10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-10-20 06:48:20 +02:00

Merge github.com:scemama/quantum_package into thesis

Conflicts:
	plugins/Full_CI_ZMQ/pt2_stoch_routines.irp.f
	plugins/Full_CI_ZMQ/run_pt2_slave.irp.f
	plugins/Full_CI_ZMQ/run_selection_slave.irp.f
	plugins/Full_CI_ZMQ/selection.irp.f
	plugins/Generators_full/generators.irp.f
	plugins/dress_zmq/dress_stoch_routines.irp.f
	plugins/dress_zmq/dressing.irp.f
	plugins/dress_zmq/run_dress_slave.irp.f
	plugins/shiftedbk/shifted_bk_routines.irp.f
	src/Determinants/slater_rules.irp.f
This commit is contained in:
Yann Garniron 2018-09-26 18:12:49 +02:00
commit cfc37ea57c
58 changed files with 2682 additions and 1461 deletions

View File

@ -63,9 +63,6 @@ END_PROVIDER
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,& call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,& size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1) N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1)
! call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
! N_states_diag,size(CI_eigenvectors_dressed,1))
else if (diag_algorithm == "Lapack") then else if (diag_algorithm == "Lapack") then
@ -159,6 +156,7 @@ subroutine diagonalize_CI_dressed
! eigenstates of the CI matrix ! eigenstates of the CI matrix
END_DOC END_DOC
integer :: i,j integer :: i,j
PROVIDE delta_ij
do j=1,N_states do j=1,N_states
do i=1,N_det do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j) psi_coef(i,j) = CI_eigenvectors_dressed(i,j)

View File

@ -10,20 +10,19 @@ program fci_zmq
double precision :: hf_energy_ref double precision :: hf_energy_ref
logical :: has logical :: has
double precision :: relative_error, absolute_error double precision :: relative_error
integer :: N_states_p integer :: N_states_p
character*(512) :: fmt character*(512) :: fmt
relative_error=PT2_relative_error relative_error=PT2_relative_error
absolute_error=PT2_absolute_error
pt2 = -huge(1.e0) pt2 = -huge(1.e0)
threshold_davidson_in = threshold_davidson threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0 threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson SOFT_TOUCH threshold_davidson
! call diagonalize_CI call diagonalize_CI
! call save_wavefunction call save_wavefunction
call ezfio_has_hartree_fock_energy(has) call ezfio_has_hartree_fock_energy(has)
if (has) then if (has) then
@ -72,7 +71,7 @@ program fci_zmq
threshold_selectors = 1.d0 threshold_selectors = 1.d0
threshold_generators = 1.d0 threshold_generators = 1.d0
SOFT_TOUCH threshold_selectors threshold_generators SOFT_TOUCH threshold_selectors threshold_generators
call ZMQ_pt2(CI_energy, pt2,relative_error,absolute_error,error) ! Stochastic PT2 call ZMQ_pt2(CI_energy, pt2,relative_error,error) ! Stochastic PT2
threshold_selectors = threshold_selectors_save threshold_selectors = threshold_selectors_save
threshold_generators = threshold_generators_save threshold_generators = threshold_generators_save
SOFT_TOUCH threshold_selectors threshold_generators SOFT_TOUCH threshold_selectors threshold_generators
@ -184,7 +183,7 @@ program fci_zmq
threshold_selectors = 1.d0 threshold_selectors = 1.d0
threshold_generators = 1d0 threshold_generators = 1d0
SOFT_TOUCH threshold_selectors threshold_generators SOFT_TOUCH threshold_selectors threshold_generators
call ZMQ_pt2(CI_energy, pt2,relative_error,absolute_error,error) ! Stochastic PT2 call ZMQ_pt2(CI_energy, pt2,relative_error,error) ! Stochastic PT2
threshold_selectors = threshold_selectors_save threshold_selectors = threshold_selectors_save
threshold_generators = threshold_generators_save threshold_generators = threshold_generators_save
SOFT_TOUCH threshold_selectors threshold_generators SOFT_TOUCH threshold_selectors threshold_generators

View File

@ -1,246 +0,0 @@
program fci_zmq
implicit none
integer :: i,j,k
double precision, allocatable :: pt2(:)
integer :: degree
integer :: n_det_before, to_select
double precision :: threshold_davidson_in
allocate (pt2(N_states))
double precision :: hf_energy_ref
logical :: has
double precision :: relative_error, absolute_error
integer :: N_states_p
character*(512) :: fmt
relative_error=PT2_relative_error
absolute_error=PT2_absolute_error
pt2 = -huge(1.e0)
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
call diagonalize_CI
call save_wavefunction
call ezfio_has_hartree_fock_energy(has)
if (has) then
call ezfio_get_hartree_fock_energy(hf_energy_ref)
else
hf_energy_ref = ref_bitmask_energy
endif
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
N_states_p = min(N_det,N_states)
endif
n_det_before = 0
character*(8) :: pt2_string
double precision :: correlation_energy_ratio
double precision :: threshold_selectors_save, threshold_generators_save
threshold_selectors_save = threshold_selectors
threshold_generators_save = threshold_generators
double precision :: error(N_states)
correlation_energy_ratio = 0.d0
if (.True.) then ! Avoid pre-calculation of CI_energy
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'
if (do_pt2) then
pt2_string = ' '
pt2 = 0.d0
threshold_selectors = 1.d0
threshold_generators = 1d0
SOFT_TOUCH threshold_selectors threshold_generators
call ZMQ_pt2(CI_energy, pt2,relative_error,absolute_error,error) ! Stochastic PT2
threshold_selectors = threshold_selectors_save
threshold_generators = threshold_generators_save
SOFT_TOUCH threshold_selectors threshold_generators
else
pt2_string = '(approx)'
endif
correlation_energy_ratio = (CI_energy(1) - hf_energy_ref) / &
(CI_energy(1) + pt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
N_states_p = min(N_det,N_states)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det
print '(A)', '-----------------------------------'
print *, ''
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', CI_energy(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', CI_energy(1:N_states_p)-CI_energy(1)
write(*,fmt) '# Excit. (eV)', (CI_energy(1:N_states_p)-CI_energy(1))*27.211396641308d0
endif
write(fmt,*) '(A12,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2'//pt2_string, (pt2(k), error(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (CI_energy(k)+pt2(k),error(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (CI_energy(k)+pt2(k)-CI_energy(1)-pt2(1)), &
dsqrt(error(k)*error(k)+error(1)*error(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (CI_energy(k)+pt2(k)-CI_energy(1)-pt2(1))*27.211396641308d0, &
dsqrt(error(k)*error(k)+error(1)*error(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print*, 'correlation_ratio = ', correlation_energy_ratio
do k=1, N_states_p
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E+PT2'//pt2_string//' = ', CI_energy(k)+pt2(k), ' +/- ', error(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (CI_energy(i) - CI_energy(1)), &
(CI_energy(i) - CI_energy(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (CI_energy(i)+ pt2(i) - (CI_energy(1) + pt2(1))), &
(CI_energy(i)+ pt2(i) - (CI_energy(1) + pt2(1))) * 27.211396641308d0
enddo
endif
call ezfio_set_full_ci_zmq_energy_pt2(CI_energy(1)+pt2(1))
call dump_fci_iterations_value(N_det,CI_energy,pt2)
n_det_before = N_det
if (s2_eig) then
to_select = N_det/2+1
to_select = max(N_det/2+1, to_select)
to_select = min(to_select, N_det_max-n_det_before)
else
to_select = N_det
to_select = max(N_det, to_select)
to_select = min(to_select, N_det_max-n_det_before)
endif
call save_natural_mos
call map_deinit(mo_integrals_map)
FREE mo_integrals_map
PROVIDE mo_integrals_map
call four_index_transform_block(ao_integrals_map,mo_integrals_map, &
mo_coef, size(mo_coef,1), &
1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det >= N_det_max) then
threshold_davidson = threshold_davidson_in
end if
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
endif
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(CI_energy(1)+pt2(1))
endif
if (do_pt2) then
pt2 = 0.d0
threshold_selectors = 1.d0
threshold_generators = 1d0
SOFT_TOUCH threshold_selectors threshold_generators
call ZMQ_pt2(CI_energy, pt2,relative_error,absolute_error,error) ! Stochastic PT2
threshold_selectors = threshold_selectors_save
threshold_generators = threshold_generators_save
SOFT_TOUCH threshold_selectors threshold_generators
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(CI_energy(1)+pt2(1))
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print*, 'correlation_ratio = ', correlation_energy_ratio
call dump_fci_iterations_value(N_det,CI_energy,pt2)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det
print '(A)', '-----------------------------------'
print *, ''
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
print *, ''
N_states_p = min(N_det,N_states)
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', CI_energy(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', CI_energy(1:N_states_p)-CI_energy(1)
write(*,fmt) '# Excit. (eV)', (CI_energy(1:N_states_p)-CI_energy(1))*27.211396641308d0
endif
write(fmt,*) '(A12,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2'//pt2_string, (pt2(k), error(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (CI_energy(k)+pt2(k),error(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (CI_energy(k)+pt2(k)-CI_energy(1)-pt2(1)), &
dsqrt(error(k)*error(k)+error(1)*error(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (CI_energy(k)+pt2(k)-CI_energy(1)-pt2(1))*27.211396641308d0, &
dsqrt(error(k)*error(k)+error(1)*error(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
end

View File

@ -12,30 +12,30 @@ subroutine run
integer :: i,j,k integer :: i,j,k
logical, external :: detEq logical, external :: detEq
double precision, allocatable :: pt2(:) double precision :: pt2(N_states)
integer :: degree integer :: degree
integer :: n_det_before, to_select integer :: n_det_before, to_select
double precision :: threshold_davidson_in double precision :: threshold_davidson_in
double precision :: E_CI_before, relative_error, absolute_error, eqt double precision :: E_CI_before(N_states), relative_error, error(N_states)
allocate (pt2(N_states))
pt2(:) = 0.d0 pt2(:) = 0.d0
E_CI_before = psi_energy(1) + nuclear_repulsion E_CI_before(:) = psi_energy(:) + nuclear_repulsion
threshold_selectors = 1.d0 threshold_selectors = 1.d0
threshold_generators = 1.d0 threshold_generators = 1.d0
relative_error=PT2_relative_error relative_error=PT2_relative_error
absolute_error=PT2_absolute_error
call ZMQ_pt2(E_CI_before, pt2, relative_error, absolute_error, eqt) call ZMQ_pt2(E_CI_before, pt2, relative_error, error)
print *, 'Final step' do k=1,N_states
print *, 'N_det = ', N_det print *, 'State ', k
print *, 'PT2 = ', pt2 print *, 'N_det = ', N_det
print *, 'E = ', E_CI_before print *, 'PT2 = ', pt2
print *, 'E+PT2 = ', E_CI_before+pt2, ' +/- ', eqt print *, 'E = ', E_CI_before(k)
print *, '-----' print *, 'E+PT2 = ', E_CI_before(k)+pt2(k), ' +/- ', error(k)
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before+pt2(1)) print *, '-----'
enddo
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end end

View File

@ -6,27 +6,34 @@ BEGIN_PROVIDER [ integer, pt2_stoch_istate ]
pt2_stoch_istate = 1 pt2_stoch_istate = 1
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_N_teeth ] BEGIN_PROVIDER [ integer, pt2_N_teeth ]
&BEGIN_PROVIDER [ integer, pt2_minDetInFirstTeeth ] &BEGIN_PROVIDER [ integer, pt2_minDetInFirstTeeth ]
&BEGIN_PROVIDER [ integer, pt2_n_tasks_max ] &BEGIN_PROVIDER [ integer, pt2_n_tasks_max ]
&BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ] &BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ]
implicit none implicit none
logical, external :: testTeethBuilding logical, external :: testTeethBuilding
pt2_F(:) = 1 integer :: i
!pt2_F(:N_det_generators/1000*0+50) = 1 integer :: e
pt2_n_tasks_max = 16 ! N_det_generators/100 + 1 e = elec_num - n_core_orb * 2
pt2_n_tasks_max = 1+min((e*(e-1))/2, int(dsqrt(dble(N_det_selectors)))/10)
do i=1,N_det_generators
if (maxval(dabs(psi_coef_sorted_gen(i,1:N_states))) > 0.001d0) then
pt2_F(i) = pt2_n_tasks_max
else
pt2_F(i) = 1
endif
enddo
if(N_det_generators < 1024) then if(N_det_generators < 1024) then
pt2_minDetInFirstTeeth = 1 pt2_minDetInFirstTeeth = 1
pt2_N_teeth = 1 pt2_N_teeth = 1
else else
do pt2_N_teeth=32,1,-1 pt2_minDetInFirstTeeth = min(5, N_det_generators)
pt2_minDetInFirstTeeth = min(5, N_det_generators) do pt2_N_teeth=100,2,-1
if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit
end do end do
end if end if
print *, pt2_N_teeth call write_int(6,pt2_N_teeth,'Number of comb teeth')
END_PROVIDER END_PROVIDER
@ -41,25 +48,39 @@ logical function testTeethBuilding(minF, N)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators)) allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators do i=1,N_det_generators
tilde_w(i) = psi_coef_generators(i,pt2_stoch_istate)**2 tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i) tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo enddo
tilde_cW(N_det_generators) = 1d0 tilde_cW(:) = tilde_cW(:) + 1.d0
n0 = 0 n0 = 0
testTeethBuilding = .false.
do do
u0 = tilde_cW(n0) u0 = tilde_cW(n0)
r = tilde_cW(n0 + minF) r = tilde_cW(n0 + minF)
Wt = (1d0 - u0) / dble(N) Wt = (1d0 - u0) / dble(N)
if (dabs(Wt) <= 1.d-3) then
return
endif
if(Wt >= r - u0) then if(Wt >= r - u0) then
testTeethBuilding = .true. testTeethBuilding = .true.
return return
end if end if
n0 += 1 n0 += 1
if(N_det_generators - n0 < minF * N) then if(N_det_generators - n0 < minF * N) then
testTeethBuilding = .false.
return return
end if end if
end do end do
@ -68,20 +89,19 @@ end function
subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error) subroutine ZMQ_pt2(E, pt2,relative_error, error)
use f77_zmq use f77_zmq
use selection_types use selection_types
implicit none implicit none
character(len=64000) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, external :: omp_get_thread_num integer, external :: omp_get_thread_num
double precision, intent(in) :: relative_error, absolute_error, E(N_states) double precision, intent(in) :: relative_error, E(N_states)
double precision, intent(out) :: pt2(N_states),error(N_states) double precision, intent(out) :: pt2(N_states),error(N_states)
integer :: i, j, k integer :: i
double precision, external :: omp_get_wtime double precision, external :: omp_get_wtime
double precision :: state_average_weight_save(N_states), w(N_states) double precision :: state_average_weight_save(N_states), w(N_states)
@ -138,17 +158,39 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
endif endif
integer, external :: add_task_to_taskserver integer, external :: add_task_to_taskserver
character(100000) :: task
integer :: j,k,ipos
ipos=0
do i=1,N_det_generators do i=1,N_det_generators
do j=1,pt2_F(i) !!!!!!!!!!!! if (pt2_F(i) > 1) then
write(task(1:20),'(I9,1X,I9''|'')') j, pt2_J(i) ipos += 1
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:20))) == -1) then endif
stop 'Unable to add task to task server' enddo
call write_int(6,ipos,'Number of fragmented tasks')
ipos=1
do i= 1, N_det_generators
do j=1,pt2_F(pt2_J(i))
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') j, pt2_J(i)
ipos += 20
if (ipos > 100000-20) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
endif endif
end do end do
end do enddo
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
endif
integer, external :: zmq_set_running integer, external :: zmq_set_running
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
@ -166,11 +208,13 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
nproc_target = min(nproc_target,nproc) nproc_target = min(nproc_target,nproc)
endif endif
call omp_set_nested(.true.)
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) & !$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) &
!$OMP PRIVATE(i) !$OMP PRIVATE(i)
i = omp_get_thread_num() i = omp_get_thread_num()
if (i==0) then if (i==0) then
call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, absolute_error, w, error) call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, w, error)
pt2(pt2_stoch_istate) = w(pt2_stoch_istate) pt2(pt2_stoch_istate) = w(pt2_stoch_istate)
else else
call pt2_slave_inproc(i) call pt2_slave_inproc(i)
@ -181,6 +225,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, absolute_error, error)
print *, '========== ================= ================= =================' print *, '========== ================= ================= ================='
enddo enddo
! call omp_set_nested(.false.)
FREE pt2_stoch_istate FREE pt2_stoch_istate
state_average_weight(:) = state_average_weight_save(:) state_average_weight(:) = state_average_weight_save(:)
TOUCH state_average_weight TOUCH state_average_weight
@ -200,7 +246,7 @@ subroutine pt2_slave_inproc(i)
end end
subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2, error) subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error)
use f77_zmq use f77_zmq
use selection_types use selection_types
use bitmasks use bitmasks
@ -208,7 +254,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, absolute_error, E double precision, intent(in) :: relative_error, E
double precision, intent(out) :: pt2(N_states), error(N_states) double precision, intent(out) :: pt2(N_states), error(N_states)
@ -216,6 +262,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, external :: zmq_delete_tasks integer, external :: zmq_delete_tasks
integer, external :: zmq_abort
integer, external :: pt2_find_sample integer, external :: pt2_find_sample
integer :: more, n, i, p, c, t, n_tasks, U integer :: more, n, i, p, c, t, n_tasks, U
@ -235,6 +282,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
allocate(eI(N_states, N_det_generators), eI_task(N_states, pt2_n_tasks_max)) allocate(eI(N_states, N_det_generators), eI_task(N_states, pt2_n_tasks_max))
allocate(S(pt2_N_teeth+1), S2(pt2_N_teeth+1)) allocate(S(pt2_N_teeth+1), S2(pt2_N_teeth+1))
pt2(:) = -huge(1.)
S(:) = 0d0 S(:) = 0d0
S2(:) = 0d0 S2(:) = 0d0
n = 1 n = 1
@ -254,10 +302,12 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
do while(d(U+1)) do while(d(U+1))
U += 1 U += 1
end do end do
! Deterministic part
do while(t <= pt2_N_teeth) do while(t <= pt2_N_teeth)
if(U >= pt2_n_0(t+1)) then if(U >= pt2_n_0(t+1)) then
t=t+1 t=t+1
E0 = E E0 = 0.d0
do i=pt2_n_0(t),1,-1 do i=pt2_n_0(t),1,-1
E0 += eI(pt2_stoch_istate, i) E0 += eI(pt2_stoch_istate, i)
end do end do
@ -266,8 +316,9 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
end if end if
end do end do
! Add Stochastic part
c = pt2_R(n) c = pt2_R(n)
if(c /= 0) then if(c > 0) then
x = 0d0 x = 0d0
do p=pt2_N_teeth, 1, -1 do p=pt2_N_teeth, 1, -1
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1)) v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
@ -276,13 +327,26 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, absolute_error, pt2
S(p) += x S(p) += x
S2(p) += x**2 S2(p) += x**2
end do end do
avg = S(t) / dble(c) avg = E0 + S(t) / dble(c)
eqt = (S2(t) / c) - (S(t)/c)**2 pt2(pt2_stoch_istate) = avg
eqt = sqrt(eqt / dble(c-1+1)) ! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
pt2(pt2_stoch_istate) = E0-E+avg if(c > 2) then
error(pt2_stoch_istate) = eqt eqt = dabs((S2(t) / c) - (S(t)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
error(pt2_stoch_istate) = eqt
if(mod(c,10)==0 .or. n==N_det_generators) then
print '(G10.3, 2X, F16.10, 2X, G16.3, 2X, F16.4, A20)', c, avg+E, eqt, time-time0, ''
if( dabs(error(pt2_stoch_istate) / pt2(pt2_stoch_istate)) < relative_error) then
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(10)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Error in sending abort signal (2)'
endif
endif
endif
endif
endif
time = omp_get_wtime() time = omp_get_wtime()
if(mod(c,10)==1 .or. n==N_det_generators) print '(G10.3, 2X, F16.10, 2X, G16.3, 2X, F16.4, A20)', c, avg+E0, eqt, time-time0, ''
end if end if
n += 1 n += 1
else if(more == 0) then else if(more == 0) then
@ -318,8 +382,13 @@ integer function pt2_find_sample(v, w)
r = i r = i
end if end if
end do end do
i = r
pt2_find_sample = r do r=i+1,N_det_generators
if (w(r) /= w(i)) then
exit
endif
enddo
pt2_find_sample = r-1
end function end function
@ -343,11 +412,18 @@ end function
d(i) = .true. d(i) = .true.
pt2_J(i) = i pt2_J(i) = i
end do end do
call random_seed(put=(/3211,64,6566,321,65,321,654,65,321,6321,654,65,321,621,654,65,321,65,654,65,321,65/))
call RANDOM_NUMBER(pt2_u)
call RANDOM_NUMBER(pt2_u)
integer :: m
integer, allocatable :: seed(:)
call random_seed(size=m)
allocate(seed(m))
do i=1,m
seed(i) = i
enddo
call random_seed(put=seed)
deallocate(seed)
call RANDOM_NUMBER(pt2_u)
U = 0 U = 0
@ -400,9 +476,22 @@ END_PROVIDER
tilde_cW(0) = 0d0 tilde_cW(0) = 0d0
do i=1,N_det_generators do i=1,N_det_generators
tilde_w(i) = psi_coef_generators(i,pt2_stoch_istate)**2 tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i) tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
pt2_n_0(1) = 0 pt2_n_0(1) = 0
do do
@ -429,6 +518,10 @@ END_PROVIDER
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1)) pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t)) tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1) do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do end do

View File

@ -43,10 +43,11 @@ subroutine run_pt2_slave(thread,iproc,energy)
call create_selection_buffer(0, 0, buf) call create_selection_buffer(0, 0, buf)
done = .False. done = .False.
n_tasks = 1
do while (.not.done) do while (.not.done)
n_tasks = max(1,n_tasks) ! n_tasks = max(1,n_tasks)
n_tasks = min(n_tasks,pt2_n_tasks_max) ! n_tasks = min(pt2_n_tasks_max,n_tasks)
integer, external :: get_tasks_from_taskserver integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
@ -61,13 +62,17 @@ subroutine run_pt2_slave(thread,iproc,energy)
enddo enddo
double precision :: time0, time1 double precision :: time0, time1
call wall_time(time0) ! call wall_time(time0)
do k=1,n_tasks do k=1,n_tasks
pt2(:,k) = 0.d0 pt2(:,k) = 0.d0
buf%cur = 0 buf%cur = 0
!double precision :: time2
!call wall_time(time2)
call select_connected(i_generator(k),energy,pt2(1,k),buf,subset(k),pt2_F(i_generator(k))) call select_connected(i_generator(k),energy,pt2(1,k),buf,subset(k),pt2_F(i_generator(k)))
!call wall_time(time1)
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
enddo enddo
call wall_time(time1) ! call wall_time(time1)
integer, external :: tasks_done_to_taskserver integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
@ -75,9 +80,8 @@ subroutine run_pt2_slave(thread,iproc,energy)
endif endif
call push_pt2_results(zmq_socket_push, i_generator, pt2, task_id, n_tasks) call push_pt2_results(zmq_socket_push, i_generator, pt2, task_id, n_tasks)
! Try to adjust n_tasks around 1 second per job ! Try to adjust n_tasks around nproc seconds per job
n_tasks = min(n_tasks,int( 1.d0*dble(n_tasks) / (time1 - time0 + 1.d-9)))+1 ! n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc) / (time1 - time0 + 1.d0)))
! n_tasks = n_tasks+1
end do end do
integer, external :: disconnect_from_taskserver integer, external :: disconnect_from_taskserver

View File

@ -1,122 +1,4 @@
subroutine run_selection_slave(thread,iproc,energy) subroutine run_selection_slave(thread,iproc,energy)
implicit none
integer, intent(in) :: thread, iproc
double precision, intent(in) :: energy(N_states_diag)
call run_selection_slave_new(thread,iproc,energy)
end
subroutine run_selection_slave_new(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
integer, intent(in) :: thread, iproc
double precision, intent(in) :: energy(N_states_diag)
integer :: rc, i, N
logical :: buffer_ready
integer :: worker_id, ltask
character*(512), allocatable :: task(:)
integer, allocatable :: task_id(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision,allocatable :: pt2(:,:)
integer :: n_tasks, k, n_tasks_max
integer, allocatable :: i_generator(:), subset(:)
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order
buffer_ready = .False.
n_tasks_max = N_det_generators/100+1
allocate(task_id(n_tasks_max), task(n_tasks_max))
allocate(pt2(N_states,n_tasks_max), i_generator(n_tasks_max), subset(n_tasks_max))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
n_tasks = 1
call create_selection_buffer(0, 0, buf)
done = .False.
do while (.not.done)
n_tasks = max(1,n_tasks)
n_tasks = min(n_tasks,n_tasks_max)
integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit
endif
done = task_id(n_tasks) == 0
if (done) n_tasks = n_tasks-1
if (n_tasks == 0) exit
do k=1,n_tasks
read (task(k),*) subset(k), i_generator(k), N
enddo
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*2, buf2)
buffer_ready = .True.
endif
double precision :: time0, time1
call wall_time(time0)
do k=1,n_tasks
pt2(:,k) = 0.d0
buf%cur = 0
call select_connected(i_generator(k),energy,pt2(1,k),buf,subset(k))
enddo
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(buf)
call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2, buf, task_id, n_tasks)
buf%mini = buf2%mini
pt2(:,:) = 0d0
buf%cur = 0
! ! Try to adjust n_tasks around 5 second per job
! n_tasks = min(n_tasks,int( 5.d0 * dble(n_tasks) / (time1 - time0 + 1.d-9)))+1
n_tasks = n_tasks+1
end do
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_push_socket(zmq_socket_push,thread)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call delete_selection_buffer(buf)
end
subroutine run_selection_slave_old(thread,iproc,energy)
use f77_zmq use f77_zmq
use selection_types use selection_types
implicit none implicit none
@ -177,7 +59,7 @@ subroutine run_selection_slave_old(thread,iproc,energy)
else else
ASSERT (N == buf%N) ASSERT (N == buf%N)
end if end if
call select_connected(i_generator,energy,pt2,buf,subset,fragment_count) call select_connected(i_generator,energy,pt2,buf,subset,pt2_F(i_generator))
endif endif
integer, external :: task_done_to_taskserver integer, external :: task_done_to_taskserver

View File

@ -1,14 +1,5 @@
use bitmasks use bitmasks
BEGIN_PROVIDER [ integer, fragment_count ]
implicit none
BEGIN_DOC
! Number of fragments for the deterministic part
END_DOC
fragment_count = (elec_alpha_num-n_core_orb)**2
END_PROVIDER
subroutine assert(cond, msg) subroutine assert(cond, msg)
character(*), intent(in) :: msg character(*), intent(in) :: msg
logical, intent(in) :: cond logical, intent(in) :: cond
@ -298,8 +289,6 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
integer(bit_kind), allocatable:: preinteresting_det(:,:,:) integer(bit_kind), allocatable:: preinteresting_det(:,:,:)
allocate (preinteresting_det(N_int,2,N_det)) allocate (preinteresting_det(N_int,2,N_det))
!PROVIDE fragment_count
monoAdo = .true. monoAdo = .true.
monoBdo = .true. monoBdo = .true.
@ -319,7 +308,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
integer :: l_a, nmax integer :: l_a, nmax, idx
integer, allocatable :: indices(:), exc_degree(:), iorder(:) integer, allocatable :: indices(:), exc_degree(:), iorder(:)
allocate (indices(N_det), & allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique))) exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
@ -342,7 +331,9 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1 do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a) i = psi_bilinear_matrix_rows(l_a)
if (nt + exc_degree(i) <= 4) then if (nt + exc_degree(i) <= 4) then
indices(k) = psi_det_sorted_order(psi_bilinear_matrix_order(l_a)) idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
if (psi_average_norm_contrib_sorted(idx) < 1.d-12) cycle
indices(k) = idx
k=k+1 k=k+1
endif endif
enddo enddo
@ -361,13 +352,16 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
i = psi_bilinear_matrix_transp_columns(l_a) i = psi_bilinear_matrix_transp_columns(l_a)
if (exc_degree(i) < 3) cycle if (exc_degree(i) < 3) cycle
if (nt + exc_degree(i) <= 4) then if (nt + exc_degree(i) <= 4) then
indices(k) = psi_det_sorted_order( & idx = psi_det_sorted_order( &
psi_bilinear_matrix_order( & psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a))) psi_bilinear_matrix_transp_order(l_a)))
if (psi_average_norm_contrib_sorted(idx) < 1.d-12) cycle
indices(k) = idx
k=k+1 k=k+1
endif endif
enddo enddo
enddo enddo
deallocate(exc_degree) deallocate(exc_degree)
nmax=k-1 nmax=k-1
@ -378,8 +372,8 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call isort(indices,iorder,nmax) call isort(indices,iorder,nmax)
deallocate(iorder) deallocate(iorder)
allocate(preinteresting(0:N_det_selectors), prefullinteresting(0:N_det), & allocate(preinteresting(0:N_det), prefullinteresting(0:N_det), &
interesting(0:N_det_selectors), fullinteresting(0:N_det)) interesting(0:N_det), fullinteresting(0:N_det))
preinteresting(0) = 0 preinteresting(0) = 0
prefullinteresting(0) = 0 prefullinteresting(0) = 0
@ -415,14 +409,36 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
end do end do
deallocate(indices) deallocate(indices)
allocate(minilist(N_int, 2, N_det_selectors), fullminilist(N_int, 2, N_det)) allocate(minilist(N_int, 2, N_det_selectors), fullminilist(N_int, 2, N_det))
allocate(banned(mo_tot_num, mo_tot_num,2), bannedOrb(mo_tot_num, 2)) allocate(banned(mo_tot_num, mo_tot_num,2), bannedOrb(mo_tot_num, 2))
allocate (mat(N_states, mo_tot_num, mo_tot_num)) allocate (mat(N_states, mo_tot_num, mo_tot_num))
maskInd = -1 maskInd = -1
integer :: nb_count
integer :: nb_count, maskInd_save
logical :: monoBdo_save
logical :: found
do s1=1,2 do s1=1,2
do i1=N_holes(s1),1,-1 ! Generate low excitations first do i1=N_holes(s1),1,-1 ! Generate low excitations first
found = .False.
monoBdo_save = monoBdo
maskInd_save = maskInd
do s2=s1,2
ib = 1
if(s1 == s2) ib = i1+1
do i2=N_holes(s2),ib,-1
maskInd += 1
if(mod(maskInd, csubset) == (subset-1)) then
found = .True.
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
if (.not.found) cycle
monoBdo = monoBdo_save
maskInd = maskInd_save
h1 = hole_list(i1,s1) h1 = hole_list(i1,s1)
call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int) call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int)
@ -536,8 +552,6 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
end if end if
end do end do
do s2=s1,2 do s2=s1,2
sp = s1 sp = s1

View File

@ -13,9 +13,10 @@ program selection_slave
end end
subroutine provide_everything subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context n_states_diag PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
PROVIDE pt2_e0_denominator mo_tot_num N_int fragment_count ci_energy mpi_master zmq_state zmq_context PROVIDE pt2_e0_denominator mo_tot_num N_int ci_energy mpi_master zmq_state zmq_context
PROVIDE psi_det psi_coef PROVIDE psi_det psi_coef threshold_generators threshold_selectors state_average_weight
PROVIDE N_det_selectors pt2_stoch_istate N_det
end end
subroutine run_wf subroutine run_wf
@ -35,12 +36,11 @@ subroutine run_wf
double precision :: t0, t1 double precision :: t0, t1
integer, external :: zmq_get_dvector, zmq_get_N_det_generators integer, external :: zmq_get_dvector, zmq_get_N_det_generators
integer, external :: zmq_get8_dvector
integer, external :: zmq_get_ivector integer, external :: zmq_get_ivector
integer, external :: zmq_get_psi, zmq_get_N_det_selectors integer, external :: zmq_get_psi, zmq_get_N_det_selectors
integer, external :: zmq_get_N_states_diag integer, external :: zmq_get_N_states_diag
call provide_everything
zmq_context = f77_zmq_ctx_new () zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection' states(1) = 'selection'
states(2) = 'davidson' states(2) = 'davidson'
@ -49,6 +49,13 @@ subroutine run_wf
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
PROVIDE psi_det psi_coef threshold_generators threshold_selectors state_average_weight mpi_master
PROVIDE zmq_state N_det_selectors pt2_stoch_istate N_det pt2_e0_denominator
PROVIDE N_det_generators N_states N_states_diag psi_energy
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
do do
if (mpi_master) then if (mpi_master) then
@ -62,6 +69,10 @@ subroutine run_wf
print *, trim(zmq_state) print *, trim(zmq_state)
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
@ -146,6 +157,12 @@ subroutine run_wf
! PT2 ! PT2
! --- ! ---
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call wall_time(t0) call wall_time(t0)
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
@ -168,13 +185,19 @@ subroutine run_wf
call wall_time(t1) call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time') call write_double(6,(t1-t0),'Broadcast time')
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
logical :: lstop if (.true.) then
lstop = .False. !$OMP PARALLEL PRIVATE(i)
!$OMP PARALLEL PRIVATE(i) i = omp_get_thread_num()
i = omp_get_thread_num() call run_pt2_slave(0,i,pt2_e0_denominator)
call run_pt2_slave(0,i,pt2_e0_denominator) !$OMP END PARALLEL
!$OMP END PARALLEL endif
print *, 'PT2 done' print *, 'PT2 done'
FREE state_average_weight FREE state_average_weight

View File

@ -14,7 +14,7 @@ end
subroutine provide_everything subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context n_states_diag PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context n_states_diag
PROVIDE pt2_e0_denominator mo_tot_num N_int fragment_count ci_energy mpi_master zmq_state zmq_context PROVIDE pt2_e0_denominator mo_tot_num N_int ci_energy mpi_master zmq_state zmq_context
PROVIDE psi_det psi_coef PROVIDE psi_det psi_coef
end end

View File

@ -1,4 +1,4 @@
program fci_zmq program target_pt2_ratio
implicit none implicit none
integer :: i,j,k integer :: i,j,k
logical, external :: detEq logical, external :: detEq

View File

@ -1,4 +1,4 @@
program fci_zmq program target_pt2
implicit none implicit none
integer :: i,j,k integer :: i,j,k
logical, external :: detEq logical, external :: detEq

View File

@ -12,15 +12,13 @@ subroutine ZMQ_selection(N_in, pt2)
double precision, intent(out) :: pt2(N_states) double precision, intent(out) :: pt2(N_states)
PROVIDE fragment_count
N = max(N_in,1) N = max(N_in,1)
if (.True.) then if (.True.) then
PROVIDE pt2_e0_denominator nproc PROVIDE pt2_e0_denominator nproc
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order fragment_count PROVIDE psi_bilinear_matrix_transp_order
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection') call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
@ -54,34 +52,22 @@ subroutine ZMQ_selection(N_in, pt2)
endif endif
integer, external :: add_task_to_taskserver integer, external :: add_task_to_taskserver
character(len=64000) :: task character(len=100000) :: task
integer :: j,k,ipos integer :: j,k,ipos
ipos=1 ipos=1
task = ' ' task = ' '
do i= 1, N_det_generators do i= 1, N_det_generators
! /!\ Fragments don't work do j=1,pt2_F(pt2_J(i))
! if (i>-ishft(N_det_generators,-2)) then write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, pt2_J(i), N
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') 0, i, N
ipos += 30 ipos += 30
if (ipos > 63970) then if (ipos > 100000-30) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server' stop 'Unable to add task to task server'
endif endif
ipos=1 ipos=1
endif endif
! else end do
! do j=1,fragment_count
! write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, i, N
! ipos += 30
! if (ipos > 63970) then
! if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
! stop 'Unable to add task to task server'
! endif
! ipos=1
! endif
! end do
! endif
enddo enddo
if (ipos > 1) then if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then

View File

@ -9,11 +9,11 @@ BEGIN_PROVIDER [ integer, N_det_generators ]
integer :: i integer :: i
double precision :: norm double precision :: norm
call write_time(6) call write_time(6)
norm = 0.d0 norm = 1.d0
N_det_generators = N_det N_det_generators = N_det
do i=1,N_det do i=1,N_det
norm = norm + psi_average_norm_contrib_sorted(i) norm = norm - psi_average_norm_contrib_sorted(i)
if (norm > threshold_generators+1d-10) then if (norm - 1.d-10 < 1.d0 - threshold_generators) then
N_det_generators = i N_det_generators = i
exit exit
endif endif

View File

@ -16,8 +16,8 @@ program print_mos
call write_Mo_basis(i_unit_output) call write_Mo_basis(i_unit_output)
write(i_unit_output,*),'' write(i_unit_output,*)''
write(i_unit_output,*),'' write(i_unit_output,*)''
write(i_unit_output,*)' ------------------------' write(i_unit_output,*)' ------------------------'
close(i_unit_output) close(i_unit_output)

5
plugins/NOFT/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
IRPF90_temp/
IRPF90_man/
irpf90.make
irpf90_entities
tags

19
plugins/NOFT/EZFIO.cfg Normal file
View File

@ -0,0 +1,19 @@
[do_JK_functionals]
type: logical
doc: Compute energies for JK-only functionals
interface: ezfio,provider,ocaml
default: True
[do_JKL_functionals]
type: logical
doc: Compute energies for JKL-only functionals (PNOFs)
interface: ezfio,provider,ocaml
default: True
[do_PT2_NOFT]
type: logical
doc: Compute PT2 correction for NOFT
interface: ezfio,provider,ocaml
default: False

View File

@ -0,0 +1 @@
Hartree_Fock Determinants

72
plugins/NOFT/NOFT.irp.f Normal file
View File

@ -0,0 +1,72 @@
program NOFT
implicit none
BEGIN_DOC
! Natural orbital functional theory module
END_DOC
PROVIDE mo_bielec_integrals_in_map
integer :: i,j
integer :: nMO,FL
double precision :: ET,EV
double precision :: integral,get_mo_bielec_integral
double precision,allocatable :: n(:)
print*, ''
print*, '*******************************'
print*, '*** NOFT functionals ***'
print*, '*******************************'
print*, ''
print*, 'SD = single determinant'
print*, 'MBB = Muller, Buijse and Baerends'
print*, 'POWER = Cioslowski and Pernal'
print*, 'BCC2 = Gritsenko and coworkers'
print*, 'CA = Csanyi and Arias'
print*, 'CGA = Csanyi, Goedecker and Arias'
print*, 'GU = Goedecker and Umrigar'
print*, 'ML = Marques and Lathiotakis'
print*, 'MLSIC = ML with self-interaction correction'
print*, 'PNOF2 = Piris natural orbital functional 2 (bug)'
print*, 'PNOF3 = Piris natural orbital functional 3'
print*, 'PNOF4 = Piris natural orbital functional 4'
print*, 'PNOF5 = Piris natural orbital functional 5 (NYI)'
print*, 'PNOF6x = Piris natural orbital functional 6 (x = d, u, h)'
print*, 'PNOF7 = Piris natural orbital functional 7 (NYI)'
print*, ''
print*, '*******************************'
print*, ''
print*, '*******************************'
print*, '*** NOFT energies ***'
print*, '*******************************'
print*, ''
! Occupation numbers
nMO = mo_tot_num
FL = elec_num/2
allocate(n(nMO))
n(1:nMO) = 0.5d0*mo_occ(1:mo_tot_num)
! Compute core energies
call NOFT_core(nMO,ET,EV,n)
! JK-only functionals
if(do_JK_functionals) call NOFT_JKfunc(nMO,FL,ET,EV,n)
! JKL-only functionals
if(do_JKL_functionals) call NOFT_JKLfunc(nMO,FL,ET,EV,n)
! PT2-NOFT correction
if(do_PT2_NOFT) call NOFT_JKLfunc(nMO,FL,n)
! End
print*, '*******************************'
print*, ''
end

View File

@ -0,0 +1,484 @@
subroutine NOFT_JKLfunc(nMO,FL,ET,EV,n)
! JKL-only functionals for NOFT
END_DOC
PROVIDE mo_bielec_integrals_in_map
! Input variables
integer,intent(in) :: nMO,FL
double precision,intent(in) :: ET,EV
double precision,intent(in) :: n(nMO)
! Local variables
integer :: i,j
double precision :: EJ_SD,EK_SD
double precision :: EJ_PNOF2,EJ_PNOF3,EJ_PNOF4,EJ_PNOF5,EJ_PNOF6d,EJ_PNOF6u,EJ_PNOF6h,EJ_PNOF7
double precision :: EK_PNOF2,EK_PNOF3,EK_PNOF4,EK_PNOF5,EK_PNOF6d,EK_PNOF6u,EK_PNOF6h,EK_PNOF7
double precision :: EL_PNOF2,EL_PNOF3,EL_PNOF4,EL_PNOF5,EL_PNOF6d,EL_PNOF6u,EL_PNOF6h,EL_PNOF7
double precision :: E_PNOF2,E_PNOF3,E_PNOF4,E_PNOF5,E_PNOF6d,E_PNOF6u,E_PNOF6h,E_PNOF7
double precision :: get_mo_bielec_integral
double precision :: SF,Sd,Su,Sh,Delta_ij,T_ij,Pi_ij
double precision,allocatable :: h(:),kappa(:),gam(:),Jint(:,:),Kint(:,:),Lint(:,:)
! memory allocation
allocate(h(nMO),kappa(nMO),gam(nMO),Jint(nMO,nMO),Kint(nMO,nMO),Lint(nMO,nMO))
! Useful quantities
h(1:nMO) = 1d0 - n(1:nMO)
SF = 0d0
do i=1,FL
SF = SF + h(i)
enddo
! Useful quantities for PNOF6
do i=1,FL
kappa(i) = h(i)*exp(-SF)
enddo
do i=FL+1,nMO
kappa(i) = n(i)*exp(-SF)
enddo
gam(:) = 0d0
do i=1,nMO
do j=i,FL
gam(i) = gam(i) + kappa(j)
enddo
gam(i) = n(i)*h(i) + kappa(i)*kappa(i) - kappa(i)*gam(i)
enddo
Sd = 0d0
do i=1,FL
Sd = Sd + gam(i)
enddo
Su = 0d0
do i=FL+1,nMO
Su = Su + gam(i)
enddo
Sh = 0.5d0*(Sd + Su)
! Coulomb, exchange and time-inversion integrals
do i=1,nMO
do j=1,nMO
Jint(i,j) = get_mo_bielec_integral(i,j,i,j,mo_integrals_map)
Kint(i,j) = get_mo_bielec_integral(i,j,j,i,mo_integrals_map)
Lint(i,j) = get_mo_bielec_integral(i,i,j,j,mo_integrals_map)
enddo
enddo
!****************************************
!*** Coulomb and exchange parts of SD ***
!****************************************
EJ_SD = +2d0*dot_product(n,matmul(Jint,n))
EK_SD = -1d0*dot_product(n,matmul(Kint,n))
! *************
! *** PNOF2 ***
! *************
EJ_PNOF2 = 0d0
EK_PNOF2 = 0d0
EL_PNOF2 = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
T_ij = 0d0
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)
T_ij = n(i)*n(j) - Delta_ij
Pi_ij = sqrt(n(i)*n(j)) + sqrt(h(i)*h(j)) + T_ij
elseif(i <= FL .and. j > FL) then
Delta_ij = n(j)*h(i)*(1d0 - SF)/SF
T_ij = n(i)*n(j) - Delta_ij
Pi_ij = sqrt(n(i)*n(j)) - sqrt(n(j)*h(i)) + T_ij
elseif(i > FL .and. j <= FL) then
Delta_ij = n(i)*h(j)*(1d0 - SF)/SF
T_ij = n(i)*n(j) - Delta_ij
Pi_ij = sqrt(n(i)*n(j)) - sqrt(n(i)*h(j)) + T_ij
elseif(i > FL .and. j > FL) then
Delta_ij = n(i)*n(j)
T_ij = n(i)*n(j) - Delta_ij
Pi_ij = T_ij
else
Delta_ij = 0d0
T_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF2 = EJ_PNOF2 - 2d0*Delta_ij*Jint(i,j)
EK_PNOF2 = EK_PNOF2 + Delta_ij*Kint(i,j)
EL_PNOF2 = EL_PNOF2 + Pi_ij*Lint(i,j)
enddo
enddo
! *************
! *** PNOF3 ***
! *************
EJ_PNOF3 = 0d0
EK_PNOF3 = 0d0
EL_PNOF3 = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)
Pi_ij = n(i)*n(j) - sqrt(n(i)*n(j))
elseif(i <= FL .and. j > FL) then
Delta_ij = n(j)*h(i)*(1d0 - SF)/SF
Pi_ij = n(i)*n(j) - sqrt(n(i)*n(j)) - sqrt(n(j)*h(i))
elseif(i > FL .and. j <= FL) then
Delta_ij = n(i)*h(j)*(1d0 - SF)/SF
Pi_ij = n(i)*n(j) - sqrt(n(i)*n(j)) - sqrt(n(i)*h(j))
elseif(i > FL .and. j > FL) then
Delta_ij = n(i)*n(j)
Pi_ij = n(i)*n(j) + sqrt(n(i)*n(j))
else
Delta_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF3 = EJ_PNOF3 - Delta_ij*Jint(i,j)
EK_PNOF3 = EK_PNOF3
EL_PNOF3 = EL_PNOF3 + Pi_ij*Lint(i,j)
enddo
enddo
! *************
! *** PNOF4 ***
! *************
EJ_PNOF4 = 0d0
EK_PNOF4 = 0d0
EL_PNOF4 = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)
Pi_ij = - sqrt(h(i)*h(j))
elseif(i <= FL .and. j > FL) then
Delta_ij = n(j)*h(i)*(1d0 - SF)/SF
Pi_ij = - sqrt( (h(i)*n(j)/SF) * (n(i)-n(j)+h(i)*n(j)/SF))
elseif(i > FL .and. j <= FL) then
Delta_ij = n(i)*h(j)*(1d0 - SF)/SF
Pi_ij = - sqrt( (h(j)*n(i)/SF) * (n(j)-n(i)+h(j)*n(i)/SF))
elseif(i > FL .and. j >= FL) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
else
Delta_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF4 = EJ_PNOF4 - 2d0*Delta_ij*Jint(i,j)
EK_PNOF4 = EK_PNOF4 + Delta_ij*Kint(i,j)
EL_PNOF4 = EL_PNOF4 + Pi_ij*Lint(i,j)
enddo
enddo
! **************
! *** PNOF6d ***
! **************
EJ_PNOF6d = 0d0
EK_PNOF6d = 0d0
EL_PNOF6d = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)*exp(-2d0*SF)
Pi_ij = - sqrt(h(i)*h(j))*exp(-SF)
elseif(i <= FL .and. j > FL) then
Delta_ij = gam(i)*gam(j)/Sd
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Sd) * (n(j)*h(i) + gam(i)*gam(j)/Sd))
elseif(i > FL .and. j <= FL) then
Delta_ij = gam(i)*gam(j)/Sd
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Sd) * (n(j)*h(i) + gam(i)*gam(j)/Sd))
elseif(i > FL .and. j >= FL) then
Delta_ij = n(i)*n(j)*exp(-2d0*SF)
Pi_ij = sqrt(n(i)*n(j))*exp(-SF)
else
Delta_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF6d = EJ_PNOF6d - 2d0*Delta_ij*Jint(i,j)
EK_PNOF6d = EK_PNOF6d + Delta_ij*Kint(i,j)
EL_PNOF6d = EL_PNOF6d + Pi_ij*Lint(i,j)
enddo
enddo
! **************
! *** PNOF6u ***
! **************
EJ_PNOF6u = 0d0
EK_PNOF6u = 0d0
EL_PNOF6u = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)*exp(-2d0*SF)
Pi_ij = - sqrt(h(i)*h(j))*exp(-SF)
elseif(i <= FL .and. j > FL) then
Delta_ij = gam(i)*gam(j)/Su
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Su) * (n(j)*h(i) + gam(i)*gam(j)/Su))
elseif(i > FL .and. j <= FL) then
Delta_ij = gam(i)*gam(j)/Su
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Su) * (n(j)*h(i) + gam(i)*gam(j)/Su))
elseif(i > FL .and. j >= FL) then
Delta_ij = n(i)*n(j)*exp(-2d0*SF)
Pi_ij = sqrt(n(i)*n(j))*exp(-SF)
else
Delta_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF6u = EJ_PNOF6u - 2d0*Delta_ij*Jint(i,j)
EK_PNOF6u = EK_PNOF6u + Delta_ij*Kint(i,j)
EL_PNOF6u = EL_PNOF6u + Pi_ij*Lint(i,j)
enddo
enddo
! **************
! *** PNOF6h ***
! **************
EJ_PNOF6h = 0d0
EK_PNOF6h = 0d0
EL_PNOF6h = 0d0
do i=1,nMO
do j=1,nMO
if(i == j) then
Delta_ij = n(i)*n(j)
Pi_ij = sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
Delta_ij = h(i)*h(j)*exp(-2d0*SF)
Pi_ij = - sqrt(h(i)*h(j))*exp(-SF)
elseif(i <= FL .and. j > FL) then
Delta_ij = gam(i)*gam(j)/Sh
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Sh) * (n(j)*h(i) + gam(i)*gam(j)/Sh))
elseif(i > FL .and. j <= FL) then
Delta_ij = gam(i)*gam(j)/Sh
Pi_ij = - sqrt( (n(i)*h(j) + gam(i)*gam(j)/Sh) * (n(j)*h(i) + gam(i)*gam(j)/Sh))
elseif(i > FL .and. j >= FL) then
Delta_ij = n(i)*n(j)*exp(-2d0*SF)
Pi_ij = sqrt(n(i)*n(j))*exp(-SF)
else
Delta_ij = 0d0
Pi_ij = 0d0
endif
EJ_PNOF6h = EJ_PNOF6h - 2d0*Delta_ij*Jint(i,j)
EK_PNOF6h = EK_PNOF6h + Delta_ij*Kint(i,j)
EL_PNOF6h = EL_PNOF6h + Pi_ij*Lint(i,j)
enddo
enddo
! Add the SD part
EJ_PNOF2 = EJ_SD + EJ_PNOF2
EJ_PNOF3 = EJ_SD + EJ_PNOF3
EJ_PNOF4 = EJ_SD + EJ_PNOF4
! EJ_PNOF5 = EJ_SD + EJ_PNOF5
EJ_PNOF6d = EJ_SD + EJ_PNOF6d
EJ_PNOF6u = EJ_SD + EJ_PNOF6u
EJ_PNOF6h = EJ_SD + EJ_PNOF6h
! EJ_PNOF7 = EJ_SD + EJ_PNOF7
EK_PNOF2 = EK_SD + EK_PNOF2
EK_PNOF3 = EK_SD + EK_PNOF3
EK_PNOF4 = EK_SD + EK_PNOF4
! EK_PNOF5 = EK_SD + EK_PNOF5
EK_PNOF6d = EK_SD + EK_PNOF6d
EK_PNOF6u = EK_SD + EK_PNOF6u
EK_PNOF6h = EK_SD + EK_PNOF6h
! EK_PNOF7 = EK_SD + EK_PNOF7
! Compute total energies
E_PNOF2 = ET + EV + EJ_PNOF2 + EK_PNOF2 + EL_PNOF2
E_PNOF3 = ET + EV + EJ_PNOF3 + EK_PNOF3 + EL_PNOF3
E_PNOF4 = ET + EV + EJ_PNOF4 + EK_PNOF4 + EL_PNOF4
! E_PNOF5 = ET + EV + EJ_PNOF5 + EK_PNOF5 + EL_PNOF5
E_PNOF6d = ET + EV + EJ_PNOF6d + EK_PNOF6d + EL_PNOF6d
E_PNOF6u = ET + EV + EJ_PNOF6u + EK_PNOF6u + EL_PNOF6u
E_PNOF6h = ET + EV + EJ_PNOF6h + EK_PNOF6h + EL_PNOF6h
! E_PNOF7 = ET + EV + EJ_PNOF7 + EK_PNOF7 + EL_PNOF7
! Dump energies
print*, '*******************************'
print*, '*** JKL NOFT functionals ***'
print*, '*******************************'
print*, ''
print*, '*** Coulomb energies ***'
print*, 'Coulomb PNOF2 energy = ',EJ_PNOF2
print*, 'Coulomb PNOF3 energy = ',EJ_PNOF3
print*, 'Coulomb PNOF4 energy = ',EJ_PNOF4
! print*, 'Coulomb PNOF5 energy = ',EJ_PNOF5
print*, 'Coulomb PNOF6d energy = ',EJ_PNOF6d
print*, 'Coulomb PNOF6u energy = ',EJ_PNOF6u
print*, 'Coulomb PNOF6h energy = ',EJ_PNOF6h
! print*, 'Coulomb PNOF7 energy = ',EJ_PNOF7
print*, ''
print*, '*** Exchange energies ***'
print*, 'Exchange PNOF2 energy = ',EK_PNOF2
print*, 'Exchange PNOF3 energy = ',EK_PNOF3
print*, 'Exchange PNOF4 energy = ',EK_PNOF4
! print*, 'Exchange PNOF5 energy = ',EK_PNOF5
print*, 'Exchange PNOF6d energy = ',EK_PNOF6d
print*, 'Exchange PNOF6u energy = ',EK_PNOF6u
print*, 'Exchange PNOF6h energy = ',EK_PNOF6h
! print*, 'Exchange PNOF7 energy = ',EK_PNOF7
print*, ''
print*, '*** Time-inversion energies ***'
print*, 'Time-inversion PNOF2 energy = ',EL_PNOF2
print*, 'Time-inversion PNOF3 energy = ',EL_PNOF3
print*, 'Time-inversion PNOF4 energy = ',EL_PNOF4
! print*, 'Time-inversion PNOF5 energy = ',EL_PNOF5
print*, 'Time-inversion PNOF6d energy = ',EL_PNOF6d
print*, 'Time-inversion PNOF6u energy = ',EL_PNOF6u
print*, 'Time-inversion PNOF6h energy = ',EL_PNOF6h
! print*, 'Time-inversion PNOF7 energy = ',EL_PNOF7
print*, ''
print*, '*** Two-electron energies ***'
print*, 'J+K+L PNOF2 energy = ',EJ_PNOF2 + EK_PNOF2 + EL_PNOF2
print*, 'J+K+L PNOF3 energy = ',EJ_PNOF3 + EK_PNOF3 + EL_PNOF3
print*, 'J+K+L PNOF4 energy = ',EJ_PNOF4 + EK_PNOF4 + EL_PNOF4
! print*, 'J+K+L PNOF5 energy = ',EJ_PNOF5 + EK_PNOF5 + EL_PNOF5
print*, 'J+K+L PNOF6d energy = ',EJ_PNOF6d + EK_PNOF6d + EL_PNOF6d
print*, 'J+K+L PNOF6u energy = ',EJ_PNOF6u + EK_PNOF6u + EL_PNOF6u
print*, 'J+K+L PNOF6h energy = ',EJ_PNOF6h + EK_PNOF6h + EL_PNOF6h
! print*, 'J+K+L PNOF7 energy = ',EJ_PNOF7 + EK_PNOF7 + EL_PNOF7
print*, ''
print*, '*** Total energies ***'
print*, 'Total PNOF2 energy = ',E_PNOF2
print*, 'Total PNOF3 energy = ',E_PNOF3
print*, 'Total PNOF4 energy = ',E_PNOF4
! print*, 'Total PNOF5 energy = ',E_PNOF5
print*, 'Total PNOF6d energy = ',E_PNOF6d
print*, 'Total PNOF6u energy = ',E_PNOF6u
print*, 'Total PNOF6h energy = ',E_PNOF6h
! print*, 'Total PNOF7 energy = ',E_PNOF7
print*, ''
end subroutine NOFT_JKLfunc

View File

@ -0,0 +1,260 @@
subroutine NOFT_JKfunc(nMO,FL,ET,EV,n)
implicit none
BEGIN_DOC
! JK-only functionals for NOFT
END_DOC
PROVIDE mo_bielec_integrals_in_map
! Input variables
integer,intent(in) :: nMO,FL
double precision,intent(in) :: ET,EV
double precision,intent(in) :: n(nMO)
! Local variables
integer :: i,j
double precision :: EJ_SD
double precision :: EK_SD,EK_MBB,EK_POWER,EK_BBC1,EK_BBC2,EK_CA,EK_CGA,EK_GU,EK_ML,EK_MLSIC
double precision :: E_SD,E_MBB,E_POWER,E_BBC1,E_BBC2,E_CA,E_CGA,E_GU,E_ML,E_MLSIC
double precision :: alpha,a0,a1,b1
double precision :: f_ij,get_mo_bielec_integral
double precision,allocatable :: Jint(:,:),Kint(:,:)
! Memory allocation
allocate(Jint(nMO,nMO),Kint(nMO,nMO))
! Coulomb, exchange and time-inversion integrals
do i=1,nMO
do j=1,nMO
Jint(i,j) = get_mo_bielec_integral(i,j,i,j,mo_integrals_map)
Kint(i,j) = get_mo_bielec_integral(i,j,j,i,mo_integrals_map)
enddo
enddo
! Compute SD Coulomb energy
EJ_SD = 2d0*dot_product(n,matmul(Jint,n))
! Compute SD exchange energy
EK_SD = dot_product(n,matmul(Kint,n))
! Compute MBB exchange energy
EK_MBB = 0d0
do i=1,nMO
do j=1,nMO
EK_MBB = EK_MBB + sqrt(n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute BBC1 exchange energy
EK_BBC1 = 0d0
do i=1,nMO
do j=1,nMO
if(i /= j .and. i > FL .and. j > FL) then
f_ij = - sqrt(n(i)*n(j))
else
f_ij = sqrt(n(i)*n(j))
endif
EK_BBC1 = EK_BBC1 + f_ij*Kint(i,j)
enddo
enddo
! Compute BBC2 exchange energy
EK_BBC2 = 0d0
do i=1,nMO
do j=1,i-1
if(i > FL .and. j > FL) then
f_ij = - sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
f_ij = n(i)*n(j)
else
f_ij = sqrt(n(i)*n(j))
endif
EK_BBC2 = EK_BBC2 + f_ij*Kint(i,j)
enddo
EK_BBC2 = EK_BBC2 + n(i)*Kint(i,i)
do j=i+1,nMO
if(i > FL .and. j > FL) then
f_ij = - sqrt(n(i)*n(j))
elseif(i <= FL .and. j <= FL) then
f_ij = n(i)*n(j)
else
f_ij = sqrt(n(i)*n(j))
endif
EK_BBC2 = EK_BBC2 + f_ij*Kint(i,j)
enddo
enddo
! Compute CA exchange energy
EK_CA = 0d0
do i=1,nMO
do j=1,nMO
EK_CA = EK_CA + (sqrt(n(i)*n(j)*(1d0 - n(i))*(1d0 - n(j))) + n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute CGA exchange energy
EK_CGA = 0d0
do i=1,nMO
do j=1,nMO
EK_CGA = EK_CGA + 0.5d0*(sqrt(n(i)*n(j)*(2d0 - n(i))*(2d0 - n(j))) + n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute ML exchange energy
EK_ML = 0d0
a0 = 126.3101d0
a1 = 2213.33d0
b1 = 2338.64d0
do i=1,nMO
do j=1,nMO
EK_ML = EK_ML + n(i)*n(j)*(a0 + a1*n(i)*n(j))/(1d0 + b1*n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute MLSIC exchange energy
EK_MLSIC = 0d0
a0 = 1298.78d0
a1 = 35114.4d0
b1 = 36412.2d0
do i=1,nMO
do j=1,i-1
EK_MLSIC = EK_MLSIC + n(i)*n(j)*(a0 + a1*n(i)*n(j))/(1d0 + b1*n(i)*n(j))*Kint(i,j)
enddo
EK_MLSIC = EK_MLSIC + n(i)*n(i)*Kint(i,i)
do j=i+1,nMO
EK_MLSIC = EK_MLSIC + n(i)*n(j)*(a0 + a1*n(i)*n(j))/(1d0 + b1*n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute GU exchange energy
EK_GU = 0d0
do i=1,nMO
do j=1,i-1
EK_GU = EK_GU + sqrt(n(i)*n(j))*Kint(i,j)
enddo
EK_GU = EK_GU + n(i)*n(i)*Kint(i,j)
do j=i+1,nMO
EK_GU = EK_GU + sqrt(n(i)*n(j))*Kint(i,j)
enddo
enddo
! Compute POWER exchange energy
EK_POWER = 0d0
alpha = 1d0/3d0
do i=1,nMO
do j=1,nMO
EK_POWER = EK_POWER + (n(i)*n(j))**alpha*Kint(i,j)
enddo
enddo
! Compute total energies
E_SD = ET + EV + EJ_SD - EK_SD
E_MBB = ET + EV + EJ_SD - EK_MBB
E_BBC1 = ET + EV + EJ_SD - EK_BBC1
E_BBC2 = ET + EV + EJ_SD - EK_BBC2
E_CA = ET + EV + EJ_SD - EK_CA
E_CGA = ET + EV + EJ_SD - EK_CGA
E_ML = ET + EV + EJ_SD - EK_ML
E_MLSIC = ET + EV + EJ_SD - EK_MLSIC
E_GU = ET + EV + EJ_SD - EK_GU
E_POWER = ET + EV + EJ_SD - EK_POWER
! Dump energies
print*, '*******************************'
print*, '*** JK NOFT functionals ***'
print*, '*******************************'
print*, ''
print*, '*** Coulomb energies ***'
print*, 'Coulomb SD energy = ',EJ_SD
print*, ''
print*, '*** Exchange energies ***'
print*, 'Exchange SD energy = ',-EK_SD
print*, 'Exchange MBB energy = ',-EK_MBB
print*, 'Exchange BBC1 energy = ',-EK_BBC1
print*, 'Exchange BBC2 energy = ',-EK_BBC2
print*, 'Exchange CA energy = ',-EK_CA
print*, 'Exchange CGA energy = ',-EK_CGA
print*, 'Exchange ML energy = ',-EK_ML
print*, 'Exchange MLSIC energy = ',-EK_MLSIC
print*, 'Exchange GU energy = ',-EK_GU
print*, 'Exchange POWER energy = ',-EK_POWER
print*, ''
print*, ''
print*, '*** Two-electron energies ***'
print*, 'J+K SD energy = ',EJ_SD - EK_SD
print*, 'J+K MBB energy = ',EJ_SD - EK_MBB
print*, 'J+K BBC1 energy = ',EJ_SD - EK_BBC1
print*, 'J+K BBC2 energy = ',EJ_SD - EK_BBC2
print*, 'J+K CA energy = ',EJ_SD - EK_CA
print*, 'J+K CGA energy = ',EJ_SD - EK_CGA
print*, 'J+K ML energy = ',EJ_SD - EK_ML
print*, 'J+K MLSIC energy = ',EJ_SD - EK_MLSIC
print*, 'J+K GU energy = ',EJ_SD - EK_GU
print*, 'J+K POWER energy = ',EJ_SD - EK_POWER
print*, ''
print*, '*** Total energies ***'
print*, 'Total SD energy = ',E_SD
print*, 'Total MBB energy = ',E_MBB
print*, 'Total BBC1 energy = ',E_BBC1
print*, 'Total BBC2 energy = ',E_BBC2
print*, 'Total CA energy = ',E_CA
print*, 'Total CGA energy = ',E_CGA
print*, 'Total ML energy = ',E_ML
print*, 'Total MLSIC energy = ',E_MLSIC
print*, 'Total GU energy = ',E_GU
print*, 'Total POWER energy = ',E_POWER
print*, ''
end subroutine NOFT_JKfunc

View File

@ -0,0 +1,46 @@
subroutine NOFT_PT2(nMO,FL,n)
! Compute the PT2 correction from NOFT
END_DOC
PROVIDE mo_bielec_integrals_in_map
! Input variables
integer,intent(in) :: nMO,FL
double precision,intent(in) :: n(nMO)
! Local variables
integer :: i,j,a,b
double precision :: EPT1,EPT2
double precision :: get_mo_bielec_integral
! memory allocation
! Useful quantities
EPT2 = 0d0
! do i=1,FL
! do j=1,FL
! do a=FL+1,nMO
! do b=FL+1,nMO
! enddo
! enddo
! enddo
! enddo
! Dump energies
print*, '*******************************'
print*, '*** PT2 NOFT corrections ***'
print*, '*******************************'
print*, ''
print*, 'Total PT1 energy = ',E_PT1
print*, 'Total PT2 energy = ',E_PT2
print*, 'Total PT1+PT2 energy = ',E_PT1 + E_PT2
print*, ''
end subroutine NOFT_PT2

View File

@ -0,0 +1,51 @@
subroutine NOFT_core(nMO,ET,EV,n)
implicit none
BEGIN_DOC
! Core energy for NOFT
END_DOC
! Input variables
integer,intent(in) :: nMO
double precision,intent(in) :: n(nMO)
! Local variables
integer :: i
! Output variables
double precision,intent(out) :: ET,EV
! Compute kinetic energy
ET = 0d0
do i=1,nMO
ET = ET + n(i)*mo_kinetic_integral(i,i)
enddo
ET = 2d0*ET
! Compute nuclear attraction energy
EV = 0d0
do i=1,nMO
EV = EV + n(i)*mo_nucl_elec_integral(i,i)
enddo
EV = 2d0*EV
! Dump energies
print*, '*******************************'
print*, '*** Core energies ***'
print*, '*******************************'
print*, ''
print*, 'Kinetic energy = ',ET
print*, 'Nuclear attraction energy = ',EV
print*, ''
end subroutine NOFT_core

12
plugins/NOFT/README.rst Normal file
View File

@ -0,0 +1,12 @@
====
NOFT
====
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -0,0 +1,106 @@
! DO NOT MODIFY BY HAND
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
! from file /home/loos/quantum_package/src/NOFT/EZFIO.cfg
BEGIN_PROVIDER [ logical, do_jk_functionals ]
implicit none
BEGIN_DOC
! Compute energies for JK-only functionals
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_noft_do_jk_functionals(has)
if (has) then
call ezfio_get_noft_do_jk_functionals(do_jk_functionals)
else
print *, 'noft/do_jk_functionals not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( do_jk_functionals, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read do_jk_functionals with MPI'
endif
IRP_ENDIF
call write_time(6)
if (mpi_master) then
write(6, *) 'Read do_jk_functionals'
endif
END_PROVIDER
BEGIN_PROVIDER [ logical, do_jkl_functionals ]
implicit none
BEGIN_DOC
! Compute energies for JKL-only functionals (PNOFs)
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_noft_do_jkl_functionals(has)
if (has) then
call ezfio_get_noft_do_jkl_functionals(do_jkl_functionals)
else
print *, 'noft/do_jkl_functionals not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( do_jkl_functionals, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read do_jkl_functionals with MPI'
endif
IRP_ENDIF
call write_time(6)
if (mpi_master) then
write(6, *) 'Read do_jkl_functionals'
endif
END_PROVIDER
BEGIN_PROVIDER [ logical, do_pt2_noft ]
implicit none
BEGIN_DOC
! Compute PT2 correction for NOFT
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_noft_do_pt2_noft(has)
if (has) then
call ezfio_get_noft_do_pt2_noft(do_pt2_noft)
else
print *, 'noft/do_pt2_noft not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( do_pt2_noft, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read do_pt2_noft with MPI'
endif
IRP_ENDIF
call write_time(6)
if (mpi_master) then
write(6, *) 'Read do_pt2_noft'
endif
END_PROVIDER

View File

@ -15,13 +15,7 @@ default: 0.0001
type: Normalized_float type: Normalized_float
doc: Stop stochastic PT2 when the relative error is smaller than PT2_relative_error doc: Stop stochastic PT2 when the relative error is smaller than PT2_relative_error
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 0.001 default: 0.01
[PT2_absolute_error]
type: Threshold
doc: Stop stochastic PT2 when the statistical error is smaller than PT2_absolute_error
interface: ezfio,provider,ocaml
default: 0.00001
[correlation_energy_ratio_max] [correlation_energy_ratio_max]
type: Normalized_float type: Normalized_float

View File

@ -72,6 +72,10 @@ integer function zmq_get_$X(zmq_to_qp_run_socket, worker_id)
10 continue 10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr

View File

@ -10,17 +10,15 @@ BEGIN_PROVIDER [ integer, N_det_selectors]
double precision :: norm, norm_max double precision :: norm, norm_max
call write_time(6) call write_time(6)
N_det_selectors = N_det N_det_selectors = N_det
if (threshold_generators < 1.d0) then norm = 1.d0
norm = 0.d0 do i=1,N_det
do i=1,N_det norm = norm - psi_average_norm_contrib_sorted(i)
norm = norm + psi_average_norm_contrib_sorted(i) if (norm - 1.d-10 < 1.d0 - threshold_selectors) then
if (norm > threshold_selectors) then N_det_selectors = i
N_det_selectors = i exit
exit endif
endif enddo
enddo N_det_selectors = max(N_det_selectors,N_det_generators)
N_det_selectors = max(N_det_selectors,N_det_generators)
endif
call write_int(6,N_det_selectors,'Number of selectors') call write_int(6,N_det_selectors,'Number of selectors')
END_PROVIDER END_PROVIDER

View File

@ -10,3 +10,9 @@ doc: Maximum number of dressed CI iterations
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 10 default: 10
[dress_relative_error]
type: Normalized_float
doc: Stop stochastic PT2 when the relative error is smaller than PT2_relative_error
interface: ezfio,provider,ocaml
default: 0.001

View File

@ -81,10 +81,6 @@ subroutine generate_singles_and_doubles(delta_ij_loc, i_generator, bitmask_index
hole (k,2) = iand(psi_det_generators(k,2,i_generator), generators_bitmask(k,2,s_hole,bitmask_index)) hole (k,2) = iand(psi_det_generators(k,2,i_generator), generators_bitmask(k,2,s_hole,bitmask_index))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), generators_bitmask(k,1,s_part,bitmask_index)) particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), generators_bitmask(k,1,s_part,bitmask_index))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), generators_bitmask(k,2,s_part,bitmask_index)) particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), generators_bitmask(k,2,s_part,bitmask_index))
!hole (k,1) = iand(psi_det_generators(k,1,i_generator), full_ijkl_bitmask(k))
!hole (k,2) = iand(psi_det_generators(k,2,i_generator), full_ijkl_bitmask(k))
!particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), full_ijkl_bitmask(k))
!particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), full_ijkl_bitmask(k))
enddo enddo
integer :: N_holes(2), N_particles(2) integer :: N_holes(2), N_particles(2)

View File

@ -42,6 +42,7 @@ subroutine run_dressing(N_st,energy)
do i=1,N_st do i=1,N_st
print *, i, ci_energy_dressed(i) print *, i, ci_energy_dressed(i)
enddo enddo
energy(1:N_st) = ci_energy_dressed(1:N_st)
call diagonalize_ci_dressed call diagonalize_ci_dressed
E_new = sum(psi_energy(:)) E_new = sum(psi_energy(:))
@ -61,10 +62,9 @@ subroutine run_dressing(N_st,energy)
enddo enddo
print *, 'Dressed energy <Psi|H+Delta|Psi>' print *, 'Dressed energy <Psi|H+Delta|Psi>'
do i=1,N_st do i=1,N_st
print *, i, ci_energy_dressed(i)+nuclear_repulsion print *, i, ci_energy_dressed(i)
enddo enddo
endif endif
if(.true.) energy(1:N_st) = 0d0 ! ci_energy_dressed(1:N_st)
end end

View File

@ -64,11 +64,7 @@ subroutine run_wf
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_gen_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_rows psi_det_sorted_gen_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order PROVIDE psi_bilinear_matrix_transp_order
!!$OMP PARALLEL PRIVATE(i)
!i = omp_get_thread_num()
! call dress_slave_tcp(i+1, energy)
call dress_slave_tcp(0, energy) call dress_slave_tcp(0, energy)
!!$OMP END PARALLEL
endif endif
end do end do
end end
@ -77,8 +73,6 @@ subroutine dress_slave_tcp(i,energy)
implicit none implicit none
double precision, intent(in) :: energy(N_states_diag) double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: i integer, intent(in) :: i
logical :: lstop
lstop = .False.
call run_dress_slave(0,i,energy) call run_dress_slave(0,i,energy)
end end

View File

@ -1,6 +1,9 @@
BEGIN_PROVIDER [ integer, dress_stoch_istate ] BEGIN_PROVIDER [ integer, dress_stoch_istate ]
implicit none implicit none
dress_stoch_istate = 1 BEGIN_DOC
! State for stochatsic dressing
END_DOC
dress_stoch_istate = 1
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_N_teeth ] BEGIN_PROVIDER [ integer, pt2_N_teeth ]
@ -9,19 +12,29 @@ END_PROVIDER
&BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ] &BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ]
implicit none implicit none
logical, external :: testTeethBuilding logical, external :: testTeethBuilding
pt2_F(:) = 1 integer :: i
!pt2_F(:N_det_generators/1000*0+50) = 1 integer :: e
pt2_n_tasks_max = 16 ! N_det_generators/100 + 1 e = elec_num - n_core_orb * 2
pt2_n_tasks_max = 1 + min((e*(e-1))/2, int(dsqrt(dble(N_det_generators)))/10)
do i=1,N_det_generators
if (maxval(dabs(psi_coef_sorted_gen(i,1:N_states))) > 0.001d0) then
pt2_F(i) = pt2_n_tasks_max
else
pt2_F(i) = 1
endif
enddo
if(N_det_generators < 1024) then if(N_det_generators < 1024) then
pt2_minDetInFirstTeeth = 1 pt2_minDetInFirstTeeth = 1
pt2_N_teeth = 1 pt2_N_teeth = 1
else else
do pt2_N_teeth=32,1,-1 pt2_minDetInFirstTeeth = min(5, N_det_generators)
pt2_minDetInFirstTeeth = min(5, N_det_generators) do pt2_N_teeth=100,2,-1
if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit
end do end do
end if end if
call write_int(6,pt2_N_teeth,'Number of comb teeth')
END_PROVIDER END_PROVIDER
@ -36,25 +49,39 @@ logical function testTeethBuilding(minF, N)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators)) allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators do i=1,N_det_generators
tilde_w(i) = psi_coef_generators(i,dress_stoch_istate)**2 tilde_w(i) = psi_coef_sorted_gen(i,dress_stoch_istate)**2 + 1.d-20
enddo
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i) tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo enddo
tilde_cW(N_det_generators) = 1d0 tilde_cW(:) = tilde_cW(:) + 1.d0
n0 = 0 n0 = 0
testTeethBuilding = .false.
do do
u0 = tilde_cW(n0) u0 = tilde_cW(n0)
r = tilde_cW(n0 + minF) r = tilde_cW(n0 + minF)
Wt = (1d0 - u0) / dble(N) Wt = (1d0 - u0) / dble(N)
if (dabs(Wt) <= 1.d-3) then
return
endif
if(Wt >= r - u0) then if(Wt >= r - u0) then
testTeethBuilding = .true. testTeethBuilding = .true.
return return
end if end if
n0 += 1 n0 += 1
if(N_det_generators - n0 < minF * N) then if(N_det_generators - n0 < minF * N) then
testTeethBuilding = .false.
return return
end if end if
end do end do
@ -62,7 +89,7 @@ logical function testTeethBuilding(minF, N)
end function end function
BEGIN_PROVIDER[ integer, dress_N_cp_max ] BEGIN_PROVIDER[ integer, dress_N_cp_max ]
dress_N_cp_max = 64 dress_N_cp_max = 28
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER[integer, pt2_J, (N_det_generators)] BEGIN_PROVIDER[integer, pt2_J, (N_det_generators)]
@ -75,6 +102,7 @@ END_PROVIDER
pt2_J = pt2_J_ pt2_J = pt2_J_
dress_R1 = dress_R1_ dress_R1 = dress_R1_
!return
do m=1,dress_N_cp do m=1,dress_N_cp
nmov = 0 nmov = 0
@ -118,26 +146,31 @@ END_PROVIDER
N_j = pt2_n_0(1) N_j = pt2_n_0(1)
d(:) = .false. d(:) = .false.
U = min(1, N_det_generators/(dress_N_cp_max**2/2)) ! Set here the positions of the checkpoints
do i=1,dress_N_cp_max-1 ! U = N_det_generators/((dress_N_cp_max**2+dress_N_cp_max)/2)+1
dress_M_m(i) = U * ((i**2-i)/2)! / (dress_N_cp_max+1) ! do i=1, dress_N_cp_max-1
! dress_M_m(i) = U * (((i*i)+i)/2) + 10
! end do
! dress_M_m(dress_N_cp_max) = N_det_generators+1
do i=1, dress_N_cp_max-1
dress_M_m(i) = ishft(1,i+3)
end do end do
U = N_det_generators/((dress_N_cp_max**2+dress_N_cp_max)/2)+1
do i=1, dress_N_cp_max
dress_M_m(i) = U * (((i*i)+i)/2)
end do
dress_M_m(1) = min(dress_M_m(1), 2)
dress_M_m(dress_N_cp_max) = N_det_generators+1 dress_M_m(dress_N_cp_max) = N_det_generators+1
do i=1,N_j do i=1,N_j
d(i) = .true. d(i) = .true.
pt2_J_(i) = i pt2_J_(i) = i
end do end do
call random_seed(put=(/3211,64,6566,321,65,321,654,65,321,6321,654,65,321,621,654,65,321,65,654,65,321,65/))
integer, allocatable :: seed(:)
call random_seed(size=m)
allocate(seed(m))
do i=1,m
seed(i) = i
enddo
call random_seed(put=seed)
deallocate(seed)
call RANDOM_NUMBER(pt2_u) call RANDOM_NUMBER(pt2_u)
call RANDOM_NUMBER(pt2_u) call RANDOM_NUMBER(pt2_u)
@ -177,6 +210,10 @@ END_PROVIDER
enddo enddo
dress_N_cp = m-1 dress_N_cp = m-1
if (dress_N_cp == 0) then
dress_N_cp = 1
endif
dress_R1_(dress_N_cp) = N_j dress_R1_(dress_N_cp) = N_j
dress_M_m(dress_N_cp) = N_c dress_M_m(dress_N_cp) = N_c
!!!!!!!!!!!!!! !!!!!!!!!!!!!!
@ -196,10 +233,10 @@ END_PROVIDER
subroutine ZMQ_dress(E, dress, delta_out, delta_s2_out, relative_error) subroutine ZMQ_dress(E, dress, delta_out, delta_s2_out, relative_error)
use f77_zmq use f77_zmq
use selection_types
implicit none implicit none
character(len=64000) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, external :: omp_get_thread_num integer, external :: omp_get_thread_num
double precision, intent(in) :: E(N_states), relative_error double precision, intent(in) :: E(N_states), relative_error
@ -212,20 +249,18 @@ subroutine ZMQ_dress(E, dress, delta_out, delta_s2_out, relative_error)
integer :: i, j, k, Ncp integer :: i, j, k, Ncp
integer, external :: add_task_to_taskserver
double precision :: state_average_weight_save(N_states) double precision :: state_average_weight_save(N_states)
character(100000) :: task
PROVIDE Nproc
task(:) = CHAR(0) task(:) = CHAR(0)
allocate(delta(N_states,N_det), delta_s2(N_states, N_det)) allocate(delta(N_states,N_det), delta_s2(N_states, N_det))
state_average_weight_save(:) = state_average_weight(:) state_average_weight_save(:) = state_average_weight(:)
do dress_stoch_istate=1,N_states do dress_stoch_istate=1,N_states
SOFT_TOUCH dress_stoch_istate
state_average_weight(:) = 0.d0 state_average_weight(:) = 0.d0
state_average_weight(dress_stoch_istate) = 1.d0 state_average_weight(dress_stoch_istate) = 1.d0
TOUCH state_average_weight TOUCH state_average_weight dress_stoch_istate
!provide psi_coef_generators provide nproc mo_bielec_integrals_in_map mo_mono_elec_integral psi_selectors pt2_F
provide nproc mo_bielec_integrals_in_map mo_mono_elec_integral psi_selectors
!print *, dress_e0_denominator
print *, '========== ================= ================= =================' print *, '========== ================= ================= ================='
print *, ' Samples Energy Stat. Error Seconds ' print *, ' Samples Energy Stat. Error Seconds '
@ -237,7 +272,7 @@ subroutine ZMQ_dress(E, dress, delta_out, delta_s2_out, relative_error)
integer, external :: zmq_put_N_det_generators integer, external :: zmq_put_N_det_generators
integer, external :: zmq_put_N_det_selectors integer, external :: zmq_put_N_det_selectors
integer, external :: zmq_put_dvector integer, external :: zmq_put_dvector
integer, external :: zmq_set_running integer, external :: zmq_put_int
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
stop 'Unable to put psi on ZMQ server' stop 'Unable to put psi on ZMQ server'
@ -254,29 +289,71 @@ subroutine ZMQ_dress(E, dress, delta_out, delta_s2_out, relative_error)
if (zmq_put_dvector(zmq_to_qp_run_socket,1,"state_average_weight",state_average_weight,N_states) == -1) then if (zmq_put_dvector(zmq_to_qp_run_socket,1,"state_average_weight",state_average_weight,N_states) == -1) then
stop 'Unable to put state_average_weight on ZMQ server' stop 'Unable to put state_average_weight on ZMQ server'
endif endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,"dress_stoch_istate",real(dress_stoch_istate,8),1) == -1) then if (zmq_put_int(zmq_to_qp_run_socket,1,'dress_stoch_istate',dress_stoch_istate) == -1) then
stop 'Unable to put dress_stoch_istate on ZMQ server' stop 'Unable to put dress_stoch_istate on ZMQ server'
endif endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_selectors',threshold_selectors,1) == -1) then
stop 'Unable to put threshold_selectors on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',threshold_generators,1) == -1) then
stop 'Unable to put threshold_generators on ZMQ server'
endif
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
call write_int(6,pt2_n_tasks_max,'Max number of task fragments')
do i=1,N_det_generators integer, external :: add_task_to_taskserver
do j=1,pt2_F(pt2_J(i)) integer :: ipos
write(task(1:20),'(I9,1X,I9''|'')') j, pt2_J(i) ipos=0
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:20))) == -1) then do i=1,N_det_generators
if (pt2_F(i) > 1) then
ipos += 1
endif
enddo
call write_int(6,ipos,'Number of fragmented tasks')
ipos=1
do i= 1, N_det_generators
do j=1,pt2_F(pt2_J(i))
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') j, pt2_J(i)
ipos += 20
if (ipos > len(task)-20) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
endif
end do
enddo
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server' stop 'Unable to add task to task server'
endif endif
end do endif
end do
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then integer, external :: zmq_set_running
print *, irp_here, ': Failed in zmq_set_running' if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
integer :: nproc_target
nproc_target = nproc
double precision :: mem
mem = 8.d0 * N_det * (N_int * 2.d0 * 3.d0 + 3.d0 + 5.d0) / (1024.d0**3)
call write_double(6,mem,'Estimated memory/thread (Gb)')
if (qp_max_mem > 0) then
nproc_target = max(1,int(dble(qp_max_mem)/mem))
nproc_target = min(nproc_target,nproc)
endif endif
call omp_set_nested(.true.) call omp_set_nested(.true.)
if (.true.) then !! TODO
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) & !$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) &
!$OMP PRIVATE(i) !$OMP PRIVATE(i)
i = omp_get_thread_num() i = omp_get_thread_num()
@ -288,13 +365,6 @@ if (.true.) then !! TODO
endif endif
!$OMP END PARALLEL !$OMP END PARALLEL
else
call dress_collector(zmq_socket_pull,E, relative_error, delta, delta_s2, dress,&
dress_stoch_istate)
endif
call omp_set_nested(.false.)
delta_out(dress_stoch_istate,1:N_det) = delta(dress_stoch_istate,1:N_det) delta_out(dress_stoch_istate,1:N_det) = delta(dress_stoch_istate,1:N_det)
delta_s2_out(dress_stoch_istate,1:N_det) = delta_s2(dress_stoch_istate,1:N_det) delta_s2_out(dress_stoch_istate,1:N_det) = delta_s2(dress_stoch_istate,1:N_det)
@ -304,6 +374,7 @@ endif
enddo enddo
FREE dress_stoch_istate FREE dress_stoch_istate
state_average_weight(:) = state_average_weight_save(:) state_average_weight(:) = state_average_weight_save(:)
! call omp_set_nested(.false.)
TOUCH state_average_weight TOUCH state_average_weight
deallocate(delta,delta_s2) deallocate(delta,delta_s2)
@ -401,7 +472,7 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
double precision, intent(out) :: delta(N_states, N_det) double precision, intent(out) :: delta(N_states, N_det)
double precision, intent(out) :: delta_s2(N_states, N_det) double precision, intent(out) :: delta_s2(N_states, N_det)
double precision, allocatable :: breve_delta_m(:,:,:), S(:), S2(:) double precision, allocatable :: breve_delta_m(:,:,:), S(:), S2(:)
double precision, allocatable :: edI(:,:), edI_task(:,:) double precision, allocatable :: edI(:), edI_task(:)
integer, allocatable :: edI_index(:) integer, allocatable :: edI_index(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket
@ -417,16 +488,16 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
integer, external :: zmq_delete_tasks, dress_find_sample integer, external :: zmq_delete_tasks, dress_find_sample
logical :: found logical :: found
integer :: worker_id integer :: worker_id
worker_id=1
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,1)
found = .false. found = .false.
delta = 0d0 delta = 0d0
delta_s2 = 0d0 delta_s2 = 0d0
allocate(task_id(pt2_n_tasks_max)) allocate(task_id(pt2_n_tasks_max))
allocate(edI(N_states, N_det)) allocate(edI(N_det_generators))
allocate(edI_task(N_states, N_det), edI_index(N_det)) allocate(edI_task(N_det_generators), edI_index(N_det_generators))
allocate(breve_delta_m(N_states, N_det, 2)) allocate(breve_delta_m(N_states, N_det, 2))
allocate(dot_f(dress_N_cp+1)) allocate(dot_f(dress_N_cp+1))
allocate(S(pt2_N_teeth+1), S2(pt2_N_teeth+1)) allocate(S(pt2_N_teeth+1), S2(pt2_N_teeth+1))
@ -447,7 +518,7 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
if(dot_f(m) == 0) then if(dot_f(m) == 0) then
E0 = 0 E0 = 0
do i=dress_dot_n_0(m),1,-1 do i=dress_dot_n_0(m),1,-1
E0 += edI(dress_stoch_istate, i) E0 += edI(i)
end do end do
do while(c < dress_M_m(m)) do while(c < dress_M_m(m))
c = c+1 c = c+1
@ -455,34 +526,34 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
do p=pt2_N_teeth, 1, -1 do p=pt2_N_teeth, 1, -1
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1)) v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
i = dress_find_sample(v, pt2_cW) i = dress_find_sample(v, pt2_cW)
x += edI(dress_stoch_istate, i) * pt2_W_T / pt2_w(i) x += edI(i) * pt2_W_T / pt2_w(i)
S(p) += x S(p) += x
S2(p) += x**2 S2(p) += x**2
end do end do
end do end do
t = dress_dot_t(m) t = dress_dot_t(m)
avg = S(t) / dble(c) avg = E0 + S(t) / dble(c)
if (c > 1) then if (c > 2) then
eqt = (S2(t) / c) - (S(t)/c)**2 eqt = dabs((S2(t) / c) - (S(t)/c)**2)
eqt = sqrt(eqt / dble(c-1)) error = sqrt(eqt / (dble(c)-1.5d0))
error = eqt
time = omp_get_wtime() time = omp_get_wtime()
print '(G10.3, 2X, F16.10, 2X, G16.3, 2X, F16.4, A20)', c, avg+E0+E(dress_stoch_istate), eqt, time-time0, '' print '(G10.3, 2X, F16.10, 2X, G16.3, 2X, F16.4, A20)', c, avg+E(istate), error, time-time0, ''
else if ( m==dress_N_cp ) then
error = 0.d0
else else
eqt = 1.d0 error =1.d0
error = eqt
endif endif
m += 1 m += 1
if(eqt <= relative_error) then if(dabs(error / avg) <= relative_error) then
integer, external :: zmq_put_dvector integer, external :: zmq_put_dvector
i= zmq_put_dvector(zmq_to_qp_run_socket, worker_id, "ending", dble(m-1), 1) integer, external :: zmq_put_int
i= zmq_put_int(zmq_to_qp_run_socket, worker_id, 'ending', (m-1))
found = .true. found = .true.
end if end if
else else
do do
call pull_dress_results(zmq_socket_pull, m_task, f, edI_task, edI_index, breve_delta_m, task_id, n_tasks) call pull_dress_results(zmq_socket_pull, m_task, f, edI_task, edI_index, breve_delta_m, task_id, n_tasks)
if(time0 == -1d0) then if(time0 == -1d0) then
print *, "first pull", omp_get_wtime()-time
time0 = omp_get_wtime() time0 = omp_get_wtime()
end if end if
if(m_task == 0) then if(m_task == 0) then
@ -496,14 +567,13 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
end if end if
end do end do
do i=1,n_tasks do i=1,n_tasks
if(edI(1, edI_index(i)) /= 0d0) stop "NIN M" edI(edI_index(i)) += edI_task(i)
edI(:, edI_index(i)) += edI_task(:, i)
end do end do
dot_f(m_task) -= f dot_f(m_task) -= f
end if end if
end do end do
if (zmq_abort(zmq_to_qp_run_socket) == -1) then if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(1) call sleep(10)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then if (zmq_abort(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Error in sending abort signal (2)' print *, irp_here, ': Error in sending abort signal (2)'
endif endif
@ -537,12 +607,11 @@ subroutine dress_collector(zmq_socket_pull, E, relative_error, delta, delta_s2,
!tmp = 0d0 !tmp = 0d0
!do i=1,N_det !do i=1,N_det
! if(edi(1,i) == 0d0) stop "EMPTY" ! if(edi(i) == 0d0) stop "EMPTY"
! tmp += psi_coef(i, 1) * delta(1, i) ! tmp += psi_coef(i, 1) * delta(1, i)
!end do !end do
!print *, "SUM", E(1)+sum(edi(1,:)) !print *, "SUM", E(1)+sum(edi(:))
!print *, "DOT", E(1)+tmp !print *, "DOT", E(1)+tmp
call disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
end subroutine end subroutine
@ -563,8 +632,13 @@ integer function dress_find_sample(v, w)
r = i r = i
end if end if
end do end do
i = r
dress_find_sample = r do r=i+1,N_det_generators
if (w(r) /= w(i)) then
exit
endif
enddo
dress_find_sample = r-1
end function end function
@ -582,13 +656,24 @@ end function
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators)) allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators do i=1,N_det_generators
tilde_w(i) = psi_coef_generators(i,dress_stoch_istate)**2 tilde_w(i) = psi_coef_sorted_gen(i,dress_stoch_istate)**2 + 1.d-20
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i) tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo enddo
tilde_cW(N_det_generators) = 1d0
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
pt2_n_0(1) = 0 pt2_n_0(1) = 0
do do
@ -615,6 +700,10 @@ end function
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1)) pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t)) tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1) do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do end do
@ -628,3 +717,6 @@ end function
END_PROVIDER END_PROVIDER

View File

@ -1,68 +1,6 @@
use bitmasks use bitmasks
BEGIN_PROVIDER [ integer, N_dress_teeth ]
N_dress_teeth = 10
END_PROVIDER
BEGIN_PROVIDER [ double precision, dress_norm_acc, (0:N_det, N_states) ]
&BEGIN_PROVIDER [ double precision, dress_norm, (0:N_det, N_states) ]
&BEGIN_PROVIDER [ double precision, dress_teeth_size, (0:N_det, N_states) ]
&BEGIN_PROVIDER [ integer, dress_teeth, (0:N_dress_teeth+1, N_states) ]
implicit none
integer :: i, j, st, nt
double precision :: norm_sto, jump, norm_mwen, norm_loc
if(N_states /= 1) stop "dress_sto may not work with N_states /= 1"
do st=1,N_states
dress_teeth(0,st) = 1
norm_sto = 1d0
do i=1,N_det
dress_teeth(1,st) = i
jump = (1d0 / dfloat(N_dress_teeth)) * norm_sto
if(psi_coef_generators(i,1)**2 < jump / 2d0) exit
norm_sto -= psi_coef_generators(i,1)**2
end do
norm_loc = 0d0
dress_norm_acc(0,st) = 0d0
nt = 1
do i=1,dress_teeth(1,st)-1
dress_norm_acc(i,st) = dress_norm_acc(i-1,st) + psi_coef_generators(i,st)**2
end do
do i=dress_teeth(1,st), N_det_generators!-dress_teeth(1,st)+1
norm_mwen = psi_coef_generators(i,st)**2!-1+dress_teeth(1,st),st)**2
dress_norm_acc(i,st) = dress_norm_acc(i-1,st) + norm_mwen
norm_loc += norm_mwen
if(norm_loc > (jump*dfloat(nt))) then
nt = nt + 1
dress_teeth(nt,st) = i
end if
end do
if(nt > N_dress_teeth+1) then
print *, "foireouse dress_teeth", nt, dress_teeth(nt,st), N_det
stop
end if
dress_teeth(N_dress_teeth+1,st) = N_det+1
norm_loc = 0d0
do i=N_dress_teeth, 0, -1
dress_teeth_size(i,st) = dress_norm_acc(dress_teeth(i+1,st)-1,st) - dress_norm_acc(dress_teeth(i,st)-1, st)
dress_norm_acc(dress_teeth(i,st):dress_teeth(i+1,st)-1,st) -= dress_norm_acc(dress_teeth(i,st)-1, st)
dress_norm_acc(dress_teeth(i,st):dress_teeth(i+1,st)-1,st) = &
dress_norm_acc(dress_teeth(i,st):dress_teeth(i+1,st)-1,st) / dress_teeth_size(i,st)
dress_norm(dress_teeth(i,st), st) = dress_norm_acc(dress_teeth(i,st), st)
do j=dress_teeth(i,st)+1, dress_teeth(i+1,1)-1
dress_norm(j,1) = dress_norm_acc(j, st) - dress_norm_acc(j-1, st)
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [ integer , N_det_delta_ij ] BEGIN_PROVIDER [ integer , N_det_delta_ij ]
implicit none implicit none
N_det_delta_ij = N_det N_det_delta_ij = N_det
@ -83,21 +21,20 @@ BEGIN_PROVIDER [ double precision, delta_ij_tmp, (N_states,N_det_delta_ij,2) ]
integer :: i,j,k integer :: i,j,k
double precision, allocatable :: dress(:), del(:,:), del_s2(:,:) double precision, allocatable :: dress(:), del(:,:), del_s2(:,:)
double precision :: E_CI_before(N_states), relative_error double precision :: E_CI_before(N_states)
integer :: cnt = 0 integer :: cnt = 0
allocate(dress(N_states), del(N_states, N_det_delta_ij), del_s2(N_states, N_det_delta_ij)) allocate(dress(N_states), del(N_states, N_det), del_s2(N_states, N_det))
delta_ij_tmp = 0d0 delta_ij_tmp = 0d0
E_CI_before(:) = dress_E0_denominator(:) + nuclear_repulsion E_CI_before(:) = dress_E0_denominator(:) + nuclear_repulsion
relative_error = 1.d-5
call write_double(6,relative_error,"Convergence of the stochastic algorithm") call write_double(6,dress_relative_error,"Convergence of the stochastic algorithm")
call ZMQ_dress(E_CI_before, dress, del, del_s2, abs(relative_error), N_det_delta_ij) call ZMQ_dress(E_CI_before, dress, del, del_s2, abs(dress_relative_error))
delta_ij_tmp(:,:,1) = del(:,:) delta_ij_tmp(:,1:N_det_delta_ij,1) = del(:,1:N_det_delta_ij)
delta_ij_tmp(:,:,2) = del_s2(:,:) delta_ij_tmp(:,1:N_det_delta_ij,2) = del_s2(:,1:N_det_delta_ij)
deallocate(dress, del, del_s2) deallocate(dress, del, del_s2)

View File

@ -8,7 +8,7 @@ subroutine run_dress_slave(thread,iproce,energy)
double precision, intent(in) :: energy(N_states_diag) double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproce integer, intent(in) :: thread, iproce
integer :: rc, i, subset, i_generator integer :: rc, i, j, subset, i_generator
integer :: worker_id, ctask, ltask integer :: worker_id, ctask, ltask
character*(512) :: task(Nproc) character*(512) :: task(Nproc)
@ -33,15 +33,14 @@ subroutine run_dress_slave(thread,iproce,energy)
integer :: cp_max(Nproc) integer :: cp_max(Nproc)
integer :: will_send, task_id, purge_task_id, ntask_buf integer :: will_send, task_id, purge_task_id, ntask_buf
integer, allocatable :: task_buf(:) integer, allocatable :: task_buf(:)
integer(kind=OMP_LOCK_KIND) :: lck_det(0:pt2_N_teeth+1) ! integer(kind=OMP_LOCK_KIND) :: lck_det(0:pt2_N_teeth+1)
integer(kind=OMP_LOCK_KIND) :: lck_sto(0:dress_N_cp+1), sending, getting_task ! integer(kind=OMP_LOCK_KIND) :: lck_sto(dress_N_cp)
double precision :: fac double precision :: fac
double precision :: ending(1) integer :: ending, ending_tmp
integer, external :: zmq_get_dvector integer, external :: zmq_get_dvector, zmq_get_int
! double precision, external :: omp_get_wtime ! double precision, external :: omp_get_wtime
double precision :: time, time0 double precision :: time, time0
integer :: ntask_tbd, task_tbd(Nproc), i_gen_tbd(Nproc), subset_tbd(Nproc) integer :: ntask_tbd, task_tbd(Nproc), i_gen_tbd(Nproc), subset_tbd(Nproc)
! if(iproce /= 0) stop "RUN DRESS SLAVE is OMP"
allocate(delta_det(N_states, N_det, 0:pt2_N_teeth+1, 2)) allocate(delta_det(N_states, N_det, 0:pt2_N_teeth+1, 2))
allocate(cp(N_states, N_det, dress_N_cp, 2)) allocate(cp(N_states, N_det, dress_N_cp, 2))
@ -53,23 +52,22 @@ double precision :: time, time0
cp = 0d0 cp = 0d0
task = CHAR(0) task = CHAR(0)
call omp_init_lock(sending) ! do i=1,dress_N_cp
call omp_init_lock(getting_task) ! call omp_init_lock(lck_sto(i))
do i=0,dress_N_cp+1 ! end do
call omp_init_lock(lck_sto(i)) ! do i=0,pt2_N_teeth+1
end do ! call omp_init_lock(lck_det(i))
do i=0,pt2_N_teeth+1 ! end do
call omp_init_lock(lck_det(i))
end do
cp_done = 0 cp_done = 0
cp_sent = 0 cp_sent = 0
will_send = 0 will_send = 0
cp_max(:) = 0
double precision :: hij, sij, tmp double precision :: hij, sij, tmp
purge_task_id = 0 purge_task_id = 0
provide psi_energy provide psi_energy
ending(1) = dble(dress_N_cp+1) ending = dress_N_cp+1
ntask_tbd = 0 ntask_tbd = 0
!$OMP PARALLEL DEFAULT(SHARED) & !$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(breve_delta_m, task_id) & !$OMP PRIVATE(breve_delta_m, task_id) &
@ -79,14 +77,18 @@ double precision :: time, time0
!$OMP PRIVATE(task_buf, ntask_buf,time, time0) !$OMP PRIVATE(task_buf, ntask_buf,time, time0)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread) zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
print *, irp_here, ': Unable to connect to task server'
stop -1
endif
if(worker_id == -1) then if(worker_id == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread) call end_zmq_push_socket(zmq_socket_push,thread)
stop "WORKER -1" stop "WORKER -1"
end if end if
iproc = omp_get_thread_num()+1 iproc = omp_get_thread_num()+1
allocate(breve_delta_m(N_states,N_det,2)) allocate(breve_delta_m(N_states,N_det,2))
allocate(task_buf(pt2_n_tasks_max)) allocate(task_buf(pt2_n_tasks_max))
ntask_buf = 0 ntask_buf = 0
@ -94,8 +96,10 @@ double precision :: time, time0
call push_dress_results(zmq_socket_push, 0, 0, edI_task, edI_index, breve_delta_m, task_buf, ntask_buf) call push_dress_results(zmq_socket_push, 0, 0, edI_task, edI_index, breve_delta_m, task_buf, ntask_buf)
end if end if
do while(cp_done > cp_sent .or. m /= dress_N_cp+1) m=0
call omp_set_lock(getting_task) !$OMP BARRIER
do while( (cp_done > cp_sent) .or. (m /= dress_N_cp+1) )
!$OMP CRITICAL (send)
if(ntask_tbd == 0) then if(ntask_tbd == 0) then
ntask_tbd = size(task_tbd) ntask_tbd = size(task_tbd)
call get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_tbd, task, ntask_tbd) call get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_tbd, task, ntask_tbd)
@ -113,12 +117,12 @@ double precision :: time, time0
ntask_tbd -= 1 ntask_tbd -= 1
else else
m = dress_N_cp + 1 m = dress_N_cp + 1
i= zmq_get_dvector(zmq_to_qp_run_socket, worker_id, "ending", ending, 1) if (zmq_get_int(zmq_to_qp_run_socket, worker_id, "ending", ending_tmp) /= -1) then
ending = ending_tmp
endif
end if end if
call omp_unset_lock(getting_task)
will_send = 0 will_send = 0
!$OMP CRITICAL
cp_max(iproc) = m cp_max(iproc) = m
cp_done = minval(cp_max)-1 cp_done = minval(cp_max)-1
if(cp_done > cp_sent) then if(cp_done > cp_sent) then
@ -132,10 +136,8 @@ double precision :: time, time0
ntask_buf += 1 ntask_buf += 1
task_buf(ntask_buf) = task_id task_buf(ntask_buf) = task_id
end if end if
!$OMP END CRITICAL
if(will_send /= 0 .and. will_send <= int(ending(1))) then if(will_send /= 0 .and. will_send <= ending) then
call omp_set_lock(sending)
n_tasks = 0 n_tasks = 0
sum_f = 0 sum_f = 0
do i=1,N_det_generators do i=1,N_det_generators
@ -146,9 +148,10 @@ double precision :: time, time0
edI_index(n_tasks) = i edI_index(n_tasks) = i
end if end if
end do end do
call push_dress_results(zmq_socket_push, will_send, sum_f, edI_task, edI_index, breve_delta_m, 0, n_tasks) call push_dress_results(zmq_socket_push, will_send, sum_f, edI_task, edI_index, &
call omp_unset_lock(sending) breve_delta_m, task_buf, n_tasks)
end if end if
!$OMP END CRITICAL (send)
if(m /= dress_N_cp+1) then if(m /= dress_N_cp+1) then
!UPDATE i_generator !UPDATE i_generator
@ -158,21 +161,28 @@ double precision :: time, time0
time0 = omp_get_wtime() time0 = omp_get_wtime()
call alpha_callback(breve_delta_m, i_generator, subset, pt2_F(i_generator), iproc) call alpha_callback(breve_delta_m, i_generator, subset, pt2_F(i_generator), iproc)
time = omp_get_wtime() time = omp_get_wtime()
!print '(I0.11, I4, A12, F12.3)', i_generator, subset, "GREPMETIME", time-time0
t = dress_T(i_generator) t = dress_T(i_generator)
call omp_set_lock(lck_det(t)) !$OMP CRITICAL(t_crit)
delta_det(:,:,t, 1) += breve_delta_m(:,:,1) do j=1,N_det
delta_det(:,:,t, 2) += breve_delta_m(:,:,2) do i=1,N_states
call omp_unset_lock(lck_det(t)) delta_det(i,j,t, 1) = delta_det(i,j,t, 1) + breve_delta_m(i,j,1)
delta_det(i,j,t, 2) = delta_det(i,j,t, 2) + breve_delta_m(i,j,2)
enddo
enddo
!$OMP END CRITICAL(t_crit)
do p=1,dress_N_cp do p=1,dress_N_cp
if(dress_e(i_generator, p) /= 0d0) then if(dress_e(i_generator, p) /= 0d0) then
fac = dress_e(i_generator, p) fac = dress_e(i_generator, p)
call omp_set_lock(lck_sto(p)) !$OMP CRITICAL(p_crit)
cp(:,:,p,1) += breve_delta_m(:,:,1) * fac do j=1,N_det
cp(:,:,p,2) += breve_delta_m(:,:,2) * fac do i=1,N_states
call omp_unset_lock(lck_sto(p)) cp(i,j,p,1) = cp(i,j,p,1) + breve_delta_m(i,j,1) * fac
cp(i,j,p,2) = cp(i,j,p,2) + breve_delta_m(i,j,2) * fac
enddo
enddo
!$OMP END CRITICAL(p_crit)
end if end if
end do end do
@ -191,19 +201,20 @@ double precision :: time, time0
end if end if
end if end if
end do end do
!$OMP BARRIER !$OMP BARRIER
if(ntask_buf /= 0) then if(ntask_buf /= 0) then
call push_dress_results(zmq_socket_push, 0, 0, edI_task, edI_index, breve_delta_m, task_buf, ntask_buf) call push_dress_results(zmq_socket_push, 0, 0, edI_task, edI_index, breve_delta_m, task_buf, ntask_buf)
ntask_buf = 0 ntask_buf = 0
end if end if
!$OMP SINGLE
if(purge_task_id /= 0) then !$OMP SINGLE
do while(int(ending(1)) == dress_N_cp+1) if(purge_task_id /= 0) then
do while (zmq_get_int(zmq_to_qp_run_socket, worker_id, "ending", ending) == -1)
call sleep(1) call sleep(1)
i= zmq_get_dvector(zmq_to_qp_run_socket, worker_id, "ending", ending, 1)
end do end do
will_send = int(ending(1)) will_send = ending
breve_delta_m = 0d0 breve_delta_m = 0d0
do l=will_send, 1,-1 do l=will_send, 1,-1
@ -222,20 +233,26 @@ double precision :: time, time0
do i=1,N_det_generators do i=1,N_det_generators
if(dress_P(i) <= will_send) sum_f = sum_f + f(i) if(dress_P(i) <= will_send) sum_f = sum_f + f(i)
end do end do
call push_dress_results(zmq_socket_push, -will_send, sum_f, edI_task, edI_index, breve_delta_m, purge_task_id, 1) task_buf(1) = purge_task_id
call push_dress_results(zmq_socket_push, -will_send, sum_f, edI_task, edI_index, breve_delta_m, task_buf, 1)
end if end if
!$OMP END SINGLE !$OMP END SINGLE
call disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id)
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
print *, irp_here, ': Unable to disconnect from task server'
stop -1
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread) call end_zmq_push_socket(zmq_socket_push,thread)
!$OMP END PARALLEL !$OMP END PARALLEL
do i=0,dress_N_cp+1 ! do i=0,dress_N_cp+1
call omp_destroy_lock(lck_sto(i)) ! call omp_destroy_lock(lck_sto(i))
end do ! end do
do i=0,pt2_N_teeth+1 ! do i=0,pt2_N_teeth+1
call omp_destroy_lock(lck_det(i)) ! call omp_destroy_lock(lck_det(i))
end do ! end do
end subroutine end subroutine

View File

@ -26,3 +26,9 @@ doc: Type of zeroth-order Hamiltonian [ EN | Barycentric ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: EN default: EN
[dress_relative_error]
type: Normalized_float
doc: Stop stochastic dressing when the relative error is smaller than PT2_relative_error
interface: ezfio,provider,ocaml
default: 0.01

View File

@ -1,9 +0,0 @@
module selection_types
type selection_buffer
integer :: N, cur
integer(8) , pointer :: det(:,:,:)
double precision, pointer :: val(:)
double precision :: mini
endtype
end module

View File

@ -1,159 +0,0 @@
program shifted_bk
implicit none
integer :: i,j,k
double precision, allocatable :: pt2(:)
integer :: degree
integer :: n_det_before
double precision :: threshold_davidson_in
allocate (pt2(N_states))
double precision :: hf_energy_ref
logical :: has
double precision :: relative_error, absolute_error
integer :: N_states_p
character*(512) :: fmt
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order
pt2 = -huge(1.e0)
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
call diagonalize_CI_dressed
call save_wavefunction
call ezfio_has_hartree_fock_energy(has)
if (has) then
call ezfio_get_hartree_fock_energy(hf_energy_ref)
else
hf_energy_ref = ref_bitmask_energy
endif
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI_dressed
call save_wavefunction
N_states_p = min(N_det,N_states)
endif
n_det_before = 0
character*(8) :: pt2_string
double precision :: threshold_selectors_save, threshold_generators_save
threshold_selectors_save = threshold_selectors
threshold_generators_save = threshold_generators
double precision :: error(N_states), energy(N_states)
error = 0.d0
threshold_selectors = 1.d0
threshold_generators = 1d0
if (.True.) then
pt2_string = '(sh-Bk) '
do while ( (N_det < N_det_max) )
write(*,'(A)') '--------------------------------------------------------------------------------'
N_det_delta_ij = N_det
do i=1,N_states
energy(i) = psi_energy(i)+nuclear_repulsion
enddo
PROVIDE delta_ij_tmp
call delta_ij_done()
call diagonalize_ci_dressed
do i=1,N_states
pt2(i) = ci_energy_dressed(i) - energy(i)
enddo
N_states_p = min(N_det,N_states)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det
print '(A)', '-----------------------------------'
print *, ''
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', energy(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', energy(1:N_states_p)-energy(1)
write(*,fmt) '# Excit. (eV)', (energy(1:N_states_p)-energy(1))*27.211396641308d0
endif
write(fmt,*) '(A12,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2'//pt2_string, (pt2(k), error(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (energy(k)+pt2(k),error(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (energy(k)+pt2(k)-energy(1)-pt2(1)), &
dsqrt(error(k)*error(k)+error(1)*error(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (energy(k)+pt2(k)-energy(1)-pt2(1))*27.211396641308d0, &
dsqrt(error(k)*error(k)+error(1)*error(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states_p
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', energy(k)
print *, 'E+PT2'//pt2_string//' = ', energy(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (energy(i) - energy(1)), &
(energy(i) - energy(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (energy(i)+ pt2(i) - (energy(1) + pt2(1))), &
(energy(i)+ pt2(i) - (energy(1) + pt2(1))) * 27.211396641308d0
enddo
endif
call ezfio_set_shiftedbk_energy_pt2(energy(1)+pt2(1))
! call dump_fci_iterations_value(N_det,energy,pt2)
n_det_before = N_det
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det >= N_det_max) then
threshold_davidson = threshold_davidson_in
end if
call save_wavefunction
call ezfio_set_shiftedbk_energy(energy(1))
call ezfio_set_shiftedbk_energy_pt2(ci_energy_dressed(1))
enddo
endif
end

View File

@ -1,85 +1,15 @@
use selection_types
BEGIN_PROVIDER [ double precision, global_sum_alpha2, (N_states) ]
&BEGIN_PROVIDER [ double precision, slave_sum_alpha2, (N_states, Nproc) ]
global_sum_alpha2 = 0d0
slave_sum_alpha2 = 0d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_diag_tmp_, (2,mo_tot_num+1,Nproc) ] BEGIN_PROVIDER [ double precision, fock_diag_tmp_, (2,mo_tot_num+1,Nproc) ]
&BEGIN_PROVIDER [ integer, n_det_add ]
&BEGIN_PROVIDER [ double precision, a_h_i, (N_det, Nproc) ] &BEGIN_PROVIDER [ double precision, a_h_i, (N_det, Nproc) ]
&BEGIN_PROVIDER [ double precision, a_s2_i, (N_det, Nproc) ] &BEGIN_PROVIDER [ double precision, a_s2_i, (N_det, Nproc) ]
&BEGIN_PROVIDER [ type(selection_buffer), sb, (Nproc) ]
&BEGIN_PROVIDER [ type(selection_buffer), global_sb ]
&BEGIN_PROVIDER [ type(selection_buffer), mini_sb ]
&BEGIN_PROVIDER [ double precision, N_det_increase_factor ]
implicit none implicit none
fock_diag_tmp_(:,:,:) = 0.d0
integer :: i integer :: i
N_det_increase_factor = dble(N_states) fock_diag_tmp_(:,:,:) = 0.d0
n_det_add = max(1, int(float(N_det) * N_det_increase_factor))
call create_selection_buffer(n_det_add, n_det_add*2, global_sb)
call create_selection_buffer(n_det_add, n_det_add*2, mini_sb)
do i=1,Nproc
call create_selection_buffer(n_det_add, n_det_add*2, sb(i))
end do
a_h_i = 0d0 a_h_i = 0d0
a_s2_i = 0d0 a_s2_i = 0d0
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, N_dress_int_buffer ]
&BEGIN_PROVIDER [ integer, N_dress_double_buffer ]
&BEGIN_PROVIDER [ integer, N_dress_det_buffer ]
implicit none
N_dress_int_buffer = 1
N_dress_double_buffer = n_det_add+N_states
N_dress_det_buffer = n_det_add
END_PROVIDER
subroutine generator_done(i_gen, int_buf, double_buf, det_buf, N_buf, iproc)
implicit none
integer, intent(in) :: i_gen, iproc
integer, intent(out) :: int_buf(N_dress_int_buffer), N_buf(3)
double precision, intent(out) :: double_buf(N_dress_double_buffer)
integer(bit_kind), intent(out) :: det_buf(N_int, 2, N_dress_det_buffer)
integer :: i
int_buf(:) = 0
call sort_selection_buffer(sb(iproc))
if(sb(iproc)%cur > 0) then
!$OMP CRITICAL
call merge_selection_buffers(sb(iproc), mini_sb)
!call sort_selection_buffer(mini_sb)
do i=1,Nproc
mini_sb%mini = min(sb(i)%mini, mini_sb%mini)
end do
do i=1,Nproc
sb(i)%mini = mini_sb%mini
end do
!$OMP END CRITICAL
end if
call truncate_to_mini(sb(iproc))
det_buf(:,:,:sb(iproc)%cur) = sb(iproc)%det(:,:,:sb(iproc)%cur)
double_buf(:sb(iproc)%cur) = sb(iproc)%val(:sb(iproc)%cur)
double_buf(sb(iproc)%cur+1:sb(iproc)%cur+N_states) = slave_sum_alpha2(:,iproc)
N_buf(1) = 1
N_buf(2) = sb(iproc)%cur+N_states
N_buf(3) = sb(iproc)%cur
sb(iproc)%cur = 0
slave_sum_alpha2(:,iproc) = 0d0
end subroutine
subroutine generator_start(i_gen, iproc) subroutine generator_start(i_gen, iproc)
implicit none implicit none
integer, intent(in) :: i_gen, iproc integer, intent(in) :: i_gen, iproc
@ -89,159 +19,31 @@ subroutine generator_start(i_gen, iproc)
end subroutine end subroutine
subroutine dress_pulled(ind, int_buf, double_buf, det_buf, N_buf) subroutine dress_with_alpha_buffer(Nstates,Ndet,Nint,delta_ij_loc, i_gen, minilist, det_minilist, n_minilist, alpha, iproc)
use bitmasks
implicit none
integer, intent(in) :: ind, N_buf(3)
integer, intent(in) :: int_buf(*)
double precision, intent(in) :: double_buf(*)
integer(bit_kind), intent(in) :: det_buf(N_int,2,*)
integer :: i
do i=1,N_buf(3)
call add_to_selection_buffer(global_sb, det_buf(1,1,i), double_buf(i))
end do
if(N_buf(3) + N_states /= N_buf(2)) stop "buf size"
!$OMP CRITICAL
global_sum_alpha2(:) += double_buf(N_buf(3)+1:N_buf(2))
!$OMP END CRITICAL
end subroutine
subroutine delta_ij_done()
use bitmasks
implicit none
integer :: i, old_det_gen
integer(bit_kind), allocatable :: old_generators(:,:,:)
allocate(old_generators(N_int, 2, N_det_generators))
old_generators(:,:,:) = psi_det_generators(:,:,:N_det_generators)
old_det_gen = N_det_generators
! Add buffer only when the last state is computed
call unique_selection_buffer(global_sb)
call sort_selection_buffer(global_sb)
call fill_H_apply_buffer_no_selection(global_sb%cur,global_sb%det,N_int,0)
call copy_H_apply_buffer_to_wf()
if (s2_eig.or.(N_states > 1) ) then
call make_s2_eigenfunction
endif
call undress_with_alpha(old_generators, old_det_gen, psi_det(1,1,N_det_delta_ij+1), N_det-N_det_delta_ij)
call save_wavefunction
end subroutine
subroutine undress_with_alpha(old_generators, old_det_gen, alpha, n_alpha)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: alpha(N_int,2,n_alpha)
integer, intent(in) :: n_alpha
integer, allocatable :: minilist(:)
integer(bit_kind), allocatable :: det_minilist(:,:,:)
double precision, allocatable :: delta_ij_loc(:,:,:,:)
integer :: exc(0:2,2,2), h1, h2, p1, p2, s1, s2
integer :: i, j, k, ex, n_minilist, iproc, degree
double precision :: haa, contrib, phase, c_alpha(N_states,Nproc), s_c_alpha(N_states)
logical :: ok
integer, external :: omp_get_thread_num
integer,intent(in) :: old_det_gen
integer(bit_kind), intent(in) :: old_generators(N_int, 2, old_det_gen)
allocate(minilist(N_det_delta_ij), det_minilist(N_int, 2, N_det_delta_ij), delta_ij_loc(N_states, N_det_delta_ij, 2, Nproc))
c_alpha = 0d0
delta_ij_loc = 0d0
!$OMP PARALLEL DO DEFAULT(SHARED) SCHEDULE(STATIC) PRIVATE(i, j, iproc, n_minilist, ex) &
!$OMP PRIVATE(det_minilist, minilist, haa, contrib, s_c_alpha) &
!$OMP PRIVATE(exc, h1, h2, p1, p2, s1, s2, phase, degree, ok)
do i=n_alpha,1,-1
iproc = omp_get_thread_num()+1
if(mod(i,10000) == 0) print *, "UNDRESSING", i, "/", n_alpha, iproc
n_minilist = 0
ok = .false.
do j=1, old_det_gen
call get_excitation_degree(alpha(1,1,i), old_generators(1,1,j), ex, N_int)
if(ex <= 2) then
call get_excitation(old_generators(1,1,j), alpha(1,1,i), exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
ok = (mo_class(h1)(1:1) == 'A' .or. mo_class(h1)(1:1) == 'I') .and. &
(mo_class(p1)(1:1) == 'A' .or. mo_class(p1)(1:1) == 'V')
if(ok .and. degree == 2) then
ok = (mo_class(h2)(1:1) == 'A' .or. mo_class(h2)(1:1) == 'I') .and. &
(mo_class(p2)(1:1) == 'A' .or. mo_class(p2)(1:1) == 'V')
end if
if(ok) exit
end if
end do
if(.not. ok) cycle
do j=1, N_det_delta_ij
call get_excitation_degree(alpha(1,1,i), psi_det(1,1,j), ex, N_int)
if(ex <= 2) then
n_minilist += 1
det_minilist(:,:,n_minilist) = psi_det(:,:,j)
minilist(n_minilist) = j
end if
end do
call i_h_j(alpha(1,1,i), alpha(1,1,i), N_int, haa)
call dress_with_alpha_(N_states, N_det_delta_ij, N_int, delta_ij_loc(1,1,1,iproc), &
minilist, det_minilist, n_minilist, alpha(1,1,i), haa, contrib, s_c_alpha, iproc)
c_alpha(:,iproc) += s_c_alpha(:)**2
end do
!$OMP END PARALLEL DO
do i=2,Nproc
delta_ij_loc(:,:,:,1) += delta_ij_loc(:,:,:,i)
c_alpha(:,1) += c_alpha(:,i)
end do
delta_ij_tmp(:,:,1) -= delta_ij_loc(:,:,1,1)
delta_ij_tmp(:,:,2) -= delta_ij_loc(:,:,2,1)
!print *, "SUM ALPHA2 PRE", global_sum_alpha2
!global_sum_alpha2(:) -= c_alpha(:,1)
print *, "SUM C_ALPHA^2 =", global_sum_alpha2(:)
!print *, "*** DRESSINS DIVIDED BY 1+SUM C_ALPHA^2 ***"
!do i=1,N_states
! delta_ij_tmp(i,:,:) = delta_ij_tmp(i,:,:) / (1d0 + global_sum_alpha2(i))
!end do
global_sum_alpha2 = 0d0
end subroutine
subroutine dress_with_alpha_(Nstates,Ndet,Nint,delta_ij_loc,minilist, det_minilist, n_minilist, alpha, haa, contrib, c_alpha, iproc)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
!delta_ij_loc(:,:,1) : dressing column for H !delta_ij_loc(:,:,1) : dressing column for H
!delta_ij_loc(:,:,2) : dressing column for S2 !delta_ij_loc(:,:,2) : dressing column for S2
!i_gen : generator index in psi_det_generators
!minilist : indices of determinants connected to alpha ( in psi_det ) !minilist : indices of determinants connected to alpha ( in psi_det )
!n_minilist : size of minilist !n_minilist : size of minilist
!alpha : alpha determinant !alpha : alpha determinant
END_DOC END_DOC
integer, intent(in) :: Nint, Ndet, Nstates, n_minilist, iproc integer, intent(in) :: Nint, Ndet, Nstates, n_minilist, iproc, i_gen
integer(bit_kind), intent(in) :: alpha(Nint,2), det_minilist(Nint, 2, n_minilist) integer(bit_kind), intent(in) :: alpha(Nint,2), det_minilist(Nint, 2, n_minilist)
integer,intent(in) :: minilist(n_minilist) integer,intent(in) :: minilist(n_minilist)
double precision, intent(inout) :: delta_ij_loc(Nstates,N_det,2) double precision, intent(inout) :: delta_ij_loc(Nstates,N_det,2)
double precision, intent(out) :: contrib, c_alpha(N_states)
double precision,intent(in) :: haa
double precision :: hij, sij double precision :: hij, sij
double precision, external :: diag_H_mat_elem_fock double precision, external :: diag_H_mat_elem_fock
integer :: i,j,k,l,m, l_sd double precision :: haa, contrib, c_alpha(N_states)
double precision :: de, a_h_psi(N_states)
double precision :: hdress, sdress double precision :: hdress, sdress
double precision :: de, a_h_psi(Nstates) integer :: i, l_sd
haa = diag_H_mat_elem_fock(psi_det_generators(1,1,i_gen),alpha,fock_diag_tmp_(1,1,iproc),N_int)
a_h_psi = 0d0 a_h_psi = 0d0
@ -266,54 +68,20 @@ subroutine dress_with_alpha_(Nstates,Ndet,Nint,delta_ij_loc,minilist, det_minili
do l_sd=1,n_minilist do l_sd=1,n_minilist
hdress = c_alpha(i) * a_h_i(l_sd, iproc) hdress = c_alpha(i) * a_h_i(l_sd, iproc)
sdress = c_alpha(i) * a_s2_i(l_sd, iproc) sdress = c_alpha(i) * a_s2_i(l_sd, iproc)
!if(c_alpha(i) * a_s2_i(l_sd, iproc) > 1d-1) then
! call debug_det(det_minilist(1,1,l_sd), N_int)
! call debug_det(alpha,N_int)
!end if
delta_ij_loc(i, minilist(l_sd), 1) += hdress delta_ij_loc(i, minilist(l_sd), 1) += hdress
delta_ij_loc(i, minilist(l_sd), 2) += sdress delta_ij_loc(i, minilist(l_sd), 2) += sdress
end do end do
end do end do
end subroutine
subroutine dress_with_alpha_buffer(Nstates,Ndet,Nint,delta_ij_loc, i_gen, minilist, det_minilist, n_minilist, alpha, iproc)
use bitmasks
implicit none
BEGIN_DOC
!delta_ij_loc(:,:,1) : dressing column for H
!delta_ij_loc(:,:,2) : dressing column for S2
!i_gen : generator index in psi_det_generators
!minilist : indices of determinants connected to alpha ( in psi_det )
!n_minilist : size of minilist
!alpha : alpha determinant
END_DOC
integer, intent(in) :: Nint, Ndet, Nstates, n_minilist, iproc, i_gen
integer(bit_kind), intent(in) :: alpha(Nint,2), det_minilist(Nint, 2, n_minilist)
integer,intent(in) :: minilist(n_minilist)
double precision, intent(inout) :: delta_ij_loc(Nstates,N_det,2)
double precision, external :: diag_H_mat_elem_fock
double precision :: haa, contrib, c_alpha(N_states)
haa = diag_H_mat_elem_fock(psi_det_generators(1,1,i_gen),alpha,fock_diag_tmp_(1,1,iproc),N_int)
call dress_with_alpha_(Nstates, Ndet, Nint, delta_ij_loc, minilist, det_minilist, n_minilist, alpha, haa, contrib, c_alpha, iproc)
slave_sum_alpha2(:,iproc) += c_alpha(:)**2
if(contrib < sb(iproc)%mini) then
call add_to_selection_buffer(sb(iproc), alpha, contrib)
end if
end subroutine end subroutine
BEGIN_PROVIDER [ logical, initialize_E0_denominator ] BEGIN_PROVIDER [ logical, initialize_E0_denominator ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! If true, initialize pt2_E0_denominator ! If true, initialize pt2_E0_denominator
END_DOC END_DOC
initialize_E0_denominator = .True. initialize_E0_denominator = .True.
END_PROVIDER END_PROVIDER

View File

@ -1,15 +1,170 @@
program shifted_bk program shifted_bk_slave
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Helper subroutine to compute the dress in distributed mode. ! Helper program to compute the dress in distributed mode.
END_DOC END_DOC
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique read_wf = .False.
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_gen_order psi_bilinear_matrix_order distributed_davidson = .False.
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns SOFT_TOUCH read_wf distributed_davidson
PROVIDE psi_bilinear_matrix_transp_order call provide_all
call switch_qp_run_to_master
!call diagonalize_CI() call run_w
call dress_slave()
end end
subroutine provide_all
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
PROVIDE dress_e0_denominator mo_tot_num N_int ci_energy mpi_master zmq_state zmq_context
PROVIDE psi_det psi_coef threshold_generators threshold_selectors state_average_weight
PROVIDE N_det_selectors dress_stoch_istate N_det
end
subroutine run_w
use f77_zmq
implicit none
IRP_IF MPI
include 'mpif.h'
IRP_ENDIF
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states)
character*(64) :: states(3)
character*(64) :: old_state
integer :: rc, i, ierr
double precision :: t0, t1
integer, external :: zmq_get_dvector, zmq_get_N_det_generators
integer, external :: zmq_get_ivector
integer, external :: zmq_get_psi, zmq_get_N_det_selectors, zmq_get_int
integer, external :: zmq_get_N_states_diag
zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection'
states(2) = 'davidson'
states(3) = 'dress'
old_state = 'Waiting'
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
PROVIDE psi_det psi_coef threshold_generators threshold_selectors state_average_weight mpi_master
PROVIDE zmq_state N_det_selectors dress_stoch_istate N_det dress_e0_denominator
PROVIDE N_det_generators N_states N_states_diag
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
do
if (mpi_master) then
call wait_for_states(states,zmq_state,size(states))
if (zmq_state(1:64) == old_state(1:64)) then
call sleep(1)
cycle
else
old_state(1:64) = zmq_state(1:64)
endif
print *, trim(zmq_state)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in broadcast of zmq_state'
endif
IRP_ENDIF
if(zmq_state(1:7) == 'Stopped') then
exit
endif
if (zmq_state(1:8) == 'davidson') then
! Davidson
! --------
call wall_time(t0)
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
if (zmq_get_N_states_diag(zmq_to_qp_run_socket,1) == -1) cycle
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states_diag) == -1) cycle
call wall_time(t1)
if (mpi_master) then
call write_double(6,(t1-t0),'Broadcast time')
endif
call omp_set_nested(.True.)
call davidson_slave_tcp(0)
call omp_set_nested(.False.)
print *, 'Davidson done'
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
print *, 'All Davidson done'
else if (zmq_state(1:5) == 'dress') then
! Dress
! ---
call wall_time(t0)
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',threshold_generators,1) == -1) cycle
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_selectors',threshold_selectors,1) == -1) cycle
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
if (zmq_get_int(zmq_to_qp_run_socket,1,'dress_stoch_istate',dress_stoch_istate) == -1) cycle
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
psi_energy(1:N_states) = energy(1:N_states)
TOUCH psi_energy state_average_weight dress_stoch_istate threshold_selectors threshold_generators
if (mpi_master) then
print *, 'N_det', N_det
print *, 'N_det_generators', N_det_generators
print *, 'N_det_selectors', N_det_selectors
print *, 'psi_energy', psi_energy
print *, 'dress_stoch_istate', dress_stoch_istate
print *, 'state_average_weight', state_average_weight
endif
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
call dress_slave_tcp(0, energy)
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
print *, 'All dress done'
endif
end do
IRP_IF MPI
call MPI_finalize(ierr)
IRP_ENDIF
end

View File

@ -32,6 +32,10 @@ BEGIN_PROVIDER [ %(type)s, %(name)s %(size)s ]
stop 1 stop 1
endif endif
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr

View File

@ -127,6 +127,10 @@ BEGIN_PROVIDER [ integer, N_generators_bitmask ]
ASSERT (N_generators_bitmask > 0) ASSERT (N_generators_bitmask > 0)
call write_int(6,N_generators_bitmask,'N_generators_bitmask') call write_int(6,N_generators_bitmask,'N_generators_bitmask')
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -170,6 +174,10 @@ BEGIN_PROVIDER [ integer, N_generators_bitmask_restart ]
ASSERT (N_generators_bitmask_restart > 0) ASSERT (N_generators_bitmask_restart > 0)
call write_int(6,N_generators_bitmask_restart,'N_generators_bitmask_restart') call write_int(6,N_generators_bitmask_restart,'N_generators_bitmask_restart')
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -244,6 +252,10 @@ BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_gen
enddo enddo
enddo enddo
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -313,6 +325,10 @@ if (mpi_master) then
enddo enddo
enddo enddo
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -354,6 +370,10 @@ BEGIN_PROVIDER [ integer, N_cas_bitmask ]
call write_int(6,N_cas_bitmask,'N_cas_bitmask') call write_int(6,N_cas_bitmask,'N_cas_bitmask')
endif endif
ASSERT (N_cas_bitmask > 0) ASSERT (N_cas_bitmask > 0)
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -407,6 +427,10 @@ BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ]
enddo enddo
write(*,*) 'Read CAS bitmask' write(*,*) 'Read CAS bitmask'
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr

View File

@ -21,11 +21,15 @@ END_PROVIDER
subroutine broadcast_chunks_bit_kind(A, LDA) subroutine broadcast_chunks_bit_kind(A, LDA)
use bitmasks use bitmasks
implicit none implicit none
integer, intent(in) :: LDA integer*8, intent(in) :: LDA
integer(bit_kind), intent(inout) :: A(LDA) integer(bit_kind), intent(inout) :: A(LDA)
BEGIN_DOC BEGIN_DOC
! Broadcast with chunks of ~2GB ! Broadcast with chunks of ~2GB
END_DOC END_DOC
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: i, sze, ierr integer :: i, sze, ierr

View File

@ -8,7 +8,7 @@ default: 1.e-12
type: States_number type: States_number
doc: Number of states to consider during the Davdison diagonalization doc: Number of states to consider during the Davdison diagonalization
default: 4 default: 4
interface: ezfio,provider,ocaml interface: ezfio,ocaml
[davidson_sze_max] [davidson_sze_max]
type: Strictly_positive_int type: Strictly_positive_int

View File

@ -13,7 +13,6 @@ end
subroutine davidson_slave_tcp(i) subroutine davidson_slave_tcp(i)
implicit none implicit none
integer, intent(in) :: i integer, intent(in) :: i
call davidson_run_slave(0,i) call davidson_run_slave(0,i)
end end
@ -36,6 +35,8 @@ subroutine davidson_run_slave(thread,iproc)
integer, external :: connect_to_taskserver integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
endif endif
@ -74,23 +75,35 @@ subroutine davidson_slave_work(zmq_to_qp_run_socket, zmq_socket_push, N_st, sze,
! Get wave function (u_t) ! Get wave function (u_t)
! ----------------------- ! -----------------------
integer :: rc integer :: rc, ni, nj
integer*8 :: rc8 integer*8 :: rc8
integer :: N_states_read, N_det_read, psi_det_size_read integer :: N_states_read, N_det_read, psi_det_size_read
integer :: N_det_selectors_read, N_det_generators_read integer :: N_det_selectors_read, N_det_generators_read
double precision, allocatable :: energy(:) double precision, allocatable :: energy(:)
integer, external :: zmq_get_dvector integer, external :: zmq_get_dvector
integer, external :: zmq_get_dmatrix
allocate(u_t(N_st,N_det)) allocate(u_t(N_st,N_det))
allocate (energy(N_st)) allocate (energy(N_st))
if (zmq_get_dvector(zmq_to_qp_run_socket, worker_id, 'u_t', u_t, size(u_t)) == -1) then ! Warning : dimensions are modified for efficiency, It is OK since we get the
! full matrix
if (size(u_t,kind=8) < 8388608_8) then
ni = size(u_t)
nj = 1
else
ni = 8388608
nj = size(u_t,kind=8)/8388608_8 + 1
endif
if (zmq_get_dmatrix(zmq_to_qp_run_socket, worker_id, 'u_t', u_t, ni, nj, size(u_t,kind=8)) == -1) then
print *, irp_here, ': Unable to get u_t'
deallocate(u_t,energy) deallocate(u_t,energy)
return return
endif endif
if (zmq_get_dvector(zmq_to_qp_run_socket, worker_id, 'energy', energy, size(energy)) == -1) then if (zmq_get_dvector(zmq_to_qp_run_socket, worker_id, 'energy', energy, size(energy)) == -1) then
print *, irp_here, ': Unable to get energy'
deallocate(u_t,energy) deallocate(u_t,energy)
return return
endif endif
@ -99,7 +112,7 @@ subroutine davidson_slave_work(zmq_to_qp_run_socket, zmq_socket_push, N_st, sze,
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
call broadcast_chunks_double(u_t,size(u_t)) call broadcast_chunks_double(u_t,size(u_t,kind=8))
IRP_ENDIF IRP_ENDIF
@ -111,7 +124,6 @@ subroutine davidson_slave_work(zmq_to_qp_run_socket, zmq_socket_push, N_st, sze,
do do
integer, external :: get_task_from_taskserver integer, external :: get_task_from_taskserver
integer, external :: task_done_to_taskserver integer, external :: task_done_to_taskserver
call sleep(1)
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, msg) == -1) then if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, msg) == -1) then
exit exit
endif endif
@ -305,11 +317,12 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'davidson') call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'davidson')
character*(512) :: task character*(512) :: task
integer :: rc integer :: rc, ni, nj
integer*8 :: rc8 integer*8 :: rc8
double precision :: energy(N_st) double precision :: energy(N_st)
integer, external :: zmq_put_dvector, zmq_put_psi, zmq_put_N_states_diag integer, external :: zmq_put_dvector, zmq_put_psi, zmq_put_N_states_diag
integer, external :: zmq_put_dmatrix
energy = 0.d0 energy = 0.d0
@ -322,7 +335,16 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',energy,size(energy)) == -1) then if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',energy,size(energy)) == -1) then
stop 'Unable to put energy on ZMQ server' stop 'Unable to put energy on ZMQ server'
endif endif
if (zmq_put_dvector(zmq_to_qp_run_socket, 1, 'u_t', u_t, size(u_t)) == -1) then if (size(u_t) < 8388608) then
ni = size(u_t)
nj = 1
else
ni = 8388608
nj = size(u_t)/8388608 + 1
endif
! Warning : dimensions are modified for efficiency, It is OK since we get the
! full matrix
if (zmq_put_dmatrix(zmq_to_qp_run_socket, 1, 'u_t', u_t, ni, nj, size(u_t,kind=8)) == -1) then
stop 'Unable to put u_t on ZMQ server' stop 'Unable to put u_t on ZMQ server'
endif endif
@ -333,14 +355,13 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
! ============ ! ============
integer :: istep, imin, imax, ishift integer :: istep, imin, imax, ishift
double precision :: w, max_workload, N_det_inv, di double precision :: w, max_workload, N_det_inv
integer, external :: add_task_to_taskserver integer, external :: add_task_to_taskserver
w = 0.d0 w = 0.d0
istep=1 istep=1
ishift=0 ishift=0
imin=1 imin=1
N_det_inv = 1.d0/dble(N_det) N_det_inv = 1.d0/dble(N_det)
di = dble(N_det)
max_workload = 50000.d0 max_workload = 50000.d0
do imax=1,N_det do imax=1,N_det
w = w + 1.d0 w = w + 1.d0
@ -467,10 +488,13 @@ integer function zmq_get_N_states_diag(zmq_to_qp_run_socket, worker_id)
if (rc /= 4) go to 10 if (rc /= 4) go to 10
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
call MPI_BCAST (zmq_get_N_states_diag, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST (zmq_get_N_states_diag, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
print *, irp_here//': Unable to broadcast N_states' print *, irp_here//': Unable to broadcast N_states'
@ -484,6 +508,7 @@ integer function zmq_get_N_states_diag(zmq_to_qp_run_socket, worker_id)
endif endif
endif endif
IRP_ENDIF IRP_ENDIF
TOUCH N_states_diag
return return

39
src/Davidson/input.irp.f Normal file
View File

@ -0,0 +1,39 @@
BEGIN_PROVIDER [ integer, n_states_diag ]
implicit none
BEGIN_DOC
! Number of states to consider during the Davdison diagonalization
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_davidson_n_states_diag(has)
if (has) then
call ezfio_get_davidson_n_states_diag(n_states_diag)
else
print *, 'davidson/n_states_diag not found in EZFIO file'
stop 1
endif
n_states_diag = max(N_states, N_states_diag)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_states_diag, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_states_diag with MPI'
endif
IRP_ENDIF
call write_time(6)
if (mpi_master) then
write(6, *) 'Read n_states_diag'
endif
END_PROVIDER

View File

@ -9,8 +9,6 @@ subroutine routine
implicit none implicit none
call diagonalize_CI call diagonalize_CI
print*,'N_det = ',N_det print*,'N_det = ',N_det
call save_wavefunction_general(N_det,N_states_diag,psi_det_sorted,size(psi_coef_sorted,1),psi_coef_sorted) call save_wavefunction_general(N_det,N_states,psi_det_sorted,size(psi_coef_sorted,1),psi_coef_sorted)
end end

View File

@ -2,7 +2,12 @@ program print_energy
implicit none implicit none
read_wf = .true. read_wf = .true.
touch read_wf touch read_wf
provide mo_bielec_integrals_in_map
double precision :: time1, time0
call wall_time(time0)
call routine call routine
call wall_time(time1)
print *, 'Wall time :' , time1 - time0
end end
subroutine routine subroutine routine

View File

@ -398,7 +398,7 @@ BEGIN_PROVIDER [ double precision, c0_weight, (N_states) ]
do i=1,N_states do i=1,N_states
c0_weight(i) = 1.d-31 c0_weight(i) = 1.d-31
c = maxval(psi_coef(:,i) * psi_coef(:,i)) c = maxval(psi_coef(:,i) * psi_coef(:,i))
c0_weight(i) = 1.d0/c c0_weight(i) = 1.d0/(c+1.d-20)
c0_weight(i) = min(c0_weight(i), 100.d0) c0_weight(i) = min(c0_weight(i), 100.d0)
enddo enddo
if (mpi_master) then if (mpi_master) then

View File

@ -45,6 +45,10 @@ BEGIN_PROVIDER [ integer, N_det ]
endif endif
call write_int(6,N_det,'Number of determinants') call write_int(6,N_det,'Number of determinants')
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -89,6 +93,10 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
psi_det_size = max(psi_det_size,100000) psi_det_size = max(psi_det_size,100000)
call write_int(6,psi_det_size,'Dimension of the psi arrays') call write_int(6,psi_det_size,'Dimension of the psi arrays')
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -154,6 +162,10 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_det, (N_int,2,psi_det_size) ]
enddo enddo
endif endif
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -212,6 +224,10 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]
endif endif
endif endif
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -520,7 +536,7 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef)
call ezfio_set_determinants_mo_label(mo_label) call ezfio_set_determinants_mo_label(mo_label)
allocate (psi_det_save(N_int,2,ndet)) allocate (psi_det_save(N_int,2,ndet))
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k) SHARED(psi_det_save,psidet,ndet,N_int) !$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k) SHARED(psi_det_save,psidet,ndet,N_int,accu_norm)
do i=1,ndet do i=1,ndet
do j=1,2 do j=1,2
do k=1,N_int do k=1,N_int
@ -533,23 +549,18 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef)
deallocate (psi_det_save) deallocate (psi_det_save)
allocate (psi_coef_save(ndet,nstates)) allocate (psi_coef_save(ndet,nstates))
double precision :: accu_norm(nstates) double precision :: accu_norm
accu_norm = 0.d0
do k=1,nstates do k=1,nstates
accu_norm = 0.d0
do i=1,ndet do i=1,ndet
accu_norm(k) = accu_norm(k) + psicoef(i,k) * psicoef(i,k) accu_norm = accu_norm + psicoef(i,k) * psicoef(i,k)
psi_coef_save(i,k) = psicoef(i,k)
enddo enddo
if (accu_norm(k) == 0.d0) then if (accu_norm == 0.d0) then
accu_norm(k) = 1.e-12 accu_norm = 1.e-12
endif endif
enddo accu_norm = 1.d0/dsqrt(accu_norm)
do k = 1, nstates
accu_norm(k) = 1.d0/dsqrt(accu_norm(k))
enddo
do k=1,nstates
do i=1,ndet do i=1,ndet
psi_coef_save(i,k) = psi_coef_save(i,k) * accu_norm(k) psi_coef_save(i,k) = psicoef(i,k) * accu_norm
enddo enddo
enddo enddo

View File

@ -51,9 +51,10 @@ subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint)
integer(bit_kind),intent(in) :: o(Nint,2) integer(bit_kind),intent(in) :: o(Nint,2)
integer(bit_kind),intent(out) :: d(Nint,2,sze) integer(bit_kind),intent(out) :: d(Nint,2,sze)
integer :: i, k, nt, na, nd, amax integer :: i, l, k, nt, na, nd, amax
integer :: list_todo(2*n_alpha) integer :: list_todo(2*n_alpha)
integer :: list_a(2*n_alpha) integer :: list_a(2*n_alpha)
integer :: ishift
amax = n_alpha amax = n_alpha
do k=1,Nint do k=1,Nint
@ -69,7 +70,7 @@ subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint)
sze = nd sze = nd
integer :: ne(2), l integer :: ne(2)
l=0 l=0
do i=1,nd do i=1,nd
ne(1) = 0 ne(1) = 0
@ -90,6 +91,7 @@ subroutine occ_pattern_to_dets(o,d,sze,n_alpha,Nint)
end end
recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint) recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,amax,Nint)
use bitmasks use bitmasks
implicit none implicit none
@ -98,6 +100,7 @@ recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,am
integer,intent(inout) :: list_todo(nt) integer,intent(inout) :: list_todo(nt)
integer, intent(inout) :: list_a(na+1),nd integer, intent(inout) :: list_a(na+1),nd
integer(bit_kind),intent(inout) :: d(Nint,2,sze) integer(bit_kind),intent(inout) :: d(Nint,2,sze)
integer :: iint, ipos, i,j,k
if (na == amax) then if (na == amax) then
nd += 1 nd += 1
@ -106,14 +109,17 @@ recursive subroutine rec_occ_pattern_to_dets(list_todo,nt,list_a,na,d,nd,sze,am
print *, irp_here, ': sze = ', sze print *, irp_here, ': sze = ', sze
stop 'bug in rec_occ_pattern_to_dets' stop 'bug in rec_occ_pattern_to_dets'
endif endif
if (na > 0) then do i=1,na
call list_to_bitstring( d(1,1,nd), list_a, na, Nint) iint = ishft(list_a(i)-1,-bit_kind_shift) + 1
endif ipos = list_a(i)-ishft((iint-1),bit_kind_shift)-1
if (nt > 0) then d(iint,1,nd) = ibset( d(iint,1,nd), ipos )
call list_to_bitstring( d(1,2,nd), list_todo, nt, Nint) enddo
endif do i=1,nt
iint = ishft(list_todo(i)-1,-bit_kind_shift) + 1
ipos = list_todo(i)-ishft((iint-1),bit_kind_shift)-1
d(iint,2,nd) = ibset( d(iint,2,nd), ipos )
enddo
else else
integer :: i, j, k
integer, allocatable :: list_todo_tmp(:) integer, allocatable :: list_todo_tmp(:)
allocate (list_todo_tmp(nt)) allocate (list_todo_tmp(nt))
do i=1,nt do i=1,nt
@ -248,6 +254,55 @@ end
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, det_to_occ_pattern, (N_det) ]
implicit none
BEGIN_DOC
! Returns the index of the occupation pattern for each determinant
END_DOC
integer :: i,j,k
integer(bit_kind) :: occ(N_int,2)
logical :: found
!$OMP PARALLEL DO DEFAULT(SHARED) &
!$OMP PRIVATE(i,k,j,found,occ)
do i=1,N_det
do k = 1, N_int
occ(k,1) = ieor(psi_det(k,1,i),psi_det(k,2,i))
occ(k,2) = iand(psi_det(k,1,i),psi_det(k,2,i))
enddo
do j=1,N_occ_pattern
found = .True.
do k=1,N_int
if ( (occ(k,1) /= psi_occ_pattern(k,1,j)) &
.or. (occ(k,2) /= psi_occ_pattern(k,2,j)) ) then
found = .False.
exit
endif
enddo
if (found) then
det_to_occ_pattern(i) = j
exit
endif
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [ double precision, weight_occ_pattern, (N_occ_pattern,N_states) ]
implicit none
BEGIN_DOC
! Weight of the occupation patterns in the wave function
END_DOC
integer :: i,j,k
weight_occ_pattern = 0.d0
do i=1,N_det
j = det_to_occ_pattern(i)
do k=1,N_states
weight_occ_pattern(j,k) += psi_coef(i,k) * psi_coef(i,k)
enddo
enddo
END_PROVIDER
subroutine make_s2_eigenfunction subroutine make_s2_eigenfunction
implicit none implicit none
integer :: i,j,k integer :: i,j,k
@ -268,7 +323,7 @@ subroutine make_s2_eigenfunction
smax = s smax = s
ithread=0 ithread=0
!$ ithread = omp_get_thread_num() !$ ithread = omp_get_thread_num()
!$OMP DO !$OMP DO SCHEDULE (dynamic,1000)
do i=1,N_occ_pattern do i=1,N_occ_pattern
call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int) call occ_pattern_to_dets_size(psi_occ_pattern(1,1,i),s,elec_alpha_num,N_int)
s += 1 s += 1
@ -281,10 +336,7 @@ subroutine make_s2_eigenfunction
do j=1,s do j=1,s
if (.not. is_in_wavefunction(d(1,1,j), N_int) ) then if (.not. is_in_wavefunction(d(1,1,j), N_int) ) then
N_det_new += 1 N_det_new += 1
do k=1,N_int det_buffer(:,:,N_det_new) = d(:,:,j)
det_buffer(k,1,N_det_new) = d(k,1,j)
det_buffer(k,2,N_det_new) = d(k,2,j)
enddo
if (N_det_new == bufsze) then if (N_det_new == bufsze) then
call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,ithread) call fill_H_apply_buffer_no_selection(bufsze,det_buffer,N_int,ithread)
N_det_new = 0 N_det_new = 0

View File

@ -167,7 +167,7 @@ subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
end select end select
end end
subroutine get_double_excitation_ref(det1,det2,exc,phase,Nint) subroutine get_double_excitation(det1,det2,exc,phase,Nint)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -335,112 +335,6 @@ subroutine get_phasemask_bit(det1, pm, Nint)
end subroutine end subroutine
subroutine get_double_excitation(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the two excitation operators between two doubly excited determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(out) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp, pm(Nint,2)
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
double precision :: refaz
logical :: ok
ASSERT (Nint > 0)
!do ispin=1,2
!tmp = 0_8
!do i=1,Nint
! pm(i,ispin) = xor(det1(i,ispin), ishft(det1(i,ispin), 1))
! pm(i,ispin) = xor(pm(i,ispin), ishft(pm(i,ispin), 2))
! pm(i,ispin) = xor(pm(i,ispin), ishft(pm(i,ispin), 4))
! pm(i,ispin) = xor(pm(i,ispin), ishft(pm(i,ispin), 8))
! pm(i,ispin) = xor(pm(i,ispin), ishft(pm(i,ispin), 16))
! pm(i,ispin) = xor(pm(i,ispin), ishft(pm(i,ispin), 32))
! pm(i,ispin) = xor(pm(i,ispin), tmp)
! if(iand(popcnt(det1(i,ispin)), 1) == 1) tmp = not(tmp)
!end do
!end do
call get_phasemask_bit(det1, pm, Nint)
nperm = 0
exc(0,1,1) = 0
exc(0,2,1) = 0
exc(0,1,2) = 0
exc(0,2,2) = 0
do ispin = 1,2
idx_particle = 0
idx_hole = 0
ishift = 1-bit_kind_size
!par = 0
do l=1,Nint
ishift = ishift + bit_kind_size
if (det1(l,ispin) == det2(l,ispin)) then
cycle
endif
tmp = xor( det1(l,ispin), det2(l,ispin) )
particle = iand(tmp, det2(l,ispin))
hole = iand(tmp, det1(l,ispin))
do while (particle /= 0_bit_kind)
tz = trailz(particle)
nperm = nperm + iand(ishft(pm(l,ispin), -tz), 1)
idx_particle = idx_particle + 1
exc(0,2,ispin) = exc(0,2,ispin) + 1
exc(idx_particle,2,ispin) = tz+ishift
particle = iand(particle,particle-1_bit_kind)
enddo
if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2
exit
endif
do while (hole /= 0_bit_kind)
tz = trailz(hole)
nperm = nperm + iand(ishft(pm(l,ispin), -tz), 1)
idx_hole = idx_hole + 1
exc(0,1,ispin) = exc(0,1,ispin) + 1
exc(idx_hole,1,ispin) = tz+ishift
hole = iand(hole,hole-1_bit_kind)
enddo
if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)
exit
endif
enddo
select case (exc(0,1,ispin))
case(0)
cycle
case(1)
if(exc(1,1,ispin) < exc(1,2,ispin)) nperm = nperm+1
case (2)
a = exc(1,1,ispin)
b = exc(1,2,ispin)
c = exc(2,1,ispin)
d = exc(2,2,ispin)
if(min(a,c) > max(b,d) .or. min(b,d) > max(a,c) .or. (a-b)*(c-d)<0) then
nperm = nperm + 1
end if
exit
end select
enddo
phase = phase_dble(iand(nperm,1))
!call get_double_excitation_ref(det1,det2,exc,refaz,Nint)
!if(phase == refaz) then
! print *, "phase", phase, refaz, n, exc(0,1,1)
!end if
end
subroutine get_mono_excitation(det1,det2,exc,phase,Nint) subroutine get_mono_excitation(det1,det2,exc,phase,Nint)
use bitmasks use bitmasks

View File

@ -1,12 +1,17 @@
program s2_eig_restart program s2_eig_restart
implicit none implicit none
read_wf = .True. read_wf = .True.
call routine if (s2_eig) then
call routine_s2
else
call routine
endif
end end
subroutine routine subroutine routine
implicit none implicit none
integer :: ndet_max integer :: ndet_max
print*, 'How many determinants would you like ?' print*, 'Max number of determinants ?'
read(5,*)ndet_max read(5,*)ndet_max
integer(bit_kind), allocatable :: psi_det_tmp(:,:,:) integer(bit_kind), allocatable :: psi_det_tmp(:,:,:)
double precision, allocatable :: psi_coef_tmp(:,:) double precision, allocatable :: psi_coef_tmp(:,:)
@ -34,6 +39,53 @@ subroutine routine
enddo enddo
enddo enddo
call save_wavefunction_general(ndet_max,N_states,psi_det_tmp,N_det_max,psi_coef_tmp) call save_wavefunction_general(ndet_max,N_states,psi_det_tmp,size(psi_coef_tmp,1),psi_coef_tmp)
end
subroutine routine_s2
implicit none
integer :: ndet_max
double precision :: wmin
integer(bit_kind), allocatable :: psi_det_tmp(:,:,:)
double precision, allocatable :: psi_coef_tmp(:,:)
integer :: i,j,k
double precision :: accu(N_states)
print*, 'Min weight of the occupation pattern ?'
read(5,*) wmin
ndet_max = 0
do i=1,N_det
if (maxval(weight_occ_pattern( det_to_occ_pattern(i),:)) < wmin) cycle
ndet_max = ndet_max+1
enddo
allocate(psi_det_tmp(N_int,2,ndet_max),psi_coef_tmp(ndet_max, N_states))
accu = 0.d0
k=0
do i = 1, N_det
if (maxval(weight_occ_pattern( det_to_occ_pattern(i),:)) < wmin) cycle
k = k+1
do j = 1, N_int
psi_det_tmp(j,1,k) = psi_det(j,1,i)
psi_det_tmp(j,2,k) = psi_det(j,2,i)
enddo
do j = 1, N_states
psi_coef_tmp(k,j) = psi_coef(i,j)
accu(j) += psi_coef_tmp(k,j) **2
enddo
enddo
do j = 1, N_states
accu(j) = 1.d0/dsqrt(accu(j))
enddo
do j = 1, N_states
do i = 1, ndet_max
psi_coef_tmp(i,j) = psi_coef_tmp(i,j) * accu(j)
enddo
enddo
call save_wavefunction_general(ndet_max,N_states,psi_det_tmp,size(psi_coef_tmp,1),psi_coef_tmp)
end end

View File

@ -11,8 +11,8 @@ integer function zmq_put_psi(zmq_to_qp_run_socket,worker_id)
integer, external :: zmq_put_N_states integer, external :: zmq_put_N_states
integer, external :: zmq_put_N_det integer, external :: zmq_put_N_det
integer, external :: zmq_put_psi_det_size integer, external :: zmq_put_psi_det_size
integer, external :: zmq_put_psi_det integer*8, external :: zmq_put_psi_det
integer, external :: zmq_put_psi_coef integer*8, external :: zmq_put_psi_coef
zmq_put_psi = 0 zmq_put_psi = 0
if (zmq_put_N_states(zmq_to_qp_run_socket, worker_id) == -1) then if (zmq_put_N_states(zmq_to_qp_run_socket, worker_id) == -1) then
@ -112,6 +112,10 @@ integer function zmq_get_$X(zmq_to_qp_run_socket, worker_id)
endif endif
10 continue 10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -136,7 +140,7 @@ psi_det_size ;;
END_TEMPLATE END_TEMPLATE
integer function zmq_put_psi_det(zmq_to_qp_run_socket,worker_id) integer*8 function zmq_put_psi_det(zmq_to_qp_run_socket,worker_id)
use f77_zmq use f77_zmq
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -144,33 +148,24 @@ integer function zmq_put_psi_det(zmq_to_qp_run_socket,worker_id)
END_DOC END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id integer, intent(in) :: worker_id
integer :: rc
integer*8 :: rc8 integer*8 :: rc8
character*(256) :: msg character*(256) :: msg
zmq_put_psi_det = 0 integer*8 :: zmq_put_i8matrix
integer :: ni, nj
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, 'psi_det' if (size(psi_det,kind=8) <= 8388608_8) then
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE) ni = size(psi_det,kind=4)
if (rc /= len(trim(msg))) then nj = 1
zmq_put_psi_det = -1 else
return ni = 8388608_8
endif nj = int(size(psi_det,kind=8)/8388608_8,4) + 1
rc8 = f77_zmq_send8(zmq_to_qp_run_socket,psi_det,int(N_int*2_8*N_det*bit_kind,8),0)
if (rc8 /= N_int*2_8*N_det*bit_kind) then
zmq_put_psi_det = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
zmq_put_psi_det = -1
return
endif endif
rc8 = zmq_put_i8matrix(zmq_to_qp_run_socket, 1, 'psi_det', psi_det, ni, nj, size(psi_det,kind=8))
zmq_put_psi_det = rc8
end end
integer function zmq_put_psi_coef(zmq_to_qp_run_socket,worker_id) integer*8 function zmq_put_psi_coef(zmq_to_qp_run_socket,worker_id)
use f77_zmq use f77_zmq
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -178,31 +173,75 @@ integer function zmq_put_psi_coef(zmq_to_qp_run_socket,worker_id)
END_DOC END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id integer, intent(in) :: worker_id
integer :: rc
integer*8 :: rc8 integer*8 :: rc8
character*(256) :: msg character*(256) :: msg
zmq_put_psi_coef = 0 zmq_put_psi_coef = 0
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, 'psi_coef' integer*8 :: zmq_put_dmatrix
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE) integer :: ni, nj
if (rc /= len(trim(msg))) then
zmq_put_psi_coef = -1
return
endif
rc8 = f77_zmq_send8(zmq_to_qp_run_socket,psi_coef,int(psi_det_size*N_states*8_8,8),0) if (size(psi_coef,kind=8) <= 8388608_8) then
if (rc8 /= psi_det_size*N_states*8_8) then ni = size(psi_coef,kind=4)
zmq_put_psi_coef = -1 nj = 1
return else
ni = 8388608
nj = int(size(psi_coef,kind=8)/8388608_8,4) + 1
endif endif
rc8 = zmq_put_dmatrix(zmq_to_qp_run_socket, 1, 'psi_coef', psi_coef, ni, nj, size(psi_coef,kind=8) )
zmq_put_psi_coef = rc8
end
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0) integer*8 function zmq_get_psi_det(zmq_to_qp_run_socket,worker_id)
if (msg(1:rc) /= 'put_data_reply ok') then use f77_zmq
zmq_put_psi_coef = -1 implicit none
return BEGIN_DOC
! Get psi_det on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer*8 :: rc8
character*(256) :: msg
integer*8 :: zmq_get_i8matrix
integer :: ni, nj
if (size(psi_det,kind=8) <= 8388608_8) then
ni = size(psi_det,kind=4)
nj = 1
else
ni = 8388608
nj = int(size(psi_det,kind=8)/8388608_8,4) + 1
endif endif
rc8 = zmq_get_i8matrix(zmq_to_qp_run_socket, 1, 'psi_det', psi_det, ni, nj, size(psi_det,kind=8))
zmq_get_psi_det = rc8
end
integer*8 function zmq_get_psi_coef(zmq_to_qp_run_socket,worker_id)
use f77_zmq
implicit none
BEGIN_DOC
! get psi_coef on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer*8 :: rc8
character*(256) :: msg
zmq_get_psi_coef = 0_8
integer*8 :: zmq_get_dmatrix
integer :: ni, nj
if (size(psi_coef,kind=8) <= 8388608_8) then
ni = size(psi_coef,kind=4)
nj = 1
else
ni = 8388608
nj = int(size(psi_coef,kind=8)/8388608_8,4) + 1
endif
rc8 = zmq_get_dmatrix(zmq_to_qp_run_socket, 1, 'psi_coef', psi_coef, ni, nj, size(psi_coef,kind=8) )
zmq_get_psi_coef = rc8
end end
!--------------------------------------------------------------------------- !---------------------------------------------------------------------------
@ -220,8 +259,8 @@ integer function zmq_get_psi(zmq_to_qp_run_socket, worker_id)
integer, external :: zmq_get_N_states integer, external :: zmq_get_N_states
integer, external :: zmq_get_N_det integer, external :: zmq_get_N_det
integer, external :: zmq_get_psi_det_size integer, external :: zmq_get_psi_det_size
integer, external :: zmq_get_psi_det integer*8, external :: zmq_get_psi_det
integer, external :: zmq_get_psi_coef integer*8, external :: zmq_get_psi_coef
zmq_get_psi = 0 zmq_get_psi = 0
@ -238,21 +277,21 @@ integer function zmq_get_psi(zmq_to_qp_run_socket, worker_id)
return return
endif endif
if (size(psi_det) /= N_int*2_8*psi_det_size*bit_kind) then if (size(psi_det,kind=8) /= N_int*2_8*psi_det_size*bit_kind) then
deallocate(psi_det) deallocate(psi_det)
allocate(psi_det(N_int,2,psi_det_size)) allocate(psi_det(N_int,2,psi_det_size))
endif endif
if (size(psi_coef) /= psi_det_size*N_states) then if (size(psi_coef,kind=8) /= psi_det_size*N_states) then
deallocate(psi_coef) deallocate(psi_coef)
allocate(psi_coef(psi_det_size,N_states)) allocate(psi_coef(psi_det_size,N_states))
endif endif
if (zmq_get_psi_det(zmq_to_qp_run_socket, worker_id) == -1) then if (zmq_get_psi_det(zmq_to_qp_run_socket, worker_id) == -1_8) then
zmq_get_psi = -1 zmq_get_psi = -1
return return
endif endif
if (zmq_get_psi_coef(zmq_to_qp_run_socket, worker_id) == -1) then if (zmq_get_psi_coef(zmq_to_qp_run_socket, worker_id) == -1_8) then
zmq_get_psi = -1 zmq_get_psi = -1
return return
endif endif
@ -261,101 +300,5 @@ integer function zmq_get_psi(zmq_to_qp_run_socket, worker_id)
end end
integer function zmq_get_psi_det(zmq_to_qp_run_socket, worker_id)
use f77_zmq
implicit none
BEGIN_DOC
! Get psi_det from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer :: rc
integer*8 :: rc8
character*(256) :: msg
PROVIDE zmq_state
zmq_get_psi_det = 0
if (mpi_master) then
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, 'psi_det'
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get_psi_det = -1
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
zmq_get_psi_det = -1
go to 10
endif
rc8 = f77_zmq_recv8(zmq_to_qp_run_socket,psi_det,int(N_int*2_8*N_det*bit_kind,8),0)
if (rc8 /= N_int*2_8*N_det*bit_kind) then
zmq_get_psi_det = -1
go to 10
endif
endif
10 continue
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST (zmq_get_psi_det, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to broadcast zmq_get_psi_det'
endif
call broadcast_chunks_bit_kind(psi_det,size(psi_det))
IRP_ENDIF
end
integer function zmq_get_psi_coef(zmq_to_qp_run_socket, worker_id)
use f77_zmq
implicit none
BEGIN_DOC
! Get psi_coef from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer :: rc
integer*8 :: rc8
character*(256) :: msg
PROVIDE zmq_state psi_det_size
zmq_get_psi_coef = 0
if (mpi_master) then
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, 'psi_coef'
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get_psi_coef = -1
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
zmq_get_psi_coef = -1
go to 10
endif
rc8 = f77_zmq_recv8(zmq_to_qp_run_socket,psi_coef,int(psi_det_size*N_states*8_8,8),0)
if (rc8 /= psi_det_size*N_states*8_8) then
zmq_get_psi_coef = -1
go to 10
endif
endif
10 continue
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST (zmq_get_psi_coef, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to broadcast zmq_get_psi_coef'
endif
call broadcast_chunks_double(psi_coef,size(psi_coef))
IRP_ENDIF
end

View File

@ -9,6 +9,10 @@ BEGIN_PROVIDER [ integer, mo_tot_num ]
if (mpi_master) then if (mpi_master) then
call ezfio_has_mo_basis_mo_tot_num(has) call ezfio_has_mo_basis_mo_tot_num(has)
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -71,6 +75,10 @@ BEGIN_PROVIDER [ double precision, mo_coef, (ao_num,mo_tot_num) ]
! Coefs ! Coefs
call ezfio_has_mo_basis_mo_coef(exists) call ezfio_has_mo_basis_mo_coef(exists)
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -136,6 +144,10 @@ BEGIN_PROVIDER [ character*(64), mo_label ]
endif endif
write(*,*) '* mo_label ', trim(mo_label) write(*,*) '* mo_label ', trim(mo_label)
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -198,6 +210,10 @@ BEGIN_PROVIDER [ double precision, mo_occ, (mo_tot_num) ]
endif endif
write(*,*) 'Read mo_occ' write(*,*) 'Read mo_occ'
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr

View File

@ -65,11 +65,15 @@ BEGIN_TEMPLATE
subroutine broadcast_chunks_$double(A, LDA) subroutine broadcast_chunks_$double(A, LDA)
implicit none implicit none
integer, intent(in) :: LDA integer*8, intent(in) :: LDA
$type, intent(inout) :: A(LDA) $type, intent(inout) :: A(LDA)
BEGIN_DOC BEGIN_DOC
! Broadcast with chunks of ~2GB ! Broadcast with chunks of ~2GB
END_DOC END_DOC
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: i, sze, ierr integer :: i, sze, ierr
@ -80,6 +84,7 @@ subroutine broadcast_chunks_$double(A, LDA)
print *, irp_here//': Unable to broadcast chunks $double ', i print *, irp_here//': Unable to broadcast chunks $double ', i
stop -1 stop -1
endif endif
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
enddo enddo
IRP_ENDIF IRP_ENDIF
end end

View File

@ -54,6 +54,10 @@ BEGIN_PROVIDER [ double precision, nucl_coord, (nucl_num,3) ]
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -159,6 +163,10 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
endif endif
print*, 'Read nuclear_repulsion' print*, 'Read nuclear_repulsion'
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr
@ -228,6 +236,10 @@ END_PROVIDER
close(10) close(10)
endif endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
integer :: ierr integer :: ierr

View File

@ -8,7 +8,7 @@ integer function zmq_put_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_
integer, intent(in) :: worker_id integer, intent(in) :: worker_id
character*(*) :: name character*(*) :: name
integer, intent(in) :: size_x integer, intent(in) :: size_x
double precision, intent(out) :: x(size_x) double precision, intent(in) :: x(size_x)
integer :: rc integer :: rc
character*(256) :: msg character*(256) :: msg
@ -48,7 +48,6 @@ integer function zmq_get_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_
character*(*), intent(in) :: name character*(*), intent(in) :: name
double precision, intent(out) :: x(size_x) double precision, intent(out) :: x(size_x)
integer :: rc integer :: rc
integer*8 :: rc8
character*(256) :: msg character*(256) :: msg
PROVIDE zmq_state PROVIDE zmq_state
@ -60,17 +59,20 @@ integer function zmq_get_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0) rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then if (rc /= len(trim(msg))) then
zmq_get_dvector = -1 zmq_get_dvector = -1
print *, irp_here, 'rc /= len(trim(msg))', rc, len(trim(msg))
go to 10 go to 10
endif endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0) rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then if (msg(1:14) /= 'get_data_reply') then
print *, irp_here, 'msg(1:14) /= get_data_reply', msg(1:14)
zmq_get_dvector = -1 zmq_get_dvector = -1
go to 10 go to 10
endif endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,x,size_x*8,0) rc = f77_zmq_recv(zmq_to_qp_run_socket,x,size_x*8,0)
if (rc /= size_x*8) then if (rc /= size_x*8) then
print *, irp_here, 'rc /= size_x*8', rc, size_x*8
zmq_get_dvector = -1 zmq_get_dvector = -1
go to 10 go to 10
endif endif
@ -78,6 +80,10 @@ integer function zmq_get_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_
10 continue 10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
integer :: ierr integer :: ierr
include 'mpif.h' include 'mpif.h'
@ -86,11 +92,8 @@ integer function zmq_get_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_
print *, irp_here//': Unable to broadcast zmq_get_dvector' print *, irp_here//': Unable to broadcast zmq_get_dvector'
stop -1 stop -1
endif endif
call MPI_BCAST (x, size_x, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr)
if (ierr /= MPI_SUCCESS) then call broadcast_chunks_double(x, int(size_x,8))
print *, irp_here//': Unable to broadcast dvector'
stop -1
endif
IRP_ENDIF IRP_ENDIF
end end
@ -107,7 +110,7 @@ integer function zmq_put_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_
integer, intent(in) :: worker_id integer, intent(in) :: worker_id
character*(*) :: name character*(*) :: name
integer, intent(in) :: size_x integer, intent(in) :: size_x
integer, intent(out) :: x(size_x) integer, intent(in) :: x(size_x)
integer :: rc integer :: rc
character*(256) :: msg character*(256) :: msg
@ -147,7 +150,6 @@ integer function zmq_get_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_
character*(*), intent(in) :: name character*(*), intent(in) :: name
integer, intent(out) :: x(size_x) integer, intent(out) :: x(size_x)
integer :: rc integer :: rc
integer*8 :: rc8
character*(256) :: msg character*(256) :: msg
PROVIDE zmq_state PROVIDE zmq_state
@ -177,6 +179,10 @@ integer function zmq_get_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_
10 continue 10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI IRP_IF MPI
integer :: ierr integer :: ierr
include 'mpif.h' include 'mpif.h'
@ -185,14 +191,537 @@ integer function zmq_get_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_
print *, irp_here//': Unable to broadcast zmq_get_ivector' print *, irp_here//': Unable to broadcast zmq_get_ivector'
stop -1 stop -1
endif endif
call MPI_BCAST (x, size_x, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr) call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call broadcast_chunks_integer(x, int(size_x,8))
IRP_ENDIF
end
integer function zmq_put8_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_x)
use f77_zmq
implicit none
BEGIN_DOC
! Put a float vector on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*) :: name
integer*8, intent(in) :: size_x
double precision, intent(in) :: x(size_x)
integer*8 :: rc
character*(256) :: msg
zmq_put8_dvector = 0
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
zmq_put8_dvector = -1
print *, 'Failed in put_data'
return
endif
rc = f77_zmq_send8(zmq_to_qp_run_socket,x,size_x*8_8,0)
if (rc /= size_x*8_8) then
print *, 'Failed in send ', rc, size_x*8, size_x
zmq_put8_dvector = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
print *, 'Failed in recv ', rc
zmq_put8_dvector = -1
return
endif
end
integer function zmq_get8_dvector(zmq_to_qp_run_socket, worker_id, name, x, size_x)
use f77_zmq
implicit none
BEGIN_DOC
! Get a float vector from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer*8, intent(in) :: size_x
character*(*), intent(in) :: name
double precision, intent(out) :: x(size_x)
integer*8 :: rc
character*(256) :: msg
PROVIDE zmq_state
! Success
zmq_get8_dvector = 0
if (mpi_master) then
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get8_dvector = -1
print *, irp_here, 'rc /= len(trim(msg))', rc, len(trim(msg))
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
print *, irp_here, 'msg(1:14) /= get_data_reply', msg(1:14)
zmq_get8_dvector = -1
go to 10
endif
rc = f77_zmq_recv8(zmq_to_qp_run_socket,x,size_x*8_8,0)
if (rc /= size_x*8) then
print *, irp_here, 'rc /= size_x*8', rc, size_x*8_8
zmq_get8_dvector = -1
go to 10
endif
endif
10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
integer :: ierr
include 'mpif.h'
call MPI_BCAST (zmq_get8_dvector, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
print *, irp_here//': Unable to broadcast ivector' print *, irp_here//': Unable to broadcast zmq_get8_dvector'
stop -1 stop -1
endif endif
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call broadcast_chunks_double(x, size_x)
IRP_ENDIF IRP_ENDIF
end end
integer function zmq_put_dmatrix(zmq_to_qp_run_socket, worker_id, name, x, size_x1, size_x2, sze)
use f77_zmq
implicit none
BEGIN_DOC
! Put a float vector on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*) :: name
integer, intent(in) :: size_x1, size_x2
integer*8, intent(in) :: sze
double precision, intent(in) :: x(size_x1, size_x2)
integer*8 :: rc, ni
integer :: j
character*(256) :: msg
zmq_put_dmatrix = 0
ni = size_x1
do j=1,size_x2
if (j == size_x2) then
ni = int(sze - int(j-1,8)*int(size_x1,8),8)
endif
write(msg,'(A,1X,I8,1X,A,I8.8)') 'put_data '//trim(zmq_state), worker_id, trim(name), j
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
zmq_put_dmatrix = -1
print *, 'Failed in put_data', rc, j
return
endif
rc = f77_zmq_send8(zmq_to_qp_run_socket,x(1,j),ni*8_8,0)
if (rc /= ni*8_8) then
print *, 'Failed in send ', rc, j
zmq_put_dmatrix = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
print *, 'Failed in recv ', rc, j
zmq_put_dmatrix = -1
return
endif
enddo
end
integer function zmq_get_dmatrix(zmq_to_qp_run_socket, worker_id, name, x, size_x1, size_x2, sze)
use f77_zmq
implicit none
BEGIN_DOC
! Get a float vector from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer, intent(in) :: size_x1, size_x2
integer*8, intent(in) :: sze
character*(*), intent(in) :: name
double precision, intent(out) :: x(size_x1,size_x2)
integer*8 :: rc, ni
integer*8 :: j
character*(256) :: msg
PROVIDE zmq_state
! Success
zmq_get_dmatrix = 0
if (mpi_master) then
ni = size_x1
do j=1, size_x2
if (j == size_x2) then
ni = sze - (j-1)*size_x1
endif
write(msg,'(A,1X,I8,1X,A,I8.8)') 'get_data '//trim(zmq_state), worker_id, trim(name),j
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get_dmatrix = -1
print *, irp_here, 'rc /= len(trim(msg))', rc, len(trim(msg))
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
print *, irp_here, 'msg(1:14) /= get_data_reply', msg(1:14)
zmq_get_dmatrix = -1
go to 10
endif
rc = f77_zmq_recv8(zmq_to_qp_run_socket,x(1,j),ni*8_8,0)
if (rc /= ni*8_8) then
print *, irp_here, 'rc /= size_x1*8', rc, ni*8_8
zmq_get_dmatrix = -1
go to 10
endif
enddo
endif
10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
integer :: ierr
include 'mpif.h'
call MPI_BCAST (zmq_get_dmatrix, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here//': Unable to broadcast zmq_get_dmatrix'
stop -1
endif
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call broadcast_chunks_double(x, sze)
IRP_ENDIF
end
integer function zmq_put8_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_x)
use f77_zmq
implicit none
BEGIN_DOC
! Put a vector of integers on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*) :: name
integer*8, intent(in) :: size_x
integer, intent(in) :: x(size_x)
integer*8 :: rc
character*(256) :: msg
zmq_put8_ivector = 0
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
zmq_put8_ivector = -1
return
endif
rc = f77_zmq_send8(zmq_to_qp_run_socket,x,size_x*4_8,0)
if (rc /= size_x*4_8) then
zmq_put8_ivector = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
zmq_put8_ivector = -1
return
endif
end
integer function zmq_get8_ivector(zmq_to_qp_run_socket, worker_id, name, x, size_x)
use f77_zmq
implicit none
BEGIN_DOC
! Get a vector of integers from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer*8, intent(in) :: size_x
character*(*), intent(in) :: name
integer, intent(out) :: x(size_x)
integer*8 :: rc
character*(256) :: msg
PROVIDE zmq_state
! Success
zmq_get8_ivector = 0
if (mpi_master) then
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get8_ivector = -1
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
zmq_get8_ivector = -1
go to 10
endif
rc = f77_zmq_recv8(zmq_to_qp_run_socket,x,size_x*4_8,0)
if (rc /= size_x*4) then
zmq_get8_ivector = -1
go to 10
endif
endif
10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
integer :: ierr
include 'mpif.h'
call MPI_BCAST (zmq_get8_ivector, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here//': Unable to broadcast zmq_get8_ivector'
stop -1
endif
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call broadcast_chunks_integer(x, size_x)
IRP_ENDIF
end
integer function zmq_put_int(zmq_to_qp_run_socket, worker_id, name, x)
use f77_zmq
implicit none
BEGIN_DOC
! Put a vector of integers on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*) :: name
integer, intent(in) :: x
integer :: rc
character*(256) :: msg
zmq_put_int = 0
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
zmq_put_int = -1
return
endif
rc = f77_zmq_send(zmq_to_qp_run_socket,x,4,0)
if (rc /= 4) then
zmq_put_int = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
zmq_put_int = -1
return
endif
end
integer function zmq_get_int(zmq_to_qp_run_socket, worker_id, name, x)
use f77_zmq
implicit none
BEGIN_DOC
! Get a vector of integers from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*), intent(in) :: name
integer, intent(out) :: x
integer :: rc
character*(256) :: msg
PROVIDE zmq_state
! Success
zmq_get_int = 0
if (mpi_master) then
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, name
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get_int = -1
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
zmq_get_int = -1
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,x,4,0)
if (rc /= 4) then
zmq_get_int = -1
go to 10
endif
endif
10 continue
end
integer function zmq_put_i8matrix(zmq_to_qp_run_socket, worker_id, name, x, size_x1, size_x2, sze)
use f77_zmq
implicit none
BEGIN_DOC
! Put a float vector on the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
character*(*) :: name
integer, intent(in) :: size_x1, size_x2
integer*8, intent(in) :: sze
integer*8, intent(in) :: x(size_x1, size_x2)
integer*8 :: rc, ni
integer*8 :: j
character*(256) :: msg
zmq_put_i8matrix = 0
ni = size_x1
do j=1,size_x2
if (j == size_x2) then
ni = sze - (j-1_8)*int(size_x1,8)
endif
write(msg,'(A,1X,I8,1X,A,I8.8)') 'put_data '//trim(zmq_state), worker_id, trim(name), j
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
if (rc /= len(trim(msg))) then
zmq_put_i8matrix = -1
print *, irp_here, 'Failed in put_data', rc, j
return
endif
rc = f77_zmq_send8(zmq_to_qp_run_socket,x(1,j),ni*8_8,0)
if (rc /= ni*8_8) then
print *, irp_here, 'Failed in send ', rc, j
zmq_put_i8matrix = -1
return
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:rc) /= 'put_data_reply ok') then
print *, irp_here, 'Failed in recv ', rc, j
zmq_put_i8matrix = -1
return
endif
enddo
end
integer function zmq_get_i8matrix(zmq_to_qp_run_socket, worker_id, name, x, size_x1, size_x2, sze)
use f77_zmq
implicit none
BEGIN_DOC
! Get a float vector from the qp_run scheduler
END_DOC
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
integer, intent(in) :: worker_id
integer, intent(in) :: size_x1, size_x2
integer*8, intent(in) :: sze
character*(*), intent(in) :: name
double precision, intent(out) :: x(size_x1,size_x2)
integer*8 :: rc, ni
integer*8 :: j
character*(256) :: msg
PROVIDE zmq_state
! Success
zmq_get_i8matrix = 0
if (mpi_master) then
ni = size_x1
do j=1, size_x2
if (j == size_x2) then
ni = sze - (j-1)*size_x1
endif
write(msg,'(A,1X,I8,1X,A,I8.8)') 'get_data '//trim(zmq_state), worker_id, trim(name),j
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
if (rc /= len(trim(msg))) then
zmq_get_i8matrix = -1
print *, irp_here, 'rc /= len(trim(msg))', rc, len(trim(msg))
go to 10
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
if (msg(1:14) /= 'get_data_reply') then
print *, irp_here, 'msg(1:14) /= get_data_reply', msg(1:14)
zmq_get_i8matrix = -1
go to 10
endif
rc = f77_zmq_recv8(zmq_to_qp_run_socket,x(1,j),ni*8_8,0)
if (rc /= ni*8_8) then
print *, irp_here, 'rc /= ni*8', rc, ni*8_8
zmq_get_i8matrix = -1
go to 10
endif
enddo
endif
10 continue
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
integer :: ierr
include 'mpif.h'
call MPI_BCAST (zmq_get_i8matrix, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here//': Unable to broadcast zmq_get_i8matrix'
stop -1
endif
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
call broadcast_chunks_double(x, sze)
IRP_ENDIF
end