10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 20:33:26 +01:00

openMP in MRCC_new and corected bug

This commit is contained in:
Anthony Scemama 2015-07-29 15:16:42 +02:00
parent ed7d11bf04
commit c042e5af0c

View File

@ -1,129 +1,174 @@
subroutine mrcc_dress(ndetref,ndetnonref,nstates,delta_ij_,delta_ii_) subroutine mrcc_dress(ndetref,ndetnonref,nstates,delta_ij_,delta_ii_)
use bitmasks use bitmasks
implicit none implicit none
integer, intent(in) :: ndetref,nstates,ndetnonref integer, intent(in) :: ndetref,nstates,ndetnonref
double precision, intent(inout) :: delta_ii_(ndetref,nstates),delta_ij_(ndetref,ndetnonref,nstates) double precision, intent(inout) :: delta_ii_(ndetref,nstates),delta_ij_(ndetref,ndetnonref,nstates)
integer :: i,j,k,l integer :: i,j,k,l
integer :: i_state integer :: i_state
integer :: N_connect_ref integer :: N_connect_ref
integer*2,allocatable :: excitation_operators(:,:) integer*2,allocatable :: excitation_operators(:,:)
double precision, allocatable :: amplitudes_phase_less(:) double precision, allocatable :: amplitudes_phase_less(:)
double precision, allocatable :: coef_test(:) double precision, allocatable :: coef_test(:)
integer(bit_kind), allocatable :: key_test(:,:) integer(bit_kind), allocatable :: key_test(:,:)
integer, allocatable :: index_connected(:) integer, allocatable :: index_connected(:)
integer :: i_hole,i_particle,ispin,i_ok,connected_to_ref,index_wf integer :: i_hole,i_particle,ispin,i_ok,connected_to_ref,index_wf
integer, allocatable :: idx_vector(:), degree_vector(:) integer, allocatable :: idx_vector(:), degree_vector(:)
double precision :: phase_ij double precision :: phase_ij
double precision :: dij,phase_la double precision :: dij,phase_la
double precision :: hij,phase double precision :: hij,phase
integer :: exc(0:2,2,2),degree integer :: exc(0:2,2,2),degree
logical :: is_in_wavefunction logical :: is_in_wavefunction
double precision, allocatable :: delta_ij_tmp(:,:,:), delta_ii_tmp(:,:)
i_state = 1
allocate(excitation_operators(5,N_det_non_ref)) allocate(excitation_operators(5,N_det_non_ref))
allocate(amplitudes_phase_less(N_det_non_ref)) allocate(amplitudes_phase_less(N_det_non_ref))
allocate(key_test(N_int,2))
allocate(index_connected(N_det_non_ref)) allocate(index_connected(N_det_non_ref))
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_ref, N_det_non_ref, psi_ref, i_state, &
!$OMP N_connect_ref,index_connected,psi_non_ref, &
!$OMP excitation_operators,amplitudes_phase_less, &
!$OMP psi_non_ref_coef,N_int,lambda_mrcc,N_det, &
!$OMP delta_ii_,delta_ij_,psi_ref_coef,nstates) &
!$OMP PRIVATE(i,j,k,l,hil,phase_il,exc,degree,t_il, &
!$OMP key_test,i_ok,phase_la,hij,phase_ij, &
!$OMP dij,degree_vector,idx_vector,delta_ij_tmp, &
!$OMP delta_ii_tmp,phase)
allocate(idx_vector(0:N_det_non_ref)) allocate(idx_vector(0:N_det_non_ref))
allocate(degree_vector(N_det_non_ref)) allocate(degree_vector(N_det_non_ref))
i_state = 1 allocate(key_test(N_int,2))
allocate(delta_ij_tmp(size(delta_ij_,1),size(delta_ij_,2),nstates))
allocate(delta_ii_tmp(size(delta_ij_,1),nstates))
delta_ij_tmp = 0.d0
delta_ii_tmp = 0.d0
do i = 1, N_det_ref do i = 1, N_det_ref
call get_excitation_operators_for_one_ref(psi_ref(1,1,i),i_state,N_det_non_ref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected) !$OMP SINGLE
print*,'N_connect_ref =',N_connect_ref call get_excitation_operators_for_one_ref(psi_ref(1,1,i),i_state,N_det_non_ref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected)
do l = 1, N_det_non_ref print*,'N_connect_ref =',N_connect_ref
double precision :: t_il,phase_il,hil print*,'N_det_non_ref =',N_det_non_ref
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,l),N_int,hil,phase_il,exc,degree) !$OMP END SINGLE
t_il = hil * lambda_mrcc(i_state,l) !$OMP BARRIER
! loop on the non ref determinants
do j = 1, N_connect_ref !$OMP DO SCHEDULE(guided)
! loop on the excitation operators linked to i do l = 1, N_det_non_ref
if(j==l)cycle double precision :: t_il,phase_il,hil
do k = 1, N_int call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,l),N_int,hil,phase_il,exc,degree)
key_test(k,1) = psi_non_ref(k,1,l) t_il = hil * lambda_mrcc(i_state,l)
key_test(k,2) = psi_non_ref(k,2,l) ! loop on the non ref determinants
enddo
do j = 1, N_connect_ref
! loop on the excitation operators linked to i
do k = 1, N_int
key_test(k,1) = psi_non_ref(k,1,l)
key_test(k,2) = psi_non_ref(k,2,l)
enddo
! we apply the excitation operator T_I->j ! we apply the excitation operator T_I->j
call apply_excitation_operator(key_test,excitation_operators(1,j),i_ok) call apply_excitation_operator(key_test,excitation_operators(1,j),i_ok)
if(i_ok.ne.1)cycle if(i_ok.ne.1)cycle
! we check if such determinant is already in the wave function
! we check if such determinant is already in the wave function
if(is_in_wavefunction(key_test,N_int,N_det))cycle if(is_in_wavefunction(key_test,N_int,N_det))cycle
! we get the phase for psi_non_ref(l) -> T_I->j |psi_non_ref(l)> ! we get the phase for psi_non_ref(l) -> T_I->j |psi_non_ref(l)>
call get_excitation(psi_non_ref(1,1,l),key_test,exc,degree,phase_la,N_int) call get_excitation(psi_non_ref(1,1,l),key_test,exc,degree,phase_la,N_int)
! we get the phase T_I->j ! we get the phase T_I->j
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,index_connected(j)),N_int,hij,phase_ij,exc,degree) call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,index_connected(j)),N_int,hij,phase_ij,exc,degree)
! we compute the contribution to the coef of key_test ! we compute the contribution to the coef of key_test
dij = t_il * hij * phase_la *phase_ij *lambda_mrcc(i_state,index_connected(j)) * 0.5d0 dij = t_il * hij * phase_la *phase_ij *lambda_mrcc(i_state,index_connected(j)) * 0.5d0
! we compute the interaction of such determinant with all the non_ref dets ! we compute the interaction of such determinant with all the non_ref dets
call get_excitation_degree_vector(psi_non_ref,key_test,degree_vector,N_int,N_det_non_ref,idx_vector) call get_excitation_degree_vector(psi_non_ref,key_test,degree_vector,N_int,N_det_non_ref,idx_vector)
do k = 1, idx_vector(0)
call i_H_j_phase_out(key_test,psi_non_ref(1,1,idx_vector(k)),N_int,hij,phase,exc,degree) do k = 1, idx_vector(0)
delta_ij_(i,idx_vector(k),i_state) += hij * dij call i_H_j_phase_out(key_test,psi_non_ref(1,1,idx_vector(k)),N_int,hij,phase,exc,degree)
delta_ij_tmp(i,idx_vector(k),i_state) += hij * dij
enddo enddo
enddo
if(dabs(psi_ref_coef(i,i_state)).le.5.d-5)cycle enddo
! delta_ij_(i,l,i_state) = delta_ij_(i,l,i_state) * 0.5d0
delta_ii_(i,i_state) -= delta_ij_(i,l,i_state) * psi_non_ref_coef(l,i_state) / psi_ref_coef(i,i_state) if(dabs(psi_ref_coef(i,i_state)).le.5.d-5) then
enddo delta_ii_tmp(i,i_state) -= &
delta_ij_tmp(i,l,i_state) * psi_non_ref_coef(l,i_state) &
/ psi_ref_coef(i,i_state)
endif
enddo
!$OMP END DO
enddo enddo
!$OMP CRITICAL
delta_ij_ = delta_ij_ + delta_ij_tmp
delta_ii_ = delta_ii_ + delta_ii_tmp
!$OMP END CRITICAL
deallocate(delta_ii_tmp,delta_ij_tmp)
deallocate(idx_vector)
deallocate(key_test)
deallocate(degree_vector)
!$OMP END PARALLEL
deallocate(excitation_operators) deallocate(excitation_operators)
deallocate(amplitudes_phase_less) deallocate(amplitudes_phase_less)
deallocate(key_test)
deallocate(idx_vector)
deallocate(degree_vector)
end
subroutine apply_excitation_operator(key_in,excitation_operator,i_ok)
use bitmasks
implicit none
integer(bit_kind), intent(inout) :: key_in
integer, intent (out) :: i_ok
integer*2 :: excitation_operator(5)
integer :: i_particle,i_hole,ispin
! Do excitation
if(excitation_operator(5)==1)then ! mono alpha
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5)==-1)then ! mono beta
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == -2 )then ! double beta
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
if(i_ok.ne.1)return
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == 2 )then ! double alpha
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
if(i_ok.ne.1)return
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == 0 )then ! double alpha/alpha end
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) subroutine apply_excitation_operator(key_in,excitation_operator,i_ok)
if(i_ok.ne.1)return use bitmasks
i_hole = excitation_operator(3) implicit none
i_particle = excitation_operator(4) integer(bit_kind), intent(inout) :: key_in
ispin = 2 integer, intent (out) :: i_ok
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) integer*2 :: excitation_operator(5)
integer :: i_particle,i_hole,ispin
! Do excitation
if(excitation_operator(5)==1)then ! mono alpha
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5)==-1)then ! mono beta
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == -2 )then ! double beta
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
if(i_ok.ne.1)return
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == 2 )then ! double alpha
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
if(i_ok.ne.1)return
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
else if (excitation_operator(5) == 0 )then ! double alpha/alpha
i_hole = excitation_operator(1)
i_particle = excitation_operator(2)
ispin = 1
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
if(i_ok.ne.1)return
i_hole = excitation_operator(3)
i_particle = excitation_operator(4)
ispin = 2
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
endif endif
end end