.d0 !
! cmoref(45,5,1) = 1.d0 !
! cmoref(64,5,1) = -1.d0 !
! cmoref(83,6,1) = 1.d0 !
! cmoref(102,6,1) = -1.d0 !
!END HEXATRIENE
!!!!H2 H2 CAS
! irot(1,1) = 1
! irot(2,1) = 2
!
! cmoref(1,1,1) = 1.d0
! cmoref(37,2,1) = 1.d0
!END H2
!!!! LOCALIZATION ON THE BASIS FUNCTIONS
! do i = 1, nrot(1)
! irot(i,1) = i
! cmoref(i,i,1) = 1.d0
! enddo
!END BASISLOC
! do i = 1, nrot(1)
! irot(i,1) = 4+i
! enddo
do i = 1, nrot(1)
print*,'irot(i,1) = ',irot(i,1)
enddo
pause
cmoref(4,1,1) = 1.d0 ! 2S function
cmoref(5,2,1) = 1.d0 ! 2S function
cmoref(6,3,1) = 1.d0 ! 2S function
cmoref(19,4,1) = 1.d0 ! 2S function
cmoref(20,5,1) = 1.d0 ! 2S function
cmoref(21,6,1) = 1.d0 ! 2S function
! pause
! you define the guess vectors that you want
! the new MO to be close to
@ -138,233 +349,21 @@
! own guess vectors for the MOs
! The new MOs are provided in output
! in the same order than the guess MOs
! C-C bonds
! 1-2
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,1,1) = -0.012d0 ! 2S function
! cmoref(2+shift,1,1) = 0.18d0 !
! cmoref(3+shift,1,1) = 0.1d0 !
! cmoref(5+shift,1,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,1,1) = -0.1d0 ! 2pZ function
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,1,1) = -0.012d0 ! 2S function
! cmoref(2+shift,1,1) = 0.18d0 !
! cmoref(3+shift,1,1) = 0.1d0 !
! cmoref(5+shift,1,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,1,1) = 0.1d0 ! 2pZ function
! ! 1-3
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,2,1) = -0.012d0 ! 2S function
! cmoref(2+shift,2,1) = 0.18d0 !
! cmoref(3+shift,2,1) = 0.1d0 !
! cmoref(5+shift,2,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,2,1) = -0.1d0 ! 2pZ function
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,2,1) = -0.012d0 ! 2S function
! cmoref(2+shift,2,1) = 0.18d0 !
! cmoref(3+shift,2,1) = 0.1d0 !
! cmoref(5+shift,2,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,2,1) = 0.1d0 ! 2pZ function
! ! 4-6
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,3,1) = -0.012d0 ! 2S function
! cmoref(2+shift,3,1) = 0.18d0 !
! cmoref(3+shift,3,1) = 0.1d0 !
! cmoref(5+shift,3,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,3,1) = -0.1d0 ! 2pZ function
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,3,1) = -0.012d0 ! 2S function
! cmoref(2+shift,3,1) = 0.18d0 !
! cmoref(3+shift,3,1) = 0.1d0 !
! cmoref(5+shift,3,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,3,1) = 0.1d0 ! 2pZ function
! ! 6-5
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,4,1) = -0.012d0 ! 2S function
! cmoref(2+shift,4,1) = 0.18d0 !
! cmoref(3+shift,4,1) = 0.1d0 !
! cmoref(5+shift,4,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,4,1) = 0.1d0 ! 2pZ function
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,4,1) = -0.012d0 ! 2S function
! cmoref(2+shift,4,1) = 0.18d0 !
! cmoref(3+shift,4,1) = 0.1d0 !
! cmoref(5+shift,4,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,4,1) = -0.1d0 ! 2pZ function
! ! 2-4
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,5,1) = -0.012d0 ! 2S function
! cmoref(2+shift,5,1) = 0.18d0 !
! cmoref(3+shift,5,1) = 0.1d0 !
! cmoref(6+shift,5,1) = 0.1d0 ! 2pZ function
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,5,1) = -0.012d0 ! 2S function
! cmoref(2+shift,5,1) = 0.18d0 !
! cmoref(3+shift,5,1) = 0.1d0 !
! cmoref(6+shift,5,1) = -0.1d0 ! 2pZ function
! ! 3-5
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,6,1) = -0.012d0 ! 2S function
! cmoref(2+shift,6,1) = 0.18d0 !
! cmoref(3+shift,6,1) = 0.1d0 !
! cmoref(6+shift,6,1) = 0.1d0 ! 2pZ function
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,6,1) = -0.012d0 ! 2S function
! cmoref(2+shift,6,1) = 0.18d0 !
! cmoref(3+shift,6,1) = 0.1d0 !
! cmoref(6+shift,6,1) = -0.1d0 ! 2pZ function
! ! C-H bonds
! ! 2-7
! i_atom = 2
! shift = (i_atom -1) * 15
! cmoref(1+shift,7,1) = -0.012d0 ! 2S function
! cmoref(2+shift,7,1) = 0.18d0 !
! cmoref(3+shift,7,1) = 0.1d0 !
! cmoref(5+shift,7,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,7,1) = 0.1d0 ! 2pZ function
!
! i_atom = 7
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,7,1) = 0.12d0 ! 1S function
! ! 4-10
! i_atom = 4
! shift = (i_atom -1) * 15
! cmoref(1+shift,8,1) = -0.012d0 ! 2S function
! cmoref(2+shift,8,1) = 0.18d0 !
! cmoref(3+shift,8,1) = 0.1d0 !
! cmoref(5+shift,8,1) = -0.1d0 ! 2pX function
! cmoref(6+shift,8,1) = -0.1d0 ! 2pZ function
!
! i_atom = 10
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,8,1) = 0.12d0 ! 1S function
! ! 5-11
! i_atom = 5
! shift = (i_atom -1) * 15
! cmoref(1+shift,9,1) = -0.012d0 ! 2S function
! cmoref(2+shift,9,1) = 0.18d0 !
! cmoref(3+shift,9,1) = 0.1d0 !
! cmoref(5+shift,9,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,9,1) = -0.1d0 ! 2pZ function
!
! i_atom = 11
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,9,1) = 0.12d0 ! 1S function
! ! 3-8
! i_atom = 3
! shift = (i_atom -1) * 15
! cmoref(1+shift,10,1) = -0.012d0 ! 2S function
! cmoref(2+shift,10,1) = 0.18d0 !
! cmoref(3+shift,10,1) = 0.1d0 !
!
! cmoref(5+shift,10,1) = 0.1d0 ! 2pX function
! cmoref(6+shift,10,1) = 0.1d0 ! 2pZ function
!
! i_atom = 8
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,10,1) = 0.12d0 ! 1S function
! ! 1-9
! i_atom = 1
! shift = (i_atom -1) * 15
! cmoref(1+shift,11,1) = -0.012d0 ! 2S function
! cmoref(2+shift,11,1) = 0.18d0 !
! cmoref(3+shift,11,1) = 0.1d0 !
!
! cmoref(6+shift,11,1) = 0.1d0 ! 2pZ function
! i_atom = 9
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,11,1) = 0.12d0 ! 1S function
!
! ! 6-12
! i_atom = 6
! shift = (i_atom -1) * 15
! cmoref(1+shift,12,1) = -0.012d0 ! 2S function
! cmoref(2+shift,12,1) = 0.18d0 !
! cmoref(3+shift,12,1) = 0.1d0 !
!
! cmoref(6+shift,12,1) = -0.1d0 ! 2pZ function
! i_atom = 12
! shift_h = (6-1) * 15 + (i_atom - 6)*5
! cmoref(1+shift_h,12,1) = 0.12d0 ! 1S function
! cmoref(12,1,1) = 1.d0 !
! cmoref(21,2,1) = 1.d0 !
! cmoref(30,2,1) = 1.d0 !
! cmoref(39,3,1) = 1.d0 !
! cmoref(48,3,1) = 1.d0 !
! cmoref(3,4,1) = 1.d0 !
! cmoref(12,4,1) =-1.d0 !
! cmoref(21,5,1) = 1.d0 !
! cmoref(30,5,1) =-1.d0 !
! cmoref(39,6,1) = 1.d0 !
! cmoref(48,6,1) =-1.d0 !
! do i = 1, nrot(1)
! j = 5+(i-1)*15
! cmoref(j,i,1) = 0.2d0
! cmoref(j+3,i,1) = 0.12d0
! print*,'j = ',j
! enddo
! pause
print*,'passed the definition of the referent vectors '
!Building the S (overlap) matrix in the AO basis.
do i = 1, ao_num
do j = 1, ao_num
s(i,j,1) = ao_overlap(i,j)
do j =1, ao_num
s(i,j,1) = ao_overlap(i,j)
enddo
enddo
!Now big loop over symmetry
@ -398,20 +397,13 @@
! do i=1,nmo(isym)
do i=1,ao_num
do j=1,nrot(isym)
ddum(i,j)=0.d0
do k=1,ao_num
ddum(i,j)=ddum(i,j)+s(i,k,isym)*cmo(k,irot(j,isym),isym)
enddo
enddo
do i=1,ao_num
ddum(i,j)=0.d0
do k=1,ao_num
ddum(i,j)=ddum(i,j)+s(i,k,isym)*cmo(k,irot(j,isym),isym)
enddo
enddo
enddo
@ -441,7 +433,7 @@
do i=1,nrot(isym)
do j=1,ao_num
write (6,*) 'isym,',isym,nrot(isym),nmo(isym)
! write (6,*) 'isym,',isym,nrot(isym),nmo(isym)
newcmo(j,irot(i,isym),isym)=0.d0
do k=1,nrot(isym)
newcmo(j,irot(i,isym),isym)=newcmo(j,irot(i,isym),isym) + cmo(j,irot(k,isym),isym)*t(k,i)
@ -459,7 +451,7 @@
enddo !big loop over symmetry
10 format (4E20.12)
10 format (4E18.12)
! Now we copyt the newcmo into the mo_coef
@ -472,9 +464,7 @@
enddo
enddo
enddo
! if(dabs(newcmo(3,19,1) - mo_coef(3,19)) .gt.1.d-10 )then
print*,'mo_coef(3,19)',mo_coef(3,19)
pause
! pause
! we say that it hase been touched, and valid and that everything that

View File

@ -264,7 +264,7 @@ def print_mo_coef(mo_coef_block, l_l_sym):
i_a = int(l[1]) - 1
sym = l[2]
print l_label[i_a], sym, " ".join('{: 3.8f}'.format(i)
print l_label[i_a], sym, " ".join('{0: 3.8f}'.format(i)
for i in a[i])
if i_block != nb_block - 1:

View File

@ -8,11 +8,22 @@ copy_buffer
declarations
decls_main
deinit_thread
do_double_excitations
skip
init_main
filter_integrals
filter2p
filter2h2p_double
filter2h2p_single
filter1h
filter1p
filter2h2p
filter2p
only_2p_single
only_2p_double
filter_only_1h1p_single
filter_only_1h1p_double
filter_only_1h2p_single
filter_only_1h2p_double
filter_only_2h2p_single
filter_only_2h2p_double
filterhole
filter_integrals
filter_only_1h1p_double
@ -182,7 +193,7 @@ class H_apply(object):
if (is_a_2p(hole)) cycle
"""
def filter_1p(self):
self["filter0p"] = """
self["filter1p"] = """
! ! DIR$ FORCEINLINE
if (is_a_1p(hole)) cycle
"""
@ -208,6 +219,27 @@ class H_apply(object):
if (is_a_1h1p(key).eqv..False.) cycle
"""
def filter_only_2h2p(self):
self["filter_only_2h2p_single"] = """
! ! DIR$ FORCEINLINE
if (is_a_two_holes_two_particles(hole).eqv..False.) cycle
"""
self["filter_only_1h1p_double"] = """
! ! DIR$ FORCEINLINE
if (is_a_two_holes_two_particles(key).eqv..False.) cycle
"""
def filter_only_1h2p(self):
self["filter_only_1h2p_single"] = """
! ! DIR$ FORCEINLINE
if (is_a_1h2p(hole).eqv..False.) cycle
"""
self["filter_only_1h2p_double"] = """
! ! DIR$ FORCEINLINE
if (is_a_1h2p(key).eqv..False.) cycle
"""
def unset_skip(self):
self["skip"] = """
@ -215,9 +247,12 @@ class H_apply(object):
def set_filter_2h_2p(self):
self["filter2h2p"] = """
self["filter2h2p_double"] = """
if (is_a_two_holes_two_particles(key)) cycle
"""
self["filter2h2p_single"] = """
if (is_a_two_holes_two_particles(hole)) cycle
"""
def set_perturbation(self,pert):

View File

@ -206,3 +206,176 @@ BEGIN_PROVIDER [ character*(128), l_to_charater, (0:4)]
l_to_charater(4)='G'
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_N_Aos, (nucl_num)]
&BEGIN_PROVIDER [ integer, N_AOs_max ]
implicit none
integer :: i
BEGIN_DOC
! Number of AOs per atom
END_DOC
Nucl_N_Aos = 0
do i = 1, ao_num
Nucl_N_Aos(ao_nucl(i)) +=1
enddo
N_AOs_max = maxval(Nucl_N_Aos)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_Aos, (nucl_num,N_AOs_max)]
implicit none
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
Nucl_Aos = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i))+=1
Nucl_Aos(ao_nucl(i),nucl_tmp(ao_nucl(i))) = i
enddo
deallocate(nucl_tmp)
END_PROVIDER
BEGIN_PROVIDER [ integer, Nucl_list_shell_Aos, (nucl_num,N_AOs_max)]
&BEGIN_PROVIDER [ integer, Nucl_num_shell_Aos, (nucl_num)]
implicit none
integer :: i,j,k
BEGIN_DOC
! Index of the shell type Aos and of the corresponding Aos
! Per convention, for P,D,F and G AOs, we take the index
! of the AO with the the corresponding power in the "X" axis
END_DOC
do i = 1, nucl_num
Nucl_num_shell_Aos(i) = 0
do j = 1, Nucl_N_Aos(i)
if(ao_l(Nucl_Aos(i,j))==0)then
! S type function
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
elseif(ao_l(Nucl_Aos(i,j))==1)then
! P type function
if(ao_power(Nucl_Aos(i,j),1)==1)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==2)then
! D type function
if(ao_power(Nucl_Aos(i,j),1)==2)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==3)then
! F type function
if(ao_power(Nucl_Aos(i,j),1)==3)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
elseif(ao_l(Nucl_Aos(i,j))==4)then
! G type function
if(ao_power(Nucl_Aos(i,j),1)==4)then
Nucl_num_shell_Aos(i)+=1
Nucl_list_shell_Aos(i,Nucl_num_shell_Aos(i))=Nucl_Aos(i,j)
endif
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(4), ao_l_char_space, (ao_num) ]
implicit none
integer :: i
character*(4) :: give_ao_character_space
do i=1,ao_num
if(ao_l(i)==0)then
! S type AO
give_ao_character_space = 'S '
elseif(ao_l(i) == 1)then
! P type AO
if(ao_power(i,1)==1)then
give_ao_character_space = 'X '
elseif(ao_power(i,2) == 1)then
give_ao_character_space = 'Y '
else
give_ao_character_space = 'Z '
endif
elseif(ao_l(i) == 2)then
! D type AO
if(ao_power(i,1)==2)then
give_ao_character_space = 'XX '
elseif(ao_power(i,2) == 2)then
give_ao_character_space = 'YY '
elseif(ao_power(i,3) == 2)then
give_ao_character_space = 'ZZ '
elseif(ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XY '
elseif(ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XZ '
else
give_ao_character_space = 'YZ '
endif
elseif(ao_l(i) == 3)then
! F type AO
if(ao_power(i,1)==3)then
give_ao_character_space = 'XXX '
elseif(ao_power(i,2) == 3)then
give_ao_character_space = 'YYY '
elseif(ao_power(i,3) == 3)then
give_ao_character_space = 'ZZZ '
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXY '
elseif(ao_power(i,1) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXZ '
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYX '
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYZ '
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZX '
elseif(ao_power(i,3) == 2 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZY '
elseif(ao_power(i,3) == 1 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XYZ '
endif
elseif(ao_l(i) == 4)then
! G type AO
if(ao_power(i,1)==4)then
give_ao_character_space = 'XXXX'
elseif(ao_power(i,2) == 4)then
give_ao_character_space = 'YYYY'
elseif(ao_power(i,3) == 4)then
give_ao_character_space = 'ZZZZ'
elseif(ao_power(i,1) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'XXXY'
elseif(ao_power(i,1) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXXZ'
elseif(ao_power(i,2) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'YYYX'
elseif(ao_power(i,2) == 3 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYYZ'
elseif(ao_power(i,3) == 3 .and. ao_power(i,1) == 1)then
give_ao_character_space = 'ZZZX'
elseif(ao_power(i,3) == 3 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZZY'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 2)then
give_ao_character_space = 'XXYY'
elseif(ao_power(i,2) == 2 .and. ao_power(i,3) == 2)then
give_ao_character_space = 'YYZZ'
elseif(ao_power(i,1) == 2 .and. ao_power(i,2) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'XXYZ'
elseif(ao_power(i,2) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,3) == 1)then
give_ao_character_space = 'YYXZ'
elseif(ao_power(i,3) == 2 .and. ao_power(i,1) == 1 .and. ao_power(i,2) == 1)then
give_ao_character_space = 'ZZXY'
endif
endif
ao_l_char_space(i) = give_ao_character_space
enddo
END_PROVIDER

View File

@ -212,6 +212,12 @@ logical function is_a_two_holes_two_particles(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: i,i_diff
integer :: number_of_holes, number_of_particles
is_a_two_holes_two_particles = .False.
if(number_of_holes(key_in) == 2 .and. number_of_particles(key_in) == 2)then
is_a_two_holes_two_particles = .True.
return
endif
i_diff = 0
if(N_int == 1)then
i_diff = i_diff &
@ -456,6 +462,17 @@ logical function is_a_1h1p(key_in)
end
logical function is_a_1h2p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1h2p = .False.
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.2)then
is_a_1h2p = .True.
endif
end
logical function is_a_1h(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)

View File

@ -95,9 +95,40 @@ BEGIN_PROVIDER [ integer, N_generators_bitmask ]
END_PROVIDER
BEGIN_PROVIDER [ integer, N_generators_bitmask_restart ]
implicit none
BEGIN_DOC
! Number of bitmasks for generators
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_bitmasks_N_mask_gen(exists)
if (exists) then
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask_restart)
integer :: N_int_check
integer :: bit_kind_check
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
if (bit_kind_check /= bit_kind) then
print *, bit_kind_check, bit_kind
print *, 'Error: bit_kind is not correct in EZFIO file'
endif
call ezfio_get_bitmasks_N_int(N_int_check)
if (N_int_check /= N_int) then
print *, N_int_check, N_int
print *, 'Error: N_int is not correct in EZFIO file'
endif
else
N_generators_bitmask_restart = 1
endif
ASSERT (N_generators_bitmask_restart > 0)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask) ]
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask_restart) ]
implicit none
BEGIN_DOC
! Bitmasks for generator determinants.
@ -306,7 +337,7 @@ END_PROVIDER
n_inact_orb = 0
n_virt_orb = 0
if(N_generators_bitmask == 1)then
if(N_generators_bitmask_restart == 1)then
do j = 1, N_int
inact_bitmask(j,1) = xor(generators_bitmask_restart(j,1,1,1),cas_bitmask(j,1,1))
inact_bitmask(j,2) = xor(generators_bitmask_restart(j,2,1,1),cas_bitmask(j,2,1))
@ -319,15 +350,15 @@ END_PROVIDER
i_hole = 1
i_gen = 1
do i = 1, N_int
inact_bitmask(i,1) = generators_bitmask(i,1,i_hole,i_gen)
inact_bitmask(i,2) = generators_bitmask(i,2,i_hole,i_gen)
inact_bitmask(i,1) = generators_bitmask_restart(i,1,i_hole,i_gen)
inact_bitmask(i,2) = generators_bitmask_restart(i,2,i_hole,i_gen)
n_inact_orb += popcnt(inact_bitmask(i,1))
enddo
i_part = 2
i_gen = 3
do i = 1, N_int
virt_bitmask(i,1) = generators_bitmask(i,1,i_part,i_gen)
virt_bitmask(i,2) = generators_bitmask(i,2,i_part,i_gen)
virt_bitmask(i,1) = generators_bitmask_restart(i,1,i_part,i_gen)
virt_bitmask(i,2) = generators_bitmask_restart(i,2,i_part,i_gen)
n_virt_orb += popcnt(virt_bitmask(i,1))
enddo
endif

View File

@ -170,6 +170,7 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
logical :: check_double_excitation
logical :: is_a_1h1p
logical :: is_a_1h2p
logical :: is_a_1h
logical :: is_a_1p
logical :: is_a_2p
@ -299,8 +300,10 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,other_spin) = ibset(key(k,other_spin),l)
$filter2h2p
$filter2h2p_double
$filter_only_1h1p_double
$filter_only_1h2p_double
$filter_only_2h2p_double
$only_2p_double
key_idx += 1
do k=1,N_int
@ -348,8 +351,10 @@ subroutine $subroutine_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,ispin) = ibset(key(k,ispin),l)
$filter2h2p
$filter2h2p_double
$filter_only_1h1p_double
$filter_only_1h2p_double
$filter_only_2h2p_double
$only_2p_double
key_idx += 1
do k=1,N_int
@ -418,6 +423,7 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
logical :: check_double_excitation
logical :: is_a_1h1p
logical :: is_a_1h2p
logical :: is_a_1h
logical :: is_a_1p
logical :: is_a_2p
@ -494,8 +500,10 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
$filter1h
$filter1p
$filter2p
$filter2h2p
$filter2h2p_single
$filter_only_1h1p_single
$filter_only_1h2p_single
$filter_only_2h2p_single
key_idx += 1
do k=1,N_int
keys_out(k,1,key_idx) = hole(k,1)
@ -521,4 +529,3 @@ subroutine $subroutine_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generato
end

View File

@ -1,4 +1,4 @@
subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
subroutine CISD_SC2(dets_in,u_in,energies,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
@ -21,6 +21,7 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision, intent(in) :: convergence
ASSERT (N_st > 0)
ASSERT (sze > 0)
@ -197,6 +198,9 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
converged = dabs(e_corr_double - e_corr_double_before) < convergence
converged = converged
if (converged) then
do i = 1, dim_in
diag_H_elements(i) = H_jj_dressed(i) - H_jj_ref(i)
enddo
exit
endif
e_corr_double_before = e_corr_double

View File

@ -58,7 +58,7 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
else
psi_det_size = 1
endif
psi_det_size = max(psi_det_size,10000)
psi_det_size = max(psi_det_size,100000)
call write_int(output_determinants,psi_det_size,'Dimension of the psi arrays')
END_PROVIDER

View File

@ -23,8 +23,10 @@ END_PROVIDER
threshold_convergence_SC2 = 1.d-10
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, Diag_H_elements_SC2, (N_det) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
@ -39,7 +41,8 @@ END_PROVIDER
enddo
call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, &
size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
! size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
diag_H_elements_SC2,size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
END_PROVIDER
subroutine diagonalize_CI_SC2
@ -54,5 +57,6 @@ subroutine diagonalize_CI_SC2
psi_coef(i,j) = CI_SC2_eigenvectors(i,j)
enddo
enddo
SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors
SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors diag_h_elements_sc2
! SOFT_TOUCH psi_coef CI_SC2_electronic_energy CI_SC2_energy CI_SC2_eigenvectors
end

View File

@ -2,5 +2,6 @@ program save_natorb
read_wf = .True.
touch read_wf
call save_natural_mos
call save_ref_determinant
end

View File

@ -230,7 +230,6 @@ subroutine clear_ao_map
end
!! MO Map
!! ======

View File

@ -70,7 +70,7 @@ subroutine add_integrals_to_map(mask_ijkl)
integer :: i2,i3,i4
double precision,parameter :: thr_coef = 1.d-10
PROVIDE ao_bielec_integrals_in_map
PROVIDE ao_bielec_integrals_in_map mo_coef
!Get list of MOs for i,j,k and l
!-------------------------------
@ -328,7 +328,7 @@ end
double precision, allocatable :: iqrs(:,:), iqsr(:,:), iqis(:), iqri(:)
if (.not.do_direct_integrals) then
PROVIDE ao_bielec_integrals_in_map
PROVIDE ao_bielec_integrals_in_map mo_coef
endif
mo_bielec_integral_jj_from_ao = 0.d0
@ -494,4 +494,13 @@ subroutine clear_mo_map
call map_deinit(mo_integrals_map)
FREE mo_integrals_map mo_bielec_integral_schwartz mo_bielec_integral_jj mo_bielec_integral_jj_anti
FREE mo_bielec_integral_jj_exchange mo_bielec_integrals_in_map
end
subroutine provide_all_mo_integrals
implicit none
provide mo_integrals_map mo_bielec_integral_schwartz mo_bielec_integral_jj mo_bielec_integral_jj_anti
provide mo_bielec_integral_jj_exchange mo_bielec_integrals_in_map
end

View File

@ -5,6 +5,7 @@ BEGIN_PROVIDER [ double precision, mo_mono_elec_integral,(mo_tot_num_align,mo_to
! array of the mono electronic hamiltonian on the MOs basis
! : sum of the kinetic and nuclear electronic potential
END_DOC
print*,'Providing the mono electronic integrals'
do j = 1, mo_tot_num
do i = 1, mo_tot_num
mo_mono_elec_integral(i,j) = mo_nucl_elec_integral(i,j) + mo_kinetic_integral(i,j) + mo_pseudo_integral(i,j)