10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 04:43:50 +01:00

Corrected memory leak in Davidson

This commit is contained in:
Anthony Scemama 2017-04-18 17:50:49 +02:00
parent 6d3a801d0e
commit df95c1af1c
3 changed files with 38 additions and 476 deletions

View File

@ -338,15 +338,22 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze_8)
integer :: istep, imin, imax, ishift integer :: istep, imin, imax, ishift
istep=2 ! istep=1
do imin=1,N_det, 524288 ! do imin=1,N_det, 524288
! do ishift=0,istep-1
! imax = min(N_det, imin+524288-1)
! write(task,'(4(I9,1X),1A)') imin, imax, ishift, istep, '|'
! call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
! enddo
! enddo
istep=N_det/131072+1
imin=1
imax=N_det
do ishift=0,istep-1 do ishift=0,istep-1
imax = min(N_det, imin+524288-1)
write(task,'(4(I9,1X),1A)') imin, imax, ishift, istep, '|' write(task,'(4(I9,1X),1A)') imin, imax, ishift, istep, '|'
call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) call add_task_to_taskserver(zmq_to_qp_run_socket,trim(task))
enddo enddo
enddo
v_0 = 0.d0 v_0 = 0.d0
s_0 = 0.d0 s_0 = 0.d0

View File

@ -23,7 +23,7 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag) double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag)
double precision, allocatable :: H_jj(:), S2_jj(:) double precision, allocatable :: H_jj(:)
double precision :: diag_H_mat_elem, diag_S_mat_elem double precision :: diag_H_mat_elem, diag_S_mat_elem
integer :: i integer :: i
@ -32,32 +32,24 @@ subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_d
ASSERT (Nint > 0) ASSERT (Nint > 0)
ASSERT (Nint == N_int) ASSERT (Nint == N_int)
PROVIDE mo_bielec_integrals_in_map PROVIDE mo_bielec_integrals_in_map
allocate(H_jj(sze), S2_jj(sze)) allocate(H_jj(sze) )
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj,S2_jj, dets_in,Nint) & !$OMP SHARED(sze,H_jj, dets_in,Nint) &
!$OMP PRIVATE(i) !$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static) !$OMP DO SCHEDULE(static)
do i=1,sze do i=1,sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint) H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
S2_jj(i) = diag_S_mat_elem(dets_in(1,1,i),Nint)
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
if (disk_based_davidson) then call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
call davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) deallocate (H_jj)
else
call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
endif
do i=1,N_st_diag
s2_out(i) = S2_jj(i)
enddo
deallocate (H_jj,S2_jj)
end end
subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit) subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -65,7 +57,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
! !
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
! !
! S2_jj : specific diagonal S^2 matrix elements ! S2_out : Output : s^2
! !
! dets_in : bitmasks corresponding to determinants ! dets_in : bitmasks corresponding to determinants
! !
@ -87,7 +79,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze) double precision, intent(in) :: H_jj(sze)
double precision, intent(inout) :: S2_jj(sze) double precision, intent(inout) :: s2_out(N_st_diag)
integer, intent(in) :: iunit integer, intent(in) :: iunit
double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag) double precision, intent(out) :: energies(N_st_diag)
@ -434,7 +426,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag do k=1,N_st_diag
energies(k) = lambda(k) energies(k) = lambda(k)
S2_jj(k) = s2(k) s2_out(k) = s2(k)
enddo enddo
write_buffer = '===== ' write_buffer = '===== '
do i=1,N_st do i=1,N_st
@ -454,442 +446,3 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
) )
end end
subroutine davidson_diag_hjj_sjj_mmap(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_st,N_st_diag,Nint,iunit)
use bitmasks
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! S2_jj : specific diagonal S^2 matrix elements
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
!
! iunit : Unit for the I/O
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze)
double precision, intent(inout) :: S2_jj(sze)
integer, intent(in) :: iunit
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
integer :: sze_8
integer :: iter
integer :: i,j,k,l,m
logical :: converged
double precision :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2
double precision, pointer :: W(:,:), U(:,:), S(:,:), overlap(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: shift, shift2, itermax
include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_jacobi to ', N_st_diag*3
stop -1
endif
PROVIDE nuclear_repulsion expected_s2
call write_time(iunit)
call wall_time(wall)
call cpu_time(cpu)
write(iunit,'(A)') ''
write(iunit,'(A)') 'Davidson Diagonalization'
write(iunit,'(A)') '------------------------'
write(iunit,'(A)') ''
call write_int(iunit,N_st,'Number of states')
call write_int(iunit,N_st_diag,'Number of states in diagonalization')
call write_int(iunit,sze,'Number of determinants')
write(iunit,'(A)') ''
write_buffer = '===== '
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ =========== ==========='
enddo
write(iunit,'(A)') trim(write_buffer)
write_buffer = ' Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy S^2 Residual '
enddo
write(iunit,'(A)') trim(write_buffer)
write_buffer = '===== '
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ =========== ==========='
enddo
write(iunit,'(A)') trim(write_buffer)
integer, external :: align_double
integer :: fd(3)
type(c_ptr) :: c_pointer(3)
sze_8 = align_double(sze)
itermax = min(davidson_sze_max, sze/N_st_diag)
call mmap( &
trim(ezfio_work_dir)//'U', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(1), .False., c_pointer(1))
call c_f_pointer(c_pointer(1), W, (/ sze_8,N_st_diag*itermax /) )
call mmap( &
trim(ezfio_work_dir)//'W', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(2), .False., c_pointer(2))
call c_f_pointer(c_pointer(2), U, (/ sze_8,N_st_diag*itermax /) )
call mmap( &
trim(ezfio_work_dir)//'S', &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(3), .False., c_pointer(3))
call c_f_pointer(c_pointer(3), S, (/ sze_8,N_st_diag*itermax /) )
allocate( &
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
overlap(N_st_diag*itermax, N_st_diag*itermax), &
residual_norm(N_st_diag), &
c(N_st_diag*itermax), &
s2(N_st_diag*itermax), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
W = 0.d0
S = 0.d0
y = 0.d0
s_ = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
! Davidson iterations
! ===================
converged = .False.
double precision :: r1, r2
do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze
call random_number(r1)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
do k=1,N_st_diag
call normalize(u_in(1,k),sze)
enddo
do while (.not.converged)
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
call ortho_qr(U,size(U,1),sze,shift2)
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------------
if (distributed_davidson) then
call H_S2_u_0_nstates_zmq(W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze_8)
else
call H_S2_u_0_nstates_openmp(W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze_8)
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
do k=1,iter
shift = N_st_diag*(k-1)
call dgemm('T','N', N_st_diag, shift2, sze, &
1.d0, U(1,shift+1), size(U,1), W, size(W,1), &
0.d0, h(shift+1,1), size(h,1))
call dgemm('T','N', N_st_diag, shift2, sze, &
1.d0, U(1,shift+1), size(U,1), S, size(S,1), &
0.d0, s_(shift+1,1), size(s_,1))
enddo
! ! Diagonalize S^2
! ! ---------------
!
! call lapack_diag(s2,y,s_,size(s_,1),shift2)
!
!
! ! Rotate H in the basis of eigenfunctions of s2
! ! ---------------------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! ! Damp interaction between different spin states
! ! ------------------------------------------------
!
! do k=1,shift2
! do l=1,shift2
! if (dabs(s2(k) - s2(l)) > 1.d0) then
! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l))))
! endif
! enddo
! enddo
!
! ! Rotate back H
! ! -------------
!
! call dgemm('N','T',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
! Diagonalize h
! -------------
call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector
! -------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, s_, size(s_,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, s_, size(s_,1))
do k=1,shift2
s2(k) = s_(k,k) + S_z2_Sz
enddo
if (s2_eig) then
do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
else
state_ok(k) = .True.
endif
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
endif
enddo
if (state_following) then
! Compute overlap with U_in
! -------------------------
integer :: order(N_st_diag)
double precision :: cmax
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,shift2
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,shift2
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
overlap(k,2) = s2(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
s2(k) = overlap(l,2)
endif
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, S, size(S,1), y, size(y,1), 0.d0, S(1,shift2+1), size(S,1))
! Compute residual vector and davidson step
! -----------------------------------------
do k=1,N_st_diag
if (state_ok(k)) then
do i=1,sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
else
! Randomize components with bad <S2>
do i=1,sze-2,2
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
U(i+1,shift2+k) = r1*dsin(r2)
enddo
do i=sze-2+1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U(i,shift2+k) = r1*dcos(r2)
enddo
endif
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = s2(k)
to_print(3,k) = residual_norm(k)
endif
enddo
write(iunit,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter, to_print(1:3,1:N_st)
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
do k=1,N_st
if (residual_norm(k) > 1.e8) then
print *, ''
stop 'Davidson failed'
endif
enddo
if (converged) then
exit
endif
enddo
! Re-contract to u_in
! -----------
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
S2_jj(k) = s2(k)
enddo
write_buffer = '===== '
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ =========== ==========='
enddo
write(iunit,'(A)') trim(write_buffer)
write(iunit,'(A)') ''
call write_time(iunit)
call munmap( &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(1), c_pointer(1))
call munmap( &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(2), c_pointer(2))
call munmap( &
(/ int(sze_8,8),int(N_st_diag*itermax,8) /), &
8, fd(3), c_pointer(3))
deallocate ( &
residual_norm, &
c, overlap, &
h, &
y, s_, s_tmp, &
lambda &
)
end

View File

@ -101,8 +101,8 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
integer(bit_kind) :: tmp_det2(N_int,2) integer(bit_kind) :: tmp_det2(N_int,2)
integer(bit_kind) :: tmp_det3(N_int,2) integer(bit_kind) :: tmp_det3(N_int,2)
integer(bit_kind), allocatable :: buffer(:,:) integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_singles, n_doubles integer :: n_doubles
integer, allocatable :: singles(:), doubles(:) integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:) integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:) integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:) integer, allocatable :: idx(:), idx0(:)
@ -136,7 +136,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
!$OMP ishift, idx0, u_t, maxab, v_0, s_0) & !$OMP ishift, idx0, u_t, maxab, v_0, s_0) &
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
!$OMP lcol, lrow, l_a, l_b, nmax, & !$OMP lcol, lrow, l_a, l_b, nmax, &
!$OMP buffer, singles, doubles, n_singles, n_doubles, & !$OMP buffer, doubles, n_doubles, &
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, v_t, & !$OMP tmp_det2, hij, sij, idx, l, kcol_prev, v_t, &
!$OMP singles_a, n_singles_a, singles_b, & !$OMP singles_a, n_singles_a, singles_b, &
!$OMP n_singles_b, s_t, k8) !$OMP n_singles_b, s_t, k8)
@ -145,7 +145,6 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
! ============================= ! =============================
allocate( buffer(N_int,maxab), & allocate( buffer(N_int,maxab), &
singles(maxab), &
singles_a(maxab), & singles_a(maxab), &
singles_b(maxab), & singles_b(maxab), &
doubles(maxab), & doubles(maxab), &
@ -157,7 +156,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
s_t = 0.d0 s_t = 0.d0
!$OMP DO SCHEDULE(static,1024) !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
@ -216,8 +215,9 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
enddo enddo
enddo enddo
!$OMP END DO NOWAIT
!$OMP DO SCHEDULE(static,1024) !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep do k_a=istart+ishift,iend,istep
@ -256,14 +256,14 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
call get_all_spin_singles_and_doubles( & call get_all_spin_singles_and_doubles( &
buffer, idx, spindet, N_int, i, & buffer, idx, spindet, N_int, i, &
singles, doubles, n_singles, n_doubles ) singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles ! Compute Hij for all alpha singles
! ---------------------------------- ! ----------------------------------
tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol)
do i=1,n_singles do i=1,n_singles_a
l_a = singles(i) l_a = singles_a(i)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij)
@ -326,14 +326,14 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
call get_all_spin_singles_and_doubles( & call get_all_spin_singles_and_doubles( &
buffer, idx, spindet, N_int, i, & buffer, idx, spindet, N_int, i, &
singles, doubles, n_singles, n_doubles ) singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles ! Compute Hij for all beta singles
! ---------------------------------- ! ----------------------------------
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow)
do i=1,n_singles do i=1,n_singles_b
l_b = singles(i) l_b = singles_b(i)
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, lcol) tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, lcol)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij)
@ -385,6 +385,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
end do end do
!$OMP END DO NOWAIT !$OMP END DO NOWAIT
deallocate(buffer, singles_a, singles_b, doubles, idx)
!$OMP CRITICAL !$OMP CRITICAL
do l=1,N_st do l=1,N_st
@ -394,6 +395,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze_8,istart,iend,ishif
enddo enddo
enddo enddo
!$OMP END CRITICAL !$OMP END CRITICAL
deallocate(v_t, s_t)
!$OMP BARRIER !$OMP BARRIER
!$OMP END PARALLEL !$OMP END PARALLEL