10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 12:56:14 +01:00

definitive version for the second order of 1h2p and 2h1p

This commit is contained in:
Emmanuel Giner 2016-09-19 13:38:37 +02:00
parent a73461035f
commit c6b7acbc4e
2 changed files with 321 additions and 110 deletions

View File

@ -137,7 +137,6 @@ subroutine give_1h2p_new(matrix_1h2p)
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet> !!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | K_{ab} | Idet> !!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | K_{ab} | Idet>
do jdet = 1, idx(0) do jdet = 1, idx(0)
if(idx(jdet).ne.idet)then
if(degree(jdet)==1)then if(degree(jdet)==1)then
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then if (exc(0,1,1) == 1) then
@ -163,9 +162,16 @@ subroutine give_1h2p_new(matrix_1h2p)
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
endif endif
endif else if(degree(jdet)==2)then
else call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
index_orb_act_mono(idx(jdet),1) = -1 ! Mono alpha
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
index_orb_act_mono(idx(jdet),3) = 1
! Mono beta
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} BETA
index_orb_act_mono(idx(jdet),6) = 2
endif endif
enddo enddo
@ -185,7 +191,14 @@ subroutine give_1h2p_new(matrix_1h2p)
accu_contrib = 0.d0 accu_contrib = 0.d0
do ispin = 1, 2 ! you loop on all possible spin for the excitation do ispin = 1, 2 ! you loop on all possible spin for the excitation
! a^{\dagger}_r a_{i} (ispin) ! a^{\dagger}_r a_{i} (ispin)
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
! if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
logical :: cycle_same_spin_first_order
cycle_same_spin_first_order = .False.
if(ispin == kspin .and. vorb.le.rorb)then
cycle_same_spin_first_order = .True.
endif
if(ispin .ne. kspin .and. cycle_same_spin_first_order == .False. )then ! condition not to double count
! FIRST ORDER CONTRIBUTION ! FIRST ORDER CONTRIBUTION
@ -212,10 +225,16 @@ subroutine give_1h2p_new(matrix_1h2p)
do istate = 1, N_states do istate = 1, N_states
accu_contrib(istate) += contrib_hij * delta_e_inv(aorb,kspin,istate) accu_contrib(istate) += contrib_hij * delta_e_inv(aorb,kspin,istate)
enddo enddo
endif
!!!! SECOND ORDER CONTRIBTIONS !!!! SECOND ORDER CONTRIBTIONS
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet > ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet >
do jspin = 1, 2 do jspin = 1, 2
logical :: cycle_same_spin_second_order
cycle_same_spin_second_order = .False.
if(ispin == jspin .and. vorb.le.rorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. jspin .or. cycle_same_spin_second_order == .False.)then
do corb = 1, n_act_orb do corb = 1, n_act_orb
if(perturb_dets_phase(corb,jspin,ispin) .le. -10.d0)cycle if(perturb_dets_phase(corb,jspin,ispin) .le. -10.d0)cycle
do inint = 1, N_int do inint = 1, N_int
@ -231,12 +250,16 @@ subroutine give_1h2p_new(matrix_1h2p)
hia = perturb_dets_hij(corb,jspin,ispin) hia = perturb_dets_hij(corb,jspin,ispin)
hab = fock_operator_local(aorb,borb,kspin) * phase hab = fock_operator_local(aorb,borb,kspin) * phase
if(dabs(hia).le.1.d-12)cycle
if(dabs(hab).le.1.d-12)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int) call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(jspin == ispin)then if(jspin == ispin)then
hjb = phase * (active_int(corb,1) - active_int(corb,2) ) hjb = phase * (active_int(corb,1) - active_int(corb,2) )
else else
hjb = phase * active_int(corb,1) hjb = phase * active_int(corb,1)
endif endif
if(dabs(hjb).le.1.d-12)cycle
do istate = 1, N_states do istate = 1, N_states
accu_contrib(istate)+=hia * delta_e_inv(corb,jspin,istate) & ! | Idet > --> | det_tmp > accu_contrib(istate)+=hia * delta_e_inv(corb,jspin,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis > ! | det_tmp > --> | det_tmp_bis >
@ -244,6 +267,7 @@ subroutine give_1h2p_new(matrix_1h2p)
*hjb *hjb
enddo enddo
enddo enddo
endif
enddo enddo
@ -253,6 +277,176 @@ subroutine give_1h2p_new(matrix_1h2p)
matrix_1h2p(idet,idx(jdet),istate) += accu_contrib(istate) matrix_1h2p(idet,idx(jdet),istate) += accu_contrib(istate)
enddo enddo
else if (degree(jdet) == 2)then
! CASE OF THE DOUBLE EXCITATIONS, ONLY THIRD ORDER EFFECTS
accu_contrib = 0.d0
do ispin = 1, 2 ! you loop on all possible spin for the excitation
! a^{\dagger}_r a_{i} (ispin)
! if it is standard exchange case, the hole ALPHA == the part. BETA
if (index_orb_act_mono(idx(jdet),1) == index_orb_act_mono(idx(jdet),5))then
aorb = index_orb_act_mono(idx(jdet),1) !! the HOLE of the ALPHA electron
borb = index_orb_act_mono(idx(jdet),4) !! the HOLE of the BETA electron
! first case :: | det_tmp > == a_{borb,\beta} | Idet >
cycle_same_spin_second_order = .False.
if(ispin == 2 .and. vorb.le.rorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. 2 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
if(perturb_dets_phase(borb,2,ispin) .le. -10.d0)cycle
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,borb,2,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,borb,2,ispin)
det_tmp_bis(inint,1) = perturb_dets(inint,1,borb,2,ispin)
det_tmp_bis(inint,2) = perturb_dets(inint,2,borb,2,ispin)
enddo
hia = perturb_dets_hij(borb,2,ispin)
if(dabs(hia).le.1.d-12)cycle
call do_mono_excitation(det_tmp_bis,list_act(aorb),list_act(borb),1,i_ok)
call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int)
hab = fock_operator_local(aorb,borb,1) * phase
if(dabs(hab).le.1.d-12)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(ispin == 2)then
hjb = phase * (active_int(aorb,1) - active_int(aorb,2) )
else if (ispin == 1)then
hjb = phase * active_int(aorb,1)
endif
if(dabs(hjb).le.1.d-12)cycle
do istate = 1, N_states
accu_contrib(istate) += hia * delta_e_inv(borb,2,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis >
* hab / (delta_e(borb,2,istate) + one_anhil_one_creat(aorb,borb,1,1,istate)) &
* hjb
enddo
endif
! second case :: | det_tmp > == a_{aorb,\alpha} | Idet >
cycle_same_spin_second_order = .False.
if(ispin == 1 .and. vorb.le.rorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. 1 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
if(perturb_dets_phase(aorb,1,ispin) .le. -10.d0)cycle
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,aorb,1,ispin)
det_tmp_bis(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
det_tmp_bis(inint,2) = perturb_dets(inint,2,aorb,1,ispin)
enddo
hia = perturb_dets_hij(aorb,1,ispin)
if(dabs(hia).le.1.d-12)cycle
call do_mono_excitation(det_tmp_bis,list_act(borb),list_act(aorb),2,i_ok)
call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int)
hab = fock_operator_local(aorb,borb,2) * phase
if(dabs(hab).le.1.d-12)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(ispin == 1)then
hjb = phase * (active_int(borb,1) - active_int(borb,2) )
else if (ispin == 2)then
hjb = phase * active_int(borb,1)
endif
if(dabs(hjb).le.1.d-12)cycle
do istate = 1, N_states
accu_contrib(istate) += hia * delta_e_inv(aorb,1,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis >
* hab / (delta_e(aorb,1,istate) + one_anhil_one_creat(borb,aorb,2,2,istate)) &
* hjb
enddo
endif
! if it is a closed shell double excitation, the hole ALPHA == the hole BETA
else if (index_orb_act_mono(idx(jdet),1) == index_orb_act_mono(idx(jdet),4))then
aorb = index_orb_act_mono(idx(jdet),1) !! the HOLE of the ALPHA electron
borb = index_orb_act_mono(idx(jdet),2) !! the PART of the ALPHA electron
! first case :: | det_tmp > == a_{aorb,\beta} | Idet >
cycle_same_spin_second_order = .False.
if(ispin == 2 .and. vorb.le.rorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. 2 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
if(perturb_dets_phase(aorb,2,ispin) .le. -10.d0)cycle
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,aorb,2,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,aorb,2,ispin)
det_tmp_bis(inint,1) = perturb_dets(inint,1,aorb,2,ispin)
det_tmp_bis(inint,2) = perturb_dets(inint,2,aorb,2,ispin)
enddo
hia = perturb_dets_hij(aorb,2,ispin)
if(dabs(hia).le.1.d-12)cycle
call do_mono_excitation(det_tmp_bis,list_act(aorb),list_act(borb),1,i_ok)
call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int)
hab = fock_operator_local(aorb,borb,1) * phase
if(dabs(hab).le.1.d-12)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(ispin == 2)then
hjb = phase * (active_int(borb,1) - active_int(borb,2) )
else if (ispin == 1)then
hjb = phase * active_int(borb,1)
endif
if(dabs(hjb).le.1.d-12)cycle
do istate = 1, N_states
accu_contrib(istate) += hia * delta_e_inv(aorb,2,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis >
* hab / (delta_e(aorb,2,istate) + one_anhil_one_creat(aorb,borb,1,1,istate)) &
* hjb
enddo
endif
! second case :: | det_tmp > == a_{aorb,\alpha} | Idet >
cycle_same_spin_second_order = .False.
if(ispin == 1 .and. vorb.le.rorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. 1 .or. cycle_same_spin_second_order == .False.)then ! condition not to double count
if(perturb_dets_phase(aorb,1,ispin) .le. -10.d0)cycle
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
det_tmp(inint,2) = perturb_dets(inint,2,aorb,1,ispin)
det_tmp_bis(inint,1) = perturb_dets(inint,1,aorb,1,ispin)
det_tmp_bis(inint,2) = perturb_dets(inint,2,aorb,1,ispin)
enddo
hia = perturb_dets_hij(aorb,1,ispin)
if(dabs(hia).le.1.d-12)cycle
call do_mono_excitation(det_tmp_bis,list_act(aorb),list_act(borb),2,i_ok)
call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int)
hab = fock_operator_local(aorb,borb,2) * phase
if(dabs(hab).le.1.d-12)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(ispin == 1)then
hjb = phase * (active_int(borb,1) - active_int(borb,2) )
else if (ispin == 2)then
hjb = phase * active_int(borb,1)
endif
if(dabs(hjb).le.1.d-12)cycle
do istate = 1, N_states
accu_contrib(istate) += hia * delta_e_inv(aorb,1,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis >
* hab / (delta_e(aorb,1,istate) + one_anhil_one_creat(aorb,borb,2,2,istate)) &
* hjb
enddo
endif
else
! one should not fall in this case ...
call debug_det(psi_det(1,1,i),N_int)
call debug_det(psi_det(1,1,idx(jdet)),N_int)
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
call decode_exc(exc,2,h1,p1,h2,p2,s1,s2)
integer :: h1, p1, h2, p2, s1, s2
print*, h1, p1, h2, p2, s1, s2
print*, 'pb !!! it is a double but not an exchange case ....'
stop
endif
enddo ! ispin
do istate = 1, N_states
matrix_1h2p(idet,idx(jdet),istate) += accu_contrib(istate)
enddo
else if (degree(jdet) == 0)then else if (degree(jdet) == 0)then
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations ! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
! !
@ -447,7 +641,13 @@ subroutine give_2h1p_new(matrix_2h1p)
accu_contrib = 0.d0 accu_contrib = 0.d0
do ispin = 1, 2 ! you loop on all possible spin for the excitation do ispin = 1, 2 ! you loop on all possible spin for the excitation
! a^{\dagger}_r a_{i} (ispin) ! a^{\dagger}_r a_{i} (ispin)
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count ! if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
logical :: cycle_same_spin_first_order
cycle_same_spin_first_order = .False.
if(ispin == kspin .and. iorb.le.jorb)then
cycle_same_spin_first_order = .True.
endif
if(ispin .ne. kspin .or. cycle_same_spin_first_order == .False. )then! condition not to double count
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet > ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet >
do inint = 1, N_int do inint = 1, N_int
@ -463,15 +663,23 @@ subroutine give_2h1p_new(matrix_2h1p)
else else
hja = phase * active_int(borb,1) hja = phase * active_int(borb,1)
endif endif
!! if(dabs(hja).le.1.d-10)cycle
do istate = 1, N_states do istate = 1, N_states
accu_contrib(istate) += hja * perturb_dets_hij(aorb,kspin,ispin) * delta_e_inv(aorb,kspin,istate) accu_contrib(istate) += hja * perturb_dets_hij(aorb,kspin,ispin) * delta_e_inv(aorb,kspin,istate)
enddo enddo
endif
logical :: cycle_same_spin_second_order
!!!! SECOND ORDER CONTRIBUTIONS !!!! SECOND ORDER CONTRIBUTIONS
!!!! SECOND ORDER CONTRIBTIONS !!!! SECOND ORDER CONTRIBTIONS
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{corb,jspin} a_{jorb,jspin} a_{iorb,ispin} | Idet > ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{corb,jspin} a_{jorb,jspin} a_{iorb,ispin} | Idet >
do jspin = 1, 2 do jspin = 1, 2
cycle_same_spin_second_order = .False.
if(ispin == jspin .and. iorb.le.jorb)then
cycle_same_spin_second_order = .True.
endif
if(ispin .ne. jspin .or. cycle_same_spin_second_order == .False. )then! condition not to double count
do corb = 1, n_act_orb do corb = 1, n_act_orb
if(perturb_dets_phase(corb,jspin,ispin) .le. -10.d0)cycle if(perturb_dets_phase(corb,jspin,ispin) .le. -10.d0)cycle
do inint = 1, N_int do inint = 1, N_int
@ -484,8 +692,10 @@ subroutine give_2h1p_new(matrix_2h1p)
call do_mono_excitation(det_tmp_bis,list_act(borb),list_act(aorb),kspin,i_ok) call do_mono_excitation(det_tmp_bis,list_act(borb),list_act(aorb),kspin,i_ok)
if(i_ok .ne. 1)cycle if(i_ok .ne. 1)cycle
hia = perturb_dets_hij(corb,jspin,ispin) hia = perturb_dets_hij(corb,jspin,ispin)
if(dabs(hia).le.1.d-10)cycle
call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int) call get_mono_excitation(det_tmp,det_tmp_bis,exc,phase,N_int)
hab = fock_operator_local(borb,aorb,kspin) * phase hab = fock_operator_local(borb,aorb,kspin) * phase
if(dabs(hab).le.1.d-10)cycle
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int) call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp_bis,exc,phase,N_int)
if(jspin == ispin)then if(jspin == ispin)then
@ -493,13 +703,15 @@ subroutine give_2h1p_new(matrix_2h1p)
else else
hjb = phase * active_int(corb,1) hjb = phase * active_int(corb,1)
endif endif
if(dabs(hjb).le.1.d-10)cycle
do istate = 1, N_states do istate = 1, N_states
accu_contrib(istate)+=hia * delta_e_inv(corb,jspin,istate) & ! | Idet > --> | det_tmp > accu_contrib(istate)+=hia * delta_e_inv(corb,jspin,istate) & ! | Idet > --> | det_tmp >
! | det_tmp > --> | det_tmp_bis > ! | det_tmp > --> | det_tmp_bis >
*hab / (delta_e(corb,jspin,istate) + one_anhil_one_creat(borb,aorb,kspin,kspin,istate)) & *hab / (delta_e(corb,jspin,istate) + one_anhil_one_creat(borb,aorb,kspin,kspin,istate)) &
*hjb *hjb
enddo enddo
enddo enddo ! jspin
endif
enddo enddo
enddo ! ispin enddo ! ispin
do istate = 1, N_states do istate = 1, N_states
@ -516,6 +728,7 @@ subroutine give_2h1p_new(matrix_2h1p)
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
do a = 1, n_act_orb ! First active do a = 1, n_act_orb ! First active
contrib_hij = perturb_dets_hij(a,kspin,ispin) * perturb_dets_hij(a,kspin,ispin) contrib_hij = perturb_dets_hij(a,kspin,ispin) * perturb_dets_hij(a,kspin,ispin)
if(dabs(contrib_hij).le.1.d-10)cycle
do istate = 1, N_states do istate = 1, N_states
accu_contrib(istate) += contrib_hij * delta_e_inv(a,kspin,istate) accu_contrib(istate) += contrib_hij * delta_e_inv(a,kspin,istate)
enddo enddo

View File

@ -1353,6 +1353,7 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
integer(bit_kind), intent(in) :: key2(Nint,2) integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: degree(sze) integer, intent(out) :: degree(sze)
integer, intent(out) :: idx(0:sze) integer, intent(out) :: idx(0:sze)
integer(bit_kind) :: key_tmp(Nint,2)
integer :: i,l,d,m integer :: i,l,d,m
integer :: exchange_1,exchange_2 integer :: exchange_1,exchange_2
@ -1367,15 +1368,12 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
do i=1,sze do i=1,sze
d = popcnt(xor( key1(1,1,i), key2(1,1))) + & d = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) popcnt(xor( key1(1,2,i), key2(1,2)))
exchange_1 = popcnt(xor(ior(key1(1,1,i),key1(1,2,i)),ior(key2(1,1),key2(1,2)))) key_tmp(1,1) = xor(key1(1,1,i),key2(1,1))
exchange_2 = popcnt(ior(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) key_tmp(1,2) = xor(key1(1,2,i),key2(1,2))
if(popcnt(key_tmp(1,1)) .gt.3 .or. popcnt(key_tmp(1,2)) .gt.3 )cycle !! no double excitations of same spin
if (d > 4)cycle if (d > 4)cycle
if (d ==4)then if (d ==4)then
if(exchange_1 .eq. 0 ) then if(popcnt(xor(key_tmp(1,1),key_tmp(1,2))) == 0)then
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then
degree(l) = ishft(d,-1) degree(l) = ishft(d,-1)
idx(l) = i idx(l) = i
l = l+1 l = l+1