10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

Tests OK again.

This commit is contained in:
Anthony Scemama 2015-09-19 02:00:26 +02:00
parent ff2a0330d7
commit c910257927
4 changed files with 43 additions and 54 deletions

View File

@ -20,7 +20,6 @@ Pseudo
Selectors_full
SingleRefMethod
Utils
cisd
cisd_lapack
ezfio_interface.irp.f
irpf90.make

View File

@ -23,7 +23,6 @@ Pseudo
Selectors_full
SingleRefMethod
Utils
cisd_selection
ezfio_interface.irp.f
irpf90.make
irpf90_entities

View File

@ -113,7 +113,7 @@ Documentation
Save to disk the $ao integrals
`eri <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L661>`_
`eri <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L652>`_
ATOMIC PRIMTIVE bielectronic integral between the 4 primitives ::
primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2)
primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2)
@ -176,37 +176,37 @@ Documentation
Return the number of elements in the MO map
`give_polynom_mult_center_x <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L859>`_
`give_polynom_mult_center_x <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L850>`_
subroutine that returns the explicit polynom in term of the "t"
variable of the following polynomw :
I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q)
`i_x1_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L780>`_
`i_x1_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L771>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L922>`_
`i_x1_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L913>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_a1 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1042>`_
`i_x1_pol_mult_a1 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1033>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_a2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1096>`_
`i_x1_pol_mult_a2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1087>`_
recursive function involved in the bielectronic integral
`i_x1_pol_mult_recurs <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L956>`_
`i_x1_pol_mult_recurs <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L947>`_
recursive function involved in the bielectronic integral
`i_x2_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L815>`_
`i_x2_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L806>`_
recursive function involved in the bielectronic integral
`i_x2_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1158>`_
`i_x2_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1149>`_
recursive function involved in the bielectronic integral
@ -218,7 +218,7 @@ Documentation
Create new entry into MO map, or accumulate in an existing entry
`integrale_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L706>`_
`integrale_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L697>`_
calculate the integral of the polynom ::
I_x1(a_x+b_x, c_x+d_x,p,q) * I_x1(a_y+b_y, c_y+d_y,p,q) * I_x1(a_z+b_z, c_z+d_z,p,q)
between ( 0 ; 1)
@ -292,7 +292,7 @@ Documentation
Aligned n_pt_max_integrals
`n_pt_sup <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L845>`_
`n_pt_sup <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L836>`_
Returns the upper boundary of the degree of the polynomial involved in the
bielctronic integral :
Ix(a_x,b_x,c_x,d_x) * Iy(a_y,b_y,c_y,d_y) * Iz(a_z,b_z,c_z,d_z)

View File

@ -28,7 +28,7 @@ double precision function ao_bielec_integral(i,j,k,l)
num_l = ao_nucl(l)
ao_bielec_integral = 0.d0
! if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
@ -71,36 +71,36 @@ double precision function ao_bielec_integral(i,j,k,l)
enddo ! q
enddo ! p
! else
!
! do p = 1, 3
! I_power(p) = ao_power(i,p)
! J_power(p) = ao_power(j,p)
! K_power(p) = ao_power(k,p)
! L_power(p) = ao_power(l,p)
! enddo
! double precision :: ERI
!
! do p = 1, ao_prim_num(i)
! coef1 = ao_coef_normalized_ordered_transp(p,i)
! do q = 1, ao_prim_num(j)
! coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
! do r = 1, ao_prim_num(k)
! coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
! do s = 1, ao_prim_num(l)
! coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
! integral = ERI( &
! ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
! I_power(1),J_power(1),K_power(1),L_power(1), &
! I_power(2),J_power(2),K_power(2),L_power(2), &
! I_power(3),J_power(3),K_power(3),L_power(3))
! ao_bielec_integral += coef4 * integral
! enddo ! s
! enddo ! r
! enddo ! q
! enddo ! p
!
! endif
else
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
integral = ERI( &
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_bielec_integral += coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif
end
@ -643,16 +643,7 @@ double precision function general_primitive_integral(dim, &
!DEC$ FORCEINLINE
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
double precision :: rint_sum
if (dist /= 0.d0) then
double precision :: rho_mu, const_mu
rho_mu = 1.d0/( 1.d0/rho + 4.d0 )
const_mu = dist * rho_mu
accu = accu + dsqrt(const_mu/const) * rint_sum(n_pt_out,const_mu,d1)
! print *, const_mu, const, accu
! pause
else
accu = accu + rint_sum(n_pt_out,const,d1)
endif
general_primitive_integral = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q)
end