10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 20:33:26 +01:00
This commit is contained in:
Emmanuel Giner 2017-02-03 11:51:22 +01:00
parent eda249e631
commit de209b3fa8
14 changed files with 227 additions and 79 deletions

View File

@ -19,8 +19,8 @@ subroutine routine_3
do i = 1, N_States do i = 1, N_States
print*,'State',i print*,'State',i
write(*,'(A12,X,I3,A3,XX,F16.10)') ' PT2 ', i,' = ', second_order_pt_new(i) write(*,'(A12,X,I3,A3,XX,F16.10)') ' PT2 ', i,' = ', second_order_pt_new(i)
write(*,'(A12,X,I3,A3,XX,F16.09)') ' E ', i,' = ', CI_energy(i) write(*,'(A12,X,I3,A3,XX,F16.09)') ' E ', i,' = ', psi_ref_average_value(i)
write(*,'(A12,X,I3,A3,XX,F16.09)') ' E+PT2 ', i,' = ', CI_energy(i)+second_order_pt_new(i) write(*,'(A12,X,I3,A3,XX,F16.09)') ' E+PT2 ', i,' = ', psi_ref_average_value(i)+second_order_pt_new(i)
write(*,'(A12,X,I3,A3,XX,F16.09)') ' E dressed ', i,' = ', CI_dressed_pt2_new_energy(i) write(*,'(A12,X,I3,A3,XX,F16.09)') ' E dressed ', i,' = ', CI_dressed_pt2_new_energy(i)
write(*,'(A12,X,I3,A3,XX,F16.09)') ' S^2 ', i,' = ', CI_dressed_pt2_new_eigenvectors_s2(i) write(*,'(A12,X,I3,A3,XX,F16.09)') ' S^2 ', i,' = ', CI_dressed_pt2_new_eigenvectors_s2(i)
print*,'coef before and after' print*,'coef before and after'
@ -28,6 +28,11 @@ subroutine routine_3
print*,psi_ref_coef(j,i),CI_dressed_pt2_new_eigenvectors(j,i) print*,psi_ref_coef(j,i),CI_dressed_pt2_new_eigenvectors(j,i)
enddo enddo
enddo enddo
if(save_heff_eigenvectors)then
call save_wavefunction_general(N_det_ref,N_states_diag_heff,psi_ref,N_det_ref,CI_dressed_pt2_new_eigenvectors)
endif
! print*, 'neutral = ',psi_ref_coef(1,1),CI_dressed_pt2_new_eigenvectors(1,1)
! print*, 'ionic = ',psi_ref_coef(3,1),CI_dressed_pt2_new_eigenvectors(3,1)
end end

View File

@ -9,11 +9,19 @@ subroutine routine_2
implicit none implicit none
integer :: i,j,degree integer :: i,j,degree
double precision :: hij double precision :: hij
!provide one_creat_virt do i =1, n_core_inact_orb
do i =1, n_act_orb write(*,'(I3,x,100(F16.10,X))')list_core_inact(i),fock_core_inactive_total_spin_trace(list_core_inact(i),1)
write(*,'(I3,x,100(F16.10,X))')i,one_creat(i,:,1) enddo
! write(*,'(I3,x,100(F16.10,X))')i,one_anhil_one_creat(1,4,1,2,1) print*,''
! do i =1, n_virt_orb
write(*,'(I3,x,100(F16.10,X))')list_virt(i),fock_virt_total_spin_trace(list_virt(i),1)
enddo
stop
do i = 1, n_virt_orb
do j = 1, n_inact_orb
if(dabs(one_anhil_one_creat_inact_virt(j,i,1)) .lt. 1.d-10)cycle
write(*,'(I3,x,I3,X,100(F16.10,X))')list_virt(i),list_inact(j),one_anhil_one_creat_inact_virt(j,i,1)
enddo
enddo enddo

View File

@ -5,6 +5,13 @@ interface: ezfio,provider,ocaml
default: True default: True
[save_heff_eigenvectors]
type: logical
doc: If true, you save the eigenvectors of the effective hamiltonian
interface: ezfio,provider,ocaml
default: False
[pure_state_specific_mrpt2] [pure_state_specific_mrpt2]
type: logical type: logical
doc: If true, diagonalize the dressed matrix for each state and do a state following of the initial states doc: If true, diagonalize the dressed matrix for each state and do a state following of the initial states
@ -12,3 +19,9 @@ interface: ezfio,provider,ocaml
default: True default: True
[N_states_diag_heff]
type: States_number
doc: Number of eigenvectors obtained with the effective hamiltonian
interface: ezfio,provider,ocaml
default: 1

View File

@ -617,6 +617,9 @@ END_PROVIDER
thresh_norm = 1.d-20 thresh_norm = 1.d-20
!do i = 1, N_det_ref
! print*, psi_ref_coef(i,1)
!enddo
do vorb = 1,n_virt_orb do vorb = 1,n_virt_orb
@ -645,6 +648,10 @@ END_PROVIDER
double precision :: coef,contrib double precision :: coef,contrib
coef = psi_ref_coef(i,j) !* psi_ref_coef(i,j) coef = psi_ref_coef(i,j) !* psi_ref_coef(i,j)
psi_in_out_coef(i,j) = coef * hij psi_in_out_coef(i,j) = coef * hij
! if(vorb == 1.and. iorb == 1)then
! if(vorb == 1.and. iorb == 3)then
! print*, i,hij,coef
! endif
norm(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j) norm(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j)
enddo enddo
enddo enddo

View File

@ -22,6 +22,44 @@ BEGIN_PROVIDER [ logical, do_third_order_1h1p ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ logical, save_heff_eigenvectors ]
implicit none
BEGIN_DOC
! If true, you save the eigenvectors of the effective hamiltonian
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_mrpt_utils_save_heff_eigenvectors(has)
if (has) then
call ezfio_get_mrpt_utils_save_heff_eigenvectors(save_heff_eigenvectors)
else
print *, 'mrpt_utils/save_heff_eigenvectors not found in EZFIO file'
stop 1
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, n_states_diag_heff ]
implicit none
BEGIN_DOC
! Number of eigenvectors obtained with the effective hamiltonian
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_mrpt_utils_n_states_diag_heff(has)
if (has) then
call ezfio_get_mrpt_utils_n_states_diag_heff(n_states_diag_heff)
else
print *, 'mrpt_utils/n_states_diag_heff not found in EZFIO file'
stop 1
endif
END_PROVIDER
BEGIN_PROVIDER [ logical, pure_state_specific_mrpt2 ] BEGIN_PROVIDER [ logical, pure_state_specific_mrpt2 ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -117,19 +117,15 @@ subroutine mrpt_dress(delta_ij_, Ndet,i_generator,n_selected,det_buffer,Nint,ip
do i_state = 1, N_states do i_state = 1, N_states
delta_e(i_state) = 1.d+20 delta_e(i_state) = 1.d+20
enddo enddo
!else if(degree_scalar== 1)then
else else
call get_delta_e_dyall(psi_ref(1,1,index_i),tq(1,1,i_alpha),coef_array,hialpha,delta_e) call get_delta_e_dyall(psi_ref(1,1,index_i),tq(1,1,i_alpha),coef_array,hialpha,delta_e)
!if(dabs(delta_e(2)) .le. dabs(0.01d0))then
!print*, delta_e(2) ! !!!!!!!!!!!!! SHIFTED BK
!call debug_det(psi_ref(1,1,index_i),N_int) ! double precision :: hjj
!call debug_det(tq(1,1,i_alpha),N_int) ! call i_h_j(tq(1,1,i_alpha),tq(1,1,i_alpha),Nint,hjj)
!endif ! delta_e(1) = CI_electronic_energy(1) - hjj
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!else
!do i_state = 1, N_states
! delta_e(i_state) = 1.d+20
!enddo
endif endif
hij_array(index_i) = hialpha hij_array(index_i) = hialpha
do i_state = 1,N_states do i_state = 1,N_states

View File

@ -48,6 +48,8 @@
do i = 1, N_det_ref do i = 1, N_det_ref
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state) write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref do j = 1, N_det_ref
! print*, accu
! print*,delta_ij_tmp(j,i,i_state) , psi_ref_coef(i,i_state) , psi_ref_coef(j,i_state)
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state) accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state) delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo enddo
@ -65,11 +67,41 @@
write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state) write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
do j = 1, N_det_ref do j = 1, N_det_ref
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state) accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state) delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo enddo
enddo enddo
double precision :: accu_diag,accu_non_diag
accu_diag = 0.d0
accu_non_diag = 0.d0
do i = 1, N_det_ref
accu_diag += delta_ij_tmp(i,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(i,i_state)
do j = 1, N_det_ref
if(i == j)cycle
accu_non_diag += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state) second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo enddo
!double precision :: neutral, ionic
!neutral = 0.d0
!do i = 1, 2
! do j = 1, N_det_ref
! neutral += psi_ref_coef(j,1) * delta_ij_tmp(j,i,1) * psi_ref_coef(i,1)
! enddo
!enddo
!do i = 3, 4
! do j = 1, N_det_ref
! ionic += psi_ref_coef(j,1) * delta_ij_tmp(j,i,1) * psi_ref_coef(i,1)
! enddo
!enddo
!neutral = delta_ij_tmp(1,1,1) * psi_ref_coef(1,1)**2 + delta_ij_tmp(2,2,1) * psi_ref_coef(2,1)**2 &
! + delta_ij_tmp(1,2,1) * psi_ref_coef(1,1)* psi_ref_coef(2,1) + delta_ij_tmp(2,1,1) * psi_ref_coef(1,1)* psi_ref_coef(2,1)
!ionic = delta_ij_tmp(3,3,1) * psi_ref_coef(3,1)**2 + delta_ij_tmp(4,4,1) * psi_ref_coef(4,1)**2 &
! + delta_ij_tmp(3,4,1) * psi_ref_coef(3,1)* psi_ref_coef(4,1) + delta_ij_tmp(4,3,1) * psi_ref_coef(3,1)* psi_ref_coef(4,1)
!neutral = delta_ij_tmp(1,1,1)
!ionic = delta_ij_tmp(3,3,1)
!print*, 'neutral = ',neutral
!print*, 'ionic = ',ionic
print*, '1h1p = ',accu print*, '1h1p = ',accu
! 1h1p third order ! 1h1p third order
@ -167,6 +199,22 @@
second_order_pt_new_2h2p(i_state) = contrib_2h2p(i_state) second_order_pt_new_2h2p(i_state) = contrib_2h2p(i_state)
enddo enddo
print*, '2h2p = ',contrib_2h2p(:) print*, '2h2p = ',contrib_2h2p(:)
!! 2h2p old fashion
!delta_ij_tmp = 0.d0
!call H_apply_mrpt_2h2p(delta_ij_tmp,N_det_ref)
!accu = 0.d0
!do i_state = 1, N_states
!do i = 1, N_det_ref
! write(*,'(1000(F16.10,x))')delta_ij_tmp(i,:,i_state)
! do j = 1, N_det_ref
! accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_ref_coef(i,i_state) * psi_ref_coef(j,i_state)
! delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
! enddo
!enddo
!second_order_pt_new_2h2p(i_state) = accu(i_state)
!enddo
!print*, '2h2p = ',accu
! total ! total
@ -234,6 +282,8 @@ END_PROVIDER
implicit none implicit none
integer :: i,j,i_state integer :: i,j,i_state
double precision :: hij double precision :: hij
double precision :: accu(N_states)
accu = 0.d0
do i_state = 1, N_states do i_state = 1, N_states
do i = 1,N_det_ref do i = 1,N_det_ref
do j = 1,N_det_ref do j = 1,N_det_ref
@ -241,14 +291,16 @@ END_PROVIDER
Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) = hij & Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) = hij &
+ 0.5d0 * ( delta_ij(j,i,i_state) + delta_ij(i,j,i_state) ) + 0.5d0 * ( delta_ij(j,i,i_state) + delta_ij(i,j,i_state) )
! Hmatrix_dressed_pt2_new_symmetrized(i,j,i_state) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) ! Hmatrix_dressed_pt2_new_symmetrized(i,j,i_state) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
accu(i_State) += psi_ref_coef(i,i_State) * Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) * psi_ref_coef(j,i_State)
enddo enddo
enddo enddo
enddo enddo
print*, 'accu = ',accu + nuclear_repulsion
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states_diag_heff) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det_ref,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det_ref,N_states_diag_heff) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states_diag_heff) ]
BEGIN_DOC BEGIN_DOC
! Eigenvectors/values of the CI matrix ! Eigenvectors/values of the CI matrix
END_DOC END_DOC
@ -269,14 +321,14 @@ END_PROVIDER
double precision :: overlap(N_det_ref) double precision :: overlap(N_det_ref)
double precision, allocatable :: psi_tmp(:) double precision, allocatable :: psi_tmp(:)
! Guess values for the "N_states_diag" states of the CI_dressed_pt2_new_eigenvectors ! Guess values for the "N_states_diag_heff" states of the CI_dressed_pt2_new_eigenvectors
do j=1,min(N_states,N_det_ref) do j=1,min(N_states,N_det_ref)
do i=1,N_det_ref do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = psi_ref_coef(i,j) CI_dressed_pt2_new_eigenvectors(i,j) = psi_ref_coef(i,j)
enddo enddo
enddo enddo
do j=min(N_states,N_det_ref)+1,N_states_diag do j=min(N_states,N_det_ref)+1,N_states_diag_heff
do i=1,N_det_ref do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = 0.d0 CI_dressed_pt2_new_eigenvectors(i,j) = 0.d0
enddo enddo
@ -408,13 +460,13 @@ END_PROVIDER
print*,'' print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!' print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det_ref,'determinants selected' print*,' Within the ',N_det_ref,'determinants selected'
print*,' and the ',N_states_diag,'states requested' print*,' and the ',N_states_diag_heff,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_dressed_pt2_new_eigenvectors' print*,' as the CI_dressed_pt2_new_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,'' print*,''
do j=1,min(N_states_diag,N_det_ref) do j=1,min(N_states_diag_heff,N_det_ref)
do i=1,N_det_ref do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j) CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo enddo
@ -426,8 +478,8 @@ END_PROVIDER
deallocate(s2_eigvalues) deallocate(s2_eigvalues)
else else
call u_0_S2_u_0(CI_dressed_pt2_new_eigenvectors_s2,eigenvectors,N_det_ref,psi_det,N_int,& call u_0_S2_u_0(CI_dressed_pt2_new_eigenvectors_s2,eigenvectors,N_det_ref,psi_det,N_int,&
min(N_det_ref,N_states_diag),size(eigenvectors,1)) min(N_det_ref,N_states_diag_heff),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy ! Select the "N_states_diag_heff" states of lowest energy
do j=1,min(N_det_ref,N_states) do j=1,min(N_det_ref,N_states)
do i=1,N_det_ref do i=1,N_det_ref
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j) CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
@ -444,7 +496,7 @@ END_PROVIDER
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states_diag_heff) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix ! N_states lowest eigenvalues of the CI matrix
@ -453,7 +505,7 @@ BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states_diag) ]
integer :: j integer :: j
character*(8) :: st character*(8) :: st
call write_time(output_determinants) call write_time(output_determinants)
do j=1,N_states_diag do j=1,N_states_diag_heff
CI_dressed_pt2_new_energy(j) = CI_electronic_dressed_pt2_new_energy(j) + nuclear_repulsion CI_dressed_pt2_new_energy(j) = CI_electronic_dressed_pt2_new_energy(j) + nuclear_repulsion
write(st,'(I4)') j write(st,'(I4)') j
call write_double(output_determinants,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st))

View File

@ -499,9 +499,9 @@ subroutine give_1h1p_sec_order_singles_contrib(matrix_1h1p)
do r = 1, n_virt_orb ! First virtual do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r) rorb = list_virt(r)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r) do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do state_target = 1, N_states !do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2) ! coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2)
enddo !enddo
do inint = 1, N_int do inint = 1, N_int
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin) det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
@ -509,34 +509,34 @@ subroutine give_1h1p_sec_order_singles_contrib(matrix_1h1p)
enddo enddo
do jdet = 1, idx(0) do jdet = 1, idx(0)
! !
if(idx(jdet).ne.idet)then
call get_mono_excitation(psi_ref(1,1,idet),psi_ref(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
aorb = (exc(1,2,1)) !!! a^{\dagger}_a
borb = (exc(1,1,1)) !!! a_{b}
jspin = 1
else
aorb = (exc(1,2,2)) !!! a^{\dagger}_a
borb = (exc(1,1,2)) !!! a_{b}
jspin = 2
endif
call get_excitation_degree(psi_ref(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
if(degree_scalar .ne. 2)then
print*, 'pb !!!'
print*, degree_scalar
call debug_det(psi_ref(1,1,idx(jdet)),N_int)
call debug_det(det_tmp,N_int)
stop
endif
call get_double_excitation(psi_ref(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
double precision :: hij_test double precision :: hij_test
hij_test = 0.d0 if(idx(jdet).ne.idet)then
call i_H_j(psi_ref(1,1,idx(jdet)),det_tmp,N_int,hij_test) ! call get_mono_excitation(psi_ref(1,1,idet),psi_ref(1,1,idx(jdet)),exc,phase,N_int)
do state_target = 1, N_states ! if (exc(0,1,1) == 1) then
matrix_1h1p(idx(jdet),idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2) ! ! Mono alpha
enddo ! aorb = (exc(1,2,1)) !!! a^{\dagger}_a
! borb = (exc(1,1,1)) !!! a_{b}
! jspin = 1
! else
! aorb = (exc(1,2,2)) !!! a^{\dagger}_a
! borb = (exc(1,1,2)) !!! a_{b}
! jspin = 2
! endif
!
! call get_excitation_degree(psi_ref(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
! if(degree_scalar .ne. 2)then
! print*, 'pb !!!'
! print*, degree_scalar
! call debug_det(psi_ref(1,1,idx(jdet)),N_int)
! call debug_det(det_tmp,N_int)
! stop
! endif
! call get_double_excitation(psi_ref(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
! hij_test = 0.d0
! call i_H_j(psi_ref(1,1,idx(jdet)),det_tmp,N_int,hij_test)
! do state_target = 1, N_states
! matrix_1h1p(idx(jdet),idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2)
! enddo
else else
hij_test = 0.d0 hij_test = 0.d0
call i_H_j(psi_ref(1,1,idet),det_tmp,N_int,hij_test) call i_H_j(psi_ref(1,1,idet),det_tmp,N_int,hij_test)

View File

@ -468,7 +468,7 @@ subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
endif endif
else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then
do i = 1, N_states do i = 1, N_states
delta_e_act(i_state) = -10000000.d0 delta_e_act(i_state) = -1.d12
enddo enddo
endif endif

View File

@ -67,3 +67,14 @@ END_PROVIDER
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, electronic_psi_ref_average_value, (N_states)]
&BEGIN_PROVIDER [double precision, psi_ref_average_value, (N_states)]
implicit none
integer :: i,j
call u_0_H_u_0(electronic_psi_ref_average_value,psi_ref_coef,N_det_ref,psi_ref,N_int,N_states,psi_det_size)
do i = 1, N_states
psi_ref_average_value(i) = electronic_psi_ref_average_value(i) + nuclear_repulsion
enddo
END_PROVIDER

View File

@ -18,7 +18,7 @@ C
zprt=.true. zprt=.true.
niter=1000000 niter=1000000
conv=1.d-8 conv=1.d-10
C niter=1000000 C niter=1000000
C conv=1.d-6 C conv=1.d-6

View File

@ -101,10 +101,27 @@
cmoref = 0.d0 cmoref = 0.d0
irot = 0 irot = 0
irot(1,1) = 11 irot(1,1) = 5
irot(2,1) = 12 irot(2,1) = 6
cmoref(15,1,1) = 1.d0 ! cmoref(6,1,1) = 1d0
cmoref(14,2,1) = 1.d0 ! cmoref(26,2,1) = 1d0
! !!! H2O
! irot(1,1) = 4
! irot(2,1) = 5
! irot(3,1) = 6
! irot(4,1) = 7
! ! O pz
! cmoref(5,1,1) = 1.55362d0
! cmoref(6,1,1) = 1.07578d0
! cmoref(5,2,1) = 1.55362d0
! cmoref(6,2,1) = -1.07578d0
! ! O px - pz
! ! H1
! cmoref(16,3,1) = 1.d0
! ! H1
! cmoref(21,4,1) = 1.d0
! ESATRIENE with 3 bonding and anti bonding orbitals ! ESATRIENE with 3 bonding and anti bonding orbitals
! First bonding orbital for esa ! First bonding orbital for esa
@ -150,19 +167,19 @@
! ESATRIENE with 1 central bonding and anti bonding orbitals ! ESATRIENE with 1 central bonding and anti bonding orbitals
! AND 4 radical orbitals ! AND 4 radical orbitals
! First radical orbital ! First radical orbital
cmoref(7,1,1) = 1.d0 ! ! cmoref(7,1,1) = 1.d0 !
! Second radical orbital ! Second radical orbital
cmoref(26,2,1) = 1.d0 ! ! cmoref(26,2,1) = 1.d0 !
! First bonding orbital ! First bonding orbital
cmoref(45,3,1) = 1.d0 ! ! cmoref(45,3,1) = 1.d0 !
cmoref(64,3,1) = 1.d0 ! ! cmoref(64,3,1) = 1.d0 !
! Third radical orbital for esa ! Third radical orbital for esa
cmoref(83,4,1) = 1.d0 ! ! cmoref(83,4,1) = 1.d0 !
! Fourth radical orbital for esa ! Fourth radical orbital for esa
cmoref(102,5,1) = 1.d0 ! ! cmoref(102,5,1) = 1.d0 !
! First anti bonding orbital ! First anti bonding orbital
cmoref(45,6,1) = 1.d0 ! ! cmoref(45,6,1) = 1.d0 !
cmoref(64,6,1) =-1.d0 ! ! cmoref(64,6,1) =-1.d0 !
do i = 1, nrot(1) do i = 1, nrot(1)

View File

@ -19,16 +19,17 @@ program loc_int
do j = i+1, n_act_orb do j = i+1, n_act_orb
jorb = list_act(j) jorb = list_act(j)
iorder(jorb) = jorb iorder(jorb) = jorb
exchange_int(jorb) = -mo_bielec_integral_jj_exchange(iorb,jorb) if(list_core_inact_check(jorb) == .False.)then
exchange_int(jorb) = 0.d0
else
exchange_int(jorb) = -mo_bielec_integral_jj_exchange(iorb,jorb)
endif
enddo enddo
n_rot += 1 n_rot += 1
call dsort(exchange_int,iorder,mo_tot_num) call dsort(exchange_int,iorder,mo_tot_num)
indices(n_rot,1) = iorb indices(n_rot,1) = iorb
indices(n_rot,2) = iorder(1) indices(n_rot,2) = iorder(1)
list_core_inact_check(iorder(1)) = .False. list_core_inact_check(iorder(1)) = .False.
print*,indices(n_rot,1),indices(n_rot,2)
print*,''
print*,''
enddo enddo
print*,'****************************' print*,'****************************'
print*,'-+++++++++++++++++++++++++' print*,'-+++++++++++++++++++++++++'

View File

@ -185,7 +185,7 @@ include 'Utils/constants.include.F'
enddo enddo
const_factor = dist*rho const_factor = dist*rho
const = p * dist_integral const = p * dist_integral
if(const_factor > 80.d0)then if(const_factor > 1000.d0)then
NAI_pol_mult = 0.d0 NAI_pol_mult = 0.d0
return return
endif endif