10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-25 22:52:15 +02:00

init - not working

This commit is contained in:
Yann Garniron 2016-09-01 14:43:13 +02:00
parent 8fdea430a9
commit db3c8bb87b
7 changed files with 499 additions and 524 deletions

View File

@ -53,14 +53,6 @@ program fci_zmq
endif
call diagonalize_CI
call save_wavefunction
! chk = 0_8
! do i=1, N_det
! do k=1, N_int
! chk = xor(psi_det(k,1,i), chk)
! chk = xor(psi_det(k,2,i), chk)
! end do
! end do
! print *, "CHK ", chk
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
@ -163,6 +155,60 @@ subroutine selection_dressing_slave_inproc(i)
implicit none
integer, intent(in) :: i
call selection_slaved(1,i,ci_electronic_energy)
call run_selection_slave(1,i,ci_electronic_energy)
end
subroutine selection_collector(b, pt2)
use f77_zmq
use selection_types
use bitmasks
implicit none
type(selection_buffer), intent(inout) :: b
double precision, intent(out) :: pt2(N_states)
double precision :: pt2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer :: msg_size, rc, more
integer :: acc, i, j, robin, N, ntask
double precision, allocatable :: val(:)
integer(bit_kind), allocatable :: det(:,:,:)
integer, allocatable :: task_id(:)
integer :: done
real :: time, time0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
done = 0
more = 1
pt2(:) = 0d0
call CPU_TIME(time0)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
pt2 += pt2_mwen
do i=1, N
call add_to_selection_buffer(b, det(1,1,i), val(i))
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
end do
done += ntask
call CPU_TIME(time)
! print *, "DONE" , done, time - time0
end do
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
call sort_selection_buffer(b)
end subroutine

View File

@ -0,0 +1,154 @@
subroutine run_selection_slave(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision :: pt2(N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
if(worker_id == -1) then
print *, "WORKER -1"
!call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
return
end if
buf%N = 0
ctask = 1
pt2 = 0d0
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task)
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, i_generator_start, i_generator_max, step, N
read (task,*) i_generator_start, i_generator_max, step, N
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*3, buf2)
else
if(N /= buf%N) stop "N changed... wtf man??"
end if
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
do i_generator=i_generator_start,i_generator_max,step
call select_connected(i_generator,energy,pt2,buf)
enddo
endif
if(done .or. ctask == size(task_id)) then
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
do i=1, ctask
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i))
end do
if(ctask > 0) then
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
do i=1,buf%cur
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
enddo
call sort_selection_buffer(buf2)
buf%mini = buf2%mini
pt2 = 0d0
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*)
integer :: rc
call sort_selection_buffer(b)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
if(rc /= 8*N_states) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "push"
! Activate is zmq_socket_push is a REQ
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states)
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*)
integer :: rc, rn, i
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
if(rc /= 8*N_states) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "pull"
! Activate is zmq_socket_pull is a REP
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
end subroutine

View File

@ -11,162 +11,8 @@ BEGIN_PROVIDER [ double precision, integral8, (mo_tot_num, mo_tot_num, mo_tot_n
END_PROVIDER
subroutine selection_slaved(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision :: pt2(N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
if(worker_id == -1) then
print *, "WORKER -1"
!call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
return
end if
buf%N = 0
ctask = 1
pt2 = 0d0
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task)
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, i_generator_start, i_generator_max, step, N
read (task,*) i_generator_start, i_generator_max, step, N
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*3, buf2)
else
if(N /= buf%N) stop "N changed... wtf man??"
end if
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
do i_generator=i_generator_start,i_generator_max,step
call select_connected(i_generator,energy,pt2,buf)
enddo
endif
if(done .or. ctask == size(task_id)) then
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
do i=1, ctask
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i))
end do
if(ctask > 0) then
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
do i=1,buf%cur
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
enddo
call sort_selection_buffer(buf2)
buf%mini = buf2%mini
pt2 = 0d0
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*)
integer :: rc
call sort_selection_buffer(b)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
if(rc /= 8*N_states) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "push"
! Activate is zmq_socket_push is a REQ
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states)
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*)
integer :: rc, rn, i
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
if(rc /= 8*N_states) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "pull"
! Activate is zmq_socket_pull is a REP
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
end subroutine
subroutine select_connected(i_generator,E0,pt2,b)
use f77_zmq
!use f77_zmq
use bitmasks
use selection_types
implicit none
@ -199,133 +45,9 @@ subroutine select_connected(i_generator,E0,pt2,b)
end
subroutine create_selection_buffer(N, siz, res)
use selection_types
implicit none
integer, intent(in) :: N, siz
type(selection_buffer), intent(out) :: res
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val = 0d0
res%det = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(dabs(val) >= b%mini) then
b%cur += 1
b%det(:,:,b%cur) = det(:,:)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
double precision, allocatable :: vals(:), absval(:)
integer, allocatable :: iorder(:)
integer(bit_kind), allocatable :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
nmwen = min(b%N, b%cur)
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
absval = -dabs(b%val(:b%cur))
do i=1,b%cur
iorder(i) = i
end do
call dsort(absval, iorder, b%cur)
do i=1, nmwen
detmp(:,:,i) = b%det(:,:,iorder(i))
vals(i) = b%val(iorder(i))
end do
b%det(:,:,:nmwen) = detmp(:,:,:)
b%det(:,:,nmwen+1:) = 0_bit_kind
b%val(:nmwen) = vals(:)
b%val(nmwen+1:) = 0d0
b%mini = max(b%mini,dabs(b%val(b%N)))
b%cur = nmwen
end subroutine
subroutine selection_collector(b, pt2)
use f77_zmq
use selection_types
use bitmasks
implicit none
type(selection_buffer), intent(inout) :: b
double precision, intent(out) :: pt2(N_states)
double precision :: pt2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer :: msg_size, rc, more
integer :: acc, i, j, robin, N, ntask
double precision, allocatable :: val(:)
integer(bit_kind), allocatable :: det(:,:,:)
integer, allocatable :: task_id(:)
integer :: done
real :: time, time0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
done = 0
more = 1
pt2(:) = 0d0
call CPU_TIME(time0)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
pt2 += pt2_mwen
do i=1, N
call add_to_selection_buffer(b, det(1,1,i), val(i))
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
end do
done += ntask
call CPU_TIME(time)
! print *, "DONE" , done, time - time0
end do
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
call sort_selection_buffer(b)
end subroutine
subroutine select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf)
use f77_zmq
!use f77_zmq
use bitmasks
use selection_types
implicit none
@ -477,7 +199,7 @@ end
subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf)
use f77_zmq
!use f77_zmq
use bitmasks
use selection_types
implicit none
@ -647,13 +369,13 @@ subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,p
call check_past_s(exc_det, microlist(1,1,ptr_microlist(sporb)), N_microlist(sporb) - N_futur_microlist(sporb), nok, N_int)
if(nok) cycle
!DET DRIVEN
! if(N_futur_microlist(0) > 0) then
! call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(0)),psi_coef_microlist(ptr_futur_microlist(0), 1),N_int,N_futur_microlist(0),psi_selectors_size*4,N_states,i_H_psi_value)
! end if
if(N_futur_microlist(0) > 0) then
call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(0)),psi_coef_microlist(ptr_futur_microlist(0), 1),N_int,N_futur_microlist(0),psi_selectors_size*4,N_states,i_H_psi_value)
end if
!INTEGRAL DRIVEN
do j=1, N_states
i_H_psi_value(j) = d0s(mod(p1-1, mo_tot_num)+1, mod(p2-1, mo_tot_num)+1, j)
end do
! do j=1, N_states
! i_H_psi_value(j) = d0s(mod(p1-1, mo_tot_num)+1, mod(p2-1, mo_tot_num)+1, j)
! end do
if(N_futur_microlist(sporb) > 0) then
@ -681,7 +403,7 @@ subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,p
i_H_psi_value = i_H_psi_value + i_H_psi_value2
end if
if(.false.) then ! DET DRIVEN
if(.true.) then ! DET DRIVEN
integer :: c1, c2
double precision :: hij
c1 = ptr_futur_tmicrolist(p1)
@ -1071,7 +793,7 @@ subroutine create_microlist_double(minilist, i_cur, N_minilist, key_mask, microl
! end do
! end do
! end do
else if(.true. .and. n_element(1, i) + n_element(2, i) == 3) then ! INTEGRAL DRIVEN
else if(.false. .and. n_element(1, i) + n_element(2, i) == 3) then ! INTEGRAL DRIVEN
! -459.6399263191298
pweni = 0
do s = 1, 2
@ -1166,14 +888,13 @@ subroutine get_d1(gen, banned, banned_pair, mat, mask, pwen, coefs)
exc(1, 1, 2) = p(a1)
exc(1, 2, sfix) = pfix
tmp_array = (/0, 0 ,s(i), p(i) /)
call apply_particle(mask, tmp_array, deth, ok, N_int)
call apply_particle(mask, 0, 0 ,s(i), p(i), deth, ok, N_int)
do j=1,mo_tot_num
mwen = j + (sm-1)*mo_tot_num
if(lbanned(mwen)) cycle
tmp_array = (/0,0,sm,j/)
call apply_particle(deth, tmp_array, det, ok, N_int)
call apply_particle(deth, 0, 0 ,s(i), p(i), det, ok, N_int)
if(.not. ok) cycle
mono = mwen == pwen(a1) .or. mwen == pwen(a2)
@ -1216,14 +937,13 @@ subroutine get_d1(gen, banned, banned_pair, mat, mask, pwen, coefs)
exc(1, 1, sp) = min(h1, h2)
exc(2, 1, sp) = max(h1, h2)
tmp_array = (/0, 0 ,s(i), p(i) /)
call apply_particle(mask, tmp_array, deth, ok, N_int)
call apply_particle(mask, 0, 0 ,s(i), p(i) , deth, ok, N_int)
do j=1,mo_tot_num
if(j == pfix) inv = -inv
mwen = j + (sm-1)*mo_tot_num
if(lbanned(mwen)) cycle
call apply_particle(deth, tmp_array, det, ok, N_int)
call apply_particle(deth, 0, 0 ,s(i), p(i) , det, ok, N_int)
if(.not. ok) cycle
mono = mwen == pwen(a1) .or. mwen == pwen(a2)
@ -1293,8 +1013,8 @@ subroutine get_d0(gen, banned, banned_pair, mat, mask, s1, s2, h1, h2, coefs)
if(banned(p1 + ns1)) cycle
if(p1 == p2) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, tmp_array, det2, ok, N_int)
!tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, s1,p1,s2,p2, det2, ok, N_int)
if(.not. ok) cycle
mono = (hmi == p1 .or. hma == p2 .or. hmi == p2 .or. hma == p1)
if(mono) then
@ -1325,8 +1045,8 @@ subroutine get_d0(gen, banned, banned_pair, mat, mask, s1, s2, h1, h2, coefs)
do p1=1, mo_tot_num
if(banned(p1 + ns1)) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, tmp_array, det2, ok, N_int)
!tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, s1,p1,s2,p2, det2, ok, N_int)
if(.not. ok) cycle
mono = (h1 == p1 .or. h2 == p2)
if(mono) then
@ -1349,174 +1069,6 @@ subroutine get_d0(gen, banned, banned_pair, mat, mask, s1, s2, h1, h2, coefs)
end subroutine
subroutine apply_particle(det, exc, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(4)
integer :: s1, s2, p1, p2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
s1 = exc(1)
p1 = exc(2)
s2 = exc(3)
p2 = exc(4)
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
ok = .true.
end subroutine
subroutine apply_hole(det, exc, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(4)
integer :: s1, s2, p1, p2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
s1 = exc(1)
p1 = exc(2)
s2 = exc(3)
p2 = exc(4)
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ok = .true.
end subroutine
subroutine get_double_excitation_phase(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the two excitation operators between two doubly excited determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(in) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
ASSERT (Nint > 0)
nperm = 0
do ispin = 1,2
select case (exc(0,1,ispin))
case(0)
cycle
case(1)
low = min(exc(1,1,ispin), exc(1,2,ispin))
high = max(exc(1,1,ispin), exc(1,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do i=j+1,k-1
nperm = nperm + popcnt(det1(i,ispin))
end do
endif
case (2)
do i=1,2
low = min(exc(i,1,ispin), exc(i,2,ispin))
high = max(exc(i,1,ispin), exc(i,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do l=j+1,k-1
nperm = nperm + popcnt(det1(l,ispin))
end do
endif
enddo
a = min(exc(1,1,ispin), exc(1,2,ispin))
b = max(exc(1,1,ispin), exc(1,2,ispin))
c = min(exc(2,1,ispin), exc(2,2,ispin))
d = max(exc(2,1,ispin), exc(2,2,ispin))
if (c>a .and. c<b .and. d>b) then
nperm = nperm + 1
endif
exit
end select
enddo
phase = phase_dble(iand(nperm,1))
end
subroutine check_past(det, list, idx, N, cur, ok, Nint)
implicit none
use bitmasks
@ -1562,4 +1114,3 @@ subroutine check_past_s(det, list, N, ok, Nint)
end if
end do
end subroutine

View File

@ -0,0 +1,70 @@
subroutine create_selection_buffer(N, siz, res)
use selection_types
implicit none
integer, intent(in) :: N, siz
type(selection_buffer), intent(out) :: res
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val = 0d0
res%det = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(dabs(val) >= b%mini) then
b%cur += 1
b%det(:,:,b%cur) = det(:,:)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
double precision, allocatable :: vals(:), absval(:)
integer, allocatable :: iorder(:)
integer(bit_kind), allocatable :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
nmwen = min(b%N, b%cur)
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
absval = -dabs(b%val(:b%cur))
do i=1,b%cur
iorder(i) = i
end do
call dsort(absval, iorder, b%cur)
do i=1, nmwen
detmp(:,:,i) = b%det(:,:,iorder(i))
vals(i) = b%val(iorder(i))
end do
b%det(:,:,:nmwen) = detmp(:,:,:)
b%det(:,:,nmwen+1:) = 0_bit_kind
b%val(:nmwen) = vals(:)
b%val(nmwen+1:) = 0d0
b%mini = max(b%mini,dabs(b%val(b%N)))
b%cur = nmwen
end subroutine

View File

@ -9,7 +9,6 @@ program selection_slave
call provide_everything
call switch_qp_run_to_master
call run_wf
end
subroutine provide_everything
@ -80,6 +79,6 @@ subroutine selection_dressing_slave_tcp(i,energy)
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: i
call selection_slaved(0,i,energy)
call run_selection_slave(0,i,energy)
end

View File

@ -723,3 +723,111 @@ integer function detCmp(a,b,Nint)
end function
subroutine apply_excitation(det, exc, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(0:2,2,2)
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: h1,p1,h2,p2,s1,s2,degree
integer :: ii, pos
ok = .false.
degree = exc(0,1,1) + exc(0,1,2)
if(.not. (degree > 0 .and. degree <= 2)) then
print *, degree
print *, "apply ex"
STOP
endif
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
res = det
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1) ! mod 64
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
if(degree == 2) then
ii = (h2-1)/bit_kind_size + 1
pos = mod(h2-1, 64)!iand(h2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
endif
ok = .true.
end subroutine
subroutine apply_particle(det, s1, p1, s2, p2, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: s1, p1, s2, p2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
ok = .true.
end subroutine
subroutine apply_hole(det, s1, h1, s2, h2, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: s1, h1, s2, h2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
res = det
if(h1 /= 0) then
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
end if
ii = (h2-1)/bit_kind_size + 1
pos = mod(h2-1, 64)!iand(h2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ok = .true.
end subroutine

View File

@ -1781,53 +1781,100 @@ subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint)
end
subroutine apply_excitation(det, exc, res, ok, Nint)
subroutine get_double_excitation_phase(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(0:2,2,2)
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: h1,p1,h2,p2,s1,s2,degree
integer :: ii, pos
ok = .false.
degree = exc(0,1,1) + exc(0,1,2)
if(.not. (degree > 0 .and. degree <= 2)) then
print *, degree
print *, "apply ex"
STOP
endif
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
res = det
ii = (h1-1)/bit_kind_size + 1
pos = mod(h1-1, 64)!iand(h1-1,bit_kind_size-1) ! mod 64
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
if(degree == 2) then
ii = (h2-1)/bit_kind_size + 1
pos = mod(h2-1, 64)!iand(h2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
endif
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(in) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
ASSERT (Nint > 0)
nperm = 0
do ispin = 1,2
select case (exc(0,1,ispin))
case(0)
cycle
case(1)
low = min(exc(1,1,ispin), exc(1,2,ispin))
high = max(exc(1,1,ispin), exc(1,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do i=j+1,k-1
nperm = nperm + popcnt(det1(i,ispin))
end do
endif
case (2)
do i=1,2
low = min(exc(i,1,ispin), exc(i,2,ispin))
high = max(exc(i,1,ispin), exc(i,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do l=j+1,k-1
nperm = nperm + popcnt(det1(l,ispin))
end do
endif
enddo
a = min(exc(1,1,ispin), exc(1,2,ispin))
b = max(exc(1,1,ispin), exc(1,2,ispin))
c = min(exc(2,1,ispin), exc(2,2,ispin))
d = max(exc(2,1,ispin), exc(2,2,ispin))
if (c>a .and. c<b .and. d>b) then
nperm = nperm + 1
endif
exit
end select
enddo
phase = phase_dble(iand(nperm,1))
end
ok = .true.
end subroutine