mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-22 12:23:48 +01:00
Improved tests
This commit is contained in:
parent
2c5360a8ee
commit
b72c8a03f6
@ -35,7 +35,7 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast -mcpu=native
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
|
@ -31,7 +31,7 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FCFLAGS : -axSSE4.2,AVX -O2 -ip -ftz -g
|
||||
FCFLAGS : -xHost -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
|
16
configure
vendored
16
configure
vendored
@ -26,6 +26,8 @@ Examples:
|
||||
|
||||
"""
|
||||
|
||||
OK="✓"
|
||||
FAIL="✗"
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
@ -288,10 +290,10 @@ def checking(d_dependency):
|
||||
|
||||
r = check_availability(i)
|
||||
if r:
|
||||
print "[ OK ] ( {0} )".format(r.strip())
|
||||
print OK+" ( {0} )".format(r.strip())
|
||||
l_installed[i] = r.strip()
|
||||
else:
|
||||
print "[ FAIL ]"
|
||||
print FAIL
|
||||
l_needed.append(i)
|
||||
print ""
|
||||
|
||||
@ -373,7 +375,7 @@ _|_ | | _> |_ (_| | | (_| |_ | (_) | |
|
||||
except:
|
||||
raise
|
||||
else:
|
||||
print "[ OK ]"
|
||||
print OK
|
||||
|
||||
l_install_descendant.remove("ninja")
|
||||
|
||||
@ -416,10 +418,10 @@ _|_ | | _> |_ (_| | | (_| |_ | (_) | |
|
||||
with open(path, "w+") as f:
|
||||
f.write("\n".join(l_string))
|
||||
|
||||
print "[ OK ] ({0})".format(path)
|
||||
print OK+" ({0})".format(path)
|
||||
|
||||
print str_info("install"),
|
||||
print "[ Running ]"
|
||||
print "Running"
|
||||
try:
|
||||
path_ninja = find_path("ninja", l_installed)
|
||||
subprocess.check_call("cd install ;{0}".format(path_ninja), shell=True)
|
||||
@ -497,7 +499,7 @@ def create_ninja_and_rc(l_installed):
|
||||
with open(path, "w+") as f:
|
||||
f.write("\n".join(l_rc))
|
||||
|
||||
print "[ OK ] ({0})".format(path)
|
||||
print OK+" ({0})".format(path)
|
||||
|
||||
command = ['bash', '-c', 'source {0} && env'.format(path)]
|
||||
proc = subprocess.Popen(command, stdout=subprocess.PIPE)
|
||||
@ -522,7 +524,7 @@ def create_ninja_and_rc(l_installed):
|
||||
sys.exit(1)
|
||||
|
||||
else:
|
||||
print "[ OK ]"
|
||||
print OK
|
||||
|
||||
|
||||
def recommendation():
|
||||
|
@ -23,23 +23,26 @@
|
||||
call i_h_psi(psi_non_ref(1,1,i), psi_ref_restart, psi_ref_coef_restart, N_int, N_det_ref,&
|
||||
size(psi_ref_coef_restart,1), n_states, ihpsi)
|
||||
call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
|
||||
! TODO --- Test perturbatif ------
|
||||
do k=1,N_states
|
||||
lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
|
||||
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,size(psi_ref_coef,1), n_states, ihpsi_current)
|
||||
tmp = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
||||
i_pert = 1
|
||||
if((ihpsi(k) * lambda_pert(k,i))/psi_non_ref_coef_restart(i,k) .ge. 0.5d0 &
|
||||
.and. (ihpsi(k) * lambda_pert(k,i))/psi_non_ref_coef_restart(i,k) > 0.d0 )then ! test on the first order coefficient
|
||||
i_pert = 0
|
||||
endif
|
||||
! Perturbation only if 1st order < 0.5 x second order
|
||||
if((ihpsi(k) * lambda_pert(k,i)) < 0.5d0 * psi_non_ref_coef_restart(i,k) )then
|
||||
i_pert = 1
|
||||
else
|
||||
do j = 1, N_det_ref
|
||||
call i_H_j(psi_non_ref(1,1,i),psi_ref(1,1,j),N_int,hij)
|
||||
! Perturbation diverges when hij*tmp > 0.5
|
||||
if(dabs(hij * tmp).ge.0.5d0)then
|
||||
i_pert_count +=1
|
||||
i_pert = 1
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
if( i_pert == 1)then
|
||||
pert_determinants(k,i) = i_pert
|
||||
endif
|
||||
@ -50,6 +53,7 @@
|
||||
lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
||||
endif
|
||||
enddo
|
||||
! TODO --- Fin test perturbatif ------
|
||||
enddo
|
||||
!if(oscillations)then
|
||||
! print*,'AVERAGING the lambda_mrcc with those of the previous iterations'
|
||||
|
@ -19,7 +19,7 @@ END_PROVIDER
|
||||
ao_prim_num_max_align = align_double(ao_prim_num_max)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_normalized, (ao_num_align,ao_prim_num_max) ]
|
||||
BEGIN_PROVIDER [ double precision, ao_coef_normalized, (ao_num,ao_prim_num_max) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Coefficients including the AO normalization
|
||||
@ -31,6 +31,7 @@ BEGIN_PROVIDER [ double precision, ao_coef_normalized, (ao_num_align,ao_prim_num
|
||||
C_A(1) = 0.d0
|
||||
C_A(2) = 0.d0
|
||||
C_A(3) = 0.d0
|
||||
ao_coef_normalized = 0.d0
|
||||
do i=1,ao_num
|
||||
powA(1) = ao_power(i,1)
|
||||
powA(2) = ao_power(i,2)
|
||||
|
@ -1,82 +1,180 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
# float number comparison
|
||||
# Compare two number ($1, $2) with a given precision ($3)
|
||||
# If the number are not equal, the exit is 1 else is 0
|
||||
|
||||
# floating point number comparison
|
||||
# Compare two numbers ($1, $2) with a given precision ($3)
|
||||
# If the numbers are not equal, the exit code is 1 else it is 0
|
||||
# So we strip the "-", is the abs value of the poor
|
||||
function eq() {
|
||||
awk -v n1=${1#-} -v n2=${2#-} -v p=$3 'BEGIN{ if ((n1-n2)^2 < p^2) exit 0; exit 1}'
|
||||
# awk -v d1=$1 -v d2=$2 -v n1=${1#-} -v n2=${2#-} -v p=$3 'BEGIN{ if ((n1-n2)^2 < p^2) exit 0; { print (d1-d2) " " d1 " " d2 ; exit 1} }'
|
||||
declare -a diff
|
||||
diff=($(awk -v d1=$1 -v d2=$2 -v n1=${1#-} -v n2=${2#-} -v p=$3 'BEGIN{ if ((n1-n2)^2 < p^2) print 0; print 1 " " (d1-d2) " " d1 " " d2 }'))
|
||||
if [[ "${diff[0]}" == "0" ]]
|
||||
then
|
||||
return 0
|
||||
else
|
||||
echo "Test : " ${BATS_TEST_DESCRIPTION}
|
||||
echo "Error : " ${diff[1]}
|
||||
echo "Reference : " ${diff[3]}
|
||||
echo "Computed : " ${diff[2]}
|
||||
exit 127
|
||||
fi
|
||||
}
|
||||
|
||||
#: "${QP_ROOT?Pls set your quantum_package.rc}"
|
||||
#: "${QP_ROOT?Please source your quantum_package.rc}"
|
||||
|
||||
source ${QP_ROOT}/install/EZFIO/Bash/ezfio.sh
|
||||
TEST_DIR=${QP_ROOT}/test/work/
|
||||
mkdir -p ${TEST_DIR}
|
||||
cd ${TEST_DIR}
|
||||
|
||||
mkdir -p "${TEST_DIR}"
|
||||
|
||||
cd "${TEST_DIR}" || exit 1
|
||||
|
||||
function debug() {
|
||||
echo $@
|
||||
$@
|
||||
}
|
||||
|
||||
function run_init() {
|
||||
cp "${QP_ROOT}/test/input/$1" .
|
||||
qp_create_ezfio_from_xyz $1 -o $3 $2
|
||||
qp_edit -c $3
|
||||
}
|
||||
|
||||
function test_exe() {
|
||||
EXE=$(awk "/^$1 / { print \$2 }" < "${QP_ROOT}"/data/executables)
|
||||
EXE=$(echo $EXE | sed "s|\$QP_ROOT|$QP_ROOT|")
|
||||
if [[ -x "$EXE" ]]
|
||||
then
|
||||
return 0
|
||||
else
|
||||
return 127
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
|
||||
function run_HF() {
|
||||
thresh=1.e-8
|
||||
test_exe SCF || skip
|
||||
ezfio set_file $1
|
||||
ezfio set hartree_fock thresh_scf 1.e-10
|
||||
qp_run SCF $1
|
||||
energy="$(ezfio get hartree_fock energy)"
|
||||
eq $energy $2 $thresh
|
||||
}
|
||||
|
||||
function run_FCI() {
|
||||
thresh=1.e-6
|
||||
test_exe full_ci || skip
|
||||
ezfio set_file $1
|
||||
ezfio set perturbation do_pt2_end True
|
||||
ezfio set determinants n_det_max 2000
|
||||
ezfio set determinants threshold_davidson 1.e-10
|
||||
|
||||
qp_run full_ci $1
|
||||
energy="$(ezfio get full_ci energy)"
|
||||
eq $energy $2 $thresh
|
||||
energy_pt2="$(ezfio get full_ci energy_pt2)"
|
||||
eq $energy_pt2 $3 $thresh
|
||||
}
|
||||
|
||||
# ================== TESTS =======================
|
||||
|
||||
@test "init HBO STO-3G" {
|
||||
cp ${QP_ROOT}/test/input/HBO.xyz .
|
||||
qp_create_ezfio_from_xyz -b "STO-3G" HBO.xyz
|
||||
qp_edit -c HBO.ezfio
|
||||
run_init HBO.xyz "-b STO-3G" hbo.ezfio
|
||||
}
|
||||
|
||||
@test "hartree fock HBO STO-3G" {
|
||||
run init HBO STO-3G
|
||||
ezfio set_file HBO.ezfio
|
||||
ezfio hartree_fock thresh_scf 1E-5
|
||||
|
||||
qp_run SCF HBO.ezfio
|
||||
# Check energy
|
||||
|
||||
energy="$(ezfio get hartree_fock energy)"
|
||||
eq $energy -98.8251985622549 1E-5
|
||||
@test "SCF HBO STO-3G" {
|
||||
run_HF hbo.ezfio -98.8251985678084
|
||||
}
|
||||
|
||||
@test "full ci HBO STO-3G" {
|
||||
run init HBO STO-3G
|
||||
@test "FCI HBO STO-3G" {
|
||||
run "SCF HBO STO-3G"
|
||||
run_FCI hbo.ezfio -98.9658958804949 -98.9662931973293
|
||||
}
|
||||
|
||||
ezfio set_file HBO.ezfio
|
||||
ezfio set perturbation do_pt2_end 1
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@test "init H2O cc-pVDZ" {
|
||||
run_init h2o.xyz "-b cc-pvdz" h2o.ezfio
|
||||
}
|
||||
|
||||
@test "SCF H2O cc-pVDZ" {
|
||||
run_HF h2o.ezfio -76.0273597128267
|
||||
}
|
||||
|
||||
@test "FCI H2O cc-pVDZ" {
|
||||
run "SCF H2O cc-pVDZ"
|
||||
run_FCI h2o.ezfio -76.2340571014912 -76.2472677390010
|
||||
}
|
||||
|
||||
@test "CAS_SD H2O cc-pVDZ" {
|
||||
test_exe cas_sd_selected || skip
|
||||
run "SCF H2O cc-pVDZ"
|
||||
INPUT=h2o.ezfio
|
||||
ezfio set_file $INPUT
|
||||
ezfio set perturbation do_pt2_end False
|
||||
ezfio set determinants n_det_max 1000
|
||||
|
||||
qp_run full_ci HBO.ezfio
|
||||
energy="$(ezfio get full_ci energy)"
|
||||
eq $energy -98.9649618899175 1E-2
|
||||
energy_pt2="$(ezfio get full_ci energy_pt2)"
|
||||
eq $energy_pt2 -98.966228232164 1E-5
|
||||
}
|
||||
|
||||
@test "cas_sd_selected HBO STO-3G" {
|
||||
run hartree fock HBO STO-3G
|
||||
ezfio set_file HBO.ezfio
|
||||
ezfio set perturbation do_pt2_end 0
|
||||
ezfio set determinants n_det_max 1000
|
||||
qp_set_mo_class HBO.ezfio -core "[1-2]" -inact "[3-5]" -act "[6-9]" -virt "[10-11]"
|
||||
qp_run cas_sd_selected HBO.ezfio
|
||||
# Check energy
|
||||
qp_set_mo_class $INPUT -core "[1]" -inact "[2,5]" -act "[3,4,6,7]" -virt "[8-25]"
|
||||
qp_run cas_sd_selected $INPUT
|
||||
energy="$(ezfio get cas_sd energy)"
|
||||
eq $energy -98.9646946027433 1E-5
|
||||
eq $energy -76.221690798159 1.E-6
|
||||
}
|
||||
|
||||
@test "mrcc_cassd HBO STO-3G" {
|
||||
run cas_sd_selected fock HBO STO-3G
|
||||
ezfio set_file HBO.ezfio
|
||||
ezfio set determinants threshold_generators 1
|
||||
ezfio set determinants read_wf 1
|
||||
qp_run mrcc_cassd HBO.ezfio
|
||||
# Check energy
|
||||
@test "MRCC H2O cc-pVDZ" {
|
||||
test_exe mrcc_cassd || skip
|
||||
run "CAS_SD H2O cc-pVDZ"
|
||||
INPUT=h2o.ezfio
|
||||
ezfio set_file $INPUT
|
||||
ezfio set determinants threshold_generators 1.
|
||||
ezfio set determinants threshold_selectors 1.
|
||||
ezfio set determinants read_wf True
|
||||
qp_run mrcc_cassd $INPUT
|
||||
energy="$(ezfio get mrcc_cassd energy)"
|
||||
eq $energy -98.9653606184686 1E-5
|
||||
eq $energy -76.23072397513540 1.E-3
|
||||
}
|
||||
|
||||
@test "script conversion HBO.out" {
|
||||
|
||||
|
||||
|
||||
|
||||
@test "init H2O VDZ pseudo" {
|
||||
run_init h2o.xyz "-p -b vdz" h2o_pseudo.ezfio
|
||||
}
|
||||
|
||||
@test "SCF H2O VDZ pseudo" {
|
||||
run_HF h2o_pseudo.ezfio -16.94878419417625
|
||||
}
|
||||
|
||||
@test "FCI H2O VDZ pseudo" {
|
||||
run_FCI h2o_pseudo.ezfio -17.1593408979096 -17.1699581040506
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@test "gamess convert HBO.out" {
|
||||
cp ${QP_ROOT}/test/input/HBO.out .
|
||||
qp_convert_output_to_ezfio.py HBO.out
|
||||
qp_edit -c HBO.out.ezfio
|
||||
qp_run SCF HBO.out.ezfio
|
||||
ezfio set_file HBO.out.ezfio
|
||||
qp_run SCF HBO.out.ezfio
|
||||
# Check energy
|
||||
energy="$(ezfio get hartree_fock energy)"
|
||||
eq $energy -100.01858225534 1E-5
|
||||
eq $energy -100.0185822590964 1.e-10
|
||||
}
|
||||
|
||||
@test "g09 convert H2O.log" {
|
||||
cp ${QP_ROOT}/test/input/h2o.log .
|
||||
qp_convert_output_to_ezfio.py h2o.log
|
||||
ezfio set_file h2o.log.ezfio
|
||||
qp_run SCF h2o.log.ezfio
|
||||
# Check energy
|
||||
energy="$(ezfio get hartree_fock energy)"
|
||||
eq $energy -76.0270218704265 1E-10
|
||||
}
|
||||
|
||||
|
||||
|
617
test/input/h2o.log
Normal file
617
test/input/h2o.log
Normal file
@ -0,0 +1,617 @@
|
||||
Entering Gaussian System, Link 0=g09
|
||||
Initial command:
|
||||
/usr/local/g09/l1.exe "/home/scemama/quantum_package/test/input/Gau-21007.inp" -scrdir="/home/scemama/quantum_package/test/input/"
|
||||
Entering Link 1 = /usr/local/g09/l1.exe PID= 21009.
|
||||
|
||||
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
|
||||
Gaussian, Inc. All Rights Reserved.
|
||||
|
||||
This is part of the Gaussian(R) 09 program. It is based on
|
||||
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
|
||||
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
|
||||
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
|
||||
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
|
||||
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
|
||||
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
|
||||
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
|
||||
University), and the Gaussian 82(TM) system (copyright 1983,
|
||||
Carnegie Mellon University). Gaussian is a federally registered
|
||||
trademark of Gaussian, Inc.
|
||||
|
||||
This software contains proprietary and confidential information,
|
||||
including trade secrets, belonging to Gaussian, Inc.
|
||||
|
||||
This software is provided under written license and may be
|
||||
used, copied, transmitted, or stored only in accord with that
|
||||
written license.
|
||||
|
||||
The following legend is applicable only to US Government
|
||||
contracts under FAR:
|
||||
|
||||
RESTRICTED RIGHTS LEGEND
|
||||
|
||||
Use, reproduction and disclosure by the US Government is
|
||||
subject to restrictions as set forth in subparagraphs (a)
|
||||
and (c) of the Commercial Computer Software - Restricted
|
||||
Rights clause in FAR 52.227-19.
|
||||
|
||||
Gaussian, Inc.
|
||||
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
|
||||
|
||||
|
||||
---------------------------------------------------------------
|
||||
Warning -- This program may not be used in any manner that
|
||||
competes with the business of Gaussian, Inc. or will provide
|
||||
assistance to any competitor of Gaussian, Inc. The licensee
|
||||
of this program is prohibited from giving any competitor of
|
||||
Gaussian, Inc. access to this program. By using this program,
|
||||
the user acknowledges that Gaussian, Inc. is engaged in the
|
||||
business of creating and licensing software in the field of
|
||||
computational chemistry and represents and warrants to the
|
||||
licensee that it is not a competitor of Gaussian, Inc. and that
|
||||
it will not use this program in any manner prohibited above.
|
||||
---------------------------------------------------------------
|
||||
|
||||
|
||||
Cite this work as:
|
||||
Gaussian 09, Revision D.01,
|
||||
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
|
||||
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
|
||||
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
|
||||
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
|
||||
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
|
||||
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
|
||||
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
|
||||
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
|
||||
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
|
||||
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
|
||||
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
|
||||
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
|
||||
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
|
||||
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
|
||||
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
|
||||
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
|
||||
|
||||
******************************************
|
||||
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
|
||||
4-Jan-2016
|
||||
******************************************
|
||||
--------------------------
|
||||
# cc-pvdz gfprint pop=full
|
||||
--------------------------
|
||||
1/38=1/1;
|
||||
2/12=2,17=6,18=5,40=1/2;
|
||||
3/5=16,11=9,16=1,24=100,25=1,30=1/1,2,3;
|
||||
4//1;
|
||||
5/5=2,38=5/2;
|
||||
6/7=3,28=1/1;
|
||||
99/5=1,9=1/99;
|
||||
-----
|
||||
Water
|
||||
-----
|
||||
Symbolic Z-matrix:
|
||||
Charge = 0 Multiplicity = 1
|
||||
H 0.751 0.194 0.
|
||||
O 0. -0.388 0.
|
||||
H -0.751 0.194 0.
|
||||
|
||||
Input orientation:
|
||||
---------------------------------------------------------------------
|
||||
Center Atomic Atomic Coordinates (Angstroms)
|
||||
Number Number Type X Y Z
|
||||
---------------------------------------------------------------------
|
||||
1 1 0 0.751000 0.194000 0.000000
|
||||
2 8 0 0.000000 -0.388000 0.000000
|
||||
3 1 0 -0.751000 0.194000 0.000000
|
||||
---------------------------------------------------------------------
|
||||
Distance matrix (angstroms):
|
||||
1 2 3
|
||||
1 H 0.000000
|
||||
2 O 0.950118 0.000000
|
||||
3 H 1.502000 0.950118 0.000000
|
||||
Stoichiometry H2O
|
||||
Framework group C2V[C2(O),SGV(H2)]
|
||||
Deg. of freedom 2
|
||||
Full point group C2V NOp 4
|
||||
Largest Abelian subgroup C2V NOp 4
|
||||
Largest concise Abelian subgroup C2 NOp 2
|
||||
Standard orientation:
|
||||
---------------------------------------------------------------------
|
||||
Center Atomic Atomic Coordinates (Angstroms)
|
||||
Number Number Type X Y Z
|
||||
---------------------------------------------------------------------
|
||||
1 1 0 0.000000 0.751000 -0.465600
|
||||
2 8 0 0.000000 0.000000 0.116400
|
||||
3 1 0 0.000000 -0.751000 -0.465600
|
||||
---------------------------------------------------------------------
|
||||
Rotational constants (GHZ): 833.4921067 444.5516057 289.9198601
|
||||
Standard basis: CC-pVDZ (5D, 7F)
|
||||
AO basis set (Overlap normalization):
|
||||
Atom H1 Shell 1 S 3 bf 1 - 1 0.000000000000 1.419184325797 -0.879856487472
|
||||
0.1301000000D+02 0.3349872639D-01
|
||||
0.1962000000D+01 0.2348008012D+00
|
||||
0.4446000000D+00 0.8136829579D+00
|
||||
Atom H1 Shell 2 S 1 bf 2 - 2 0.000000000000 1.419184325797 -0.879856487472
|
||||
0.1220000000D+00 0.1000000000D+01
|
||||
Atom H1 Shell 3 P 1 bf 3 - 5 0.000000000000 1.419184325797 -0.879856487472
|
||||
0.7270000000D+00 0.1000000000D+01
|
||||
Atom O2 Shell 4 S 7 bf 6 - 6 0.000000000000 0.000000000000 0.219964121868
|
||||
0.1172000000D+05 0.7118644339D-03
|
||||
0.1759000000D+04 0.5485201992D-02
|
||||
0.4008000000D+03 0.2790992963D-01
|
||||
0.1137000000D+03 0.1051332075D+00
|
||||
0.3703000000D+02 0.2840024898D+00
|
||||
0.1327000000D+02 0.4516739459D+00
|
||||
0.5025000000D+01 0.2732081255D+00
|
||||
Atom O2 Shell 5 S 7 bf 7 - 7 0.000000000000 0.000000000000 0.219964121868
|
||||
0.1172000000D+05 0.7690300460D-05
|
||||
0.4008000000D+03 0.3134845790D-03
|
||||
0.1137000000D+03 -0.2966148530D-02
|
||||
0.3703000000D+02 -0.1087535430D-01
|
||||
0.1327000000D+02 -0.1207538168D+00
|
||||
0.5025000000D+01 -0.1062752639D+00
|
||||
0.1013000000D+01 0.1095975478D+01
|
||||
Atom O2 Shell 6 S 1 bf 8 - 8 0.000000000000 0.000000000000 0.219964121868
|
||||
0.3023000000D+00 0.1000000000D+01
|
||||
Atom O2 Shell 7 P 3 bf 9 - 11 0.000000000000 0.000000000000 0.219964121868
|
||||
0.1770000000D+02 0.6267916628D-01
|
||||
0.3854000000D+01 0.3335365659D+00
|
||||
0.1046000000D+01 0.7412396416D+00
|
||||
Atom O2 Shell 8 P 1 bf 12 - 14 0.000000000000 0.000000000000 0.219964121868
|
||||
0.2753000000D+00 0.1000000000D+01
|
||||
Atom O2 Shell 9 D 1 bf 15 - 19 0.000000000000 0.000000000000 0.219964121868
|
||||
0.1185000000D+01 0.1000000000D+01
|
||||
Atom H3 Shell 10 S 3 bf 20 - 20 0.000000000000 -1.419184325797 -0.879856487472
|
||||
0.1301000000D+02 0.3349872639D-01
|
||||
0.1962000000D+01 0.2348008012D+00
|
||||
0.4446000000D+00 0.8136829579D+00
|
||||
Atom H3 Shell 11 S 1 bf 21 - 21 0.000000000000 -1.419184325797 -0.879856487472
|
||||
0.1220000000D+00 0.1000000000D+01
|
||||
Atom H3 Shell 12 P 1 bf 22 - 24 0.000000000000 -1.419184325797 -0.879856487472
|
||||
0.7270000000D+00 0.1000000000D+01
|
||||
There are 12 symmetry adapted cartesian basis functions of A1 symmetry.
|
||||
There are 2 symmetry adapted cartesian basis functions of A2 symmetry.
|
||||
There are 4 symmetry adapted cartesian basis functions of B1 symmetry.
|
||||
There are 7 symmetry adapted cartesian basis functions of B2 symmetry.
|
||||
There are 11 symmetry adapted basis functions of A1 symmetry.
|
||||
There are 2 symmetry adapted basis functions of A2 symmetry.
|
||||
There are 4 symmetry adapted basis functions of B1 symmetry.
|
||||
There are 7 symmetry adapted basis functions of B2 symmetry.
|
||||
24 basis functions, 47 primitive gaussians, 25 cartesian basis functions
|
||||
5 alpha electrons 5 beta electrons
|
||||
nuclear repulsion energy 9.2636625387 Hartrees.
|
||||
NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F
|
||||
Integral buffers will be 131072 words long.
|
||||
Raffenetti 1 integral format.
|
||||
Two-electron integral symmetry is turned on.
|
||||
One-electron integrals computed using PRISM.
|
||||
NBasis= 24 RedAO= T EigKep= 5.29D-02 NBF= 11 2 4 7
|
||||
NBsUse= 24 1.00D-06 EigRej= -1.00D+00 NBFU= 11 2 4 7
|
||||
ExpMin= 1.22D-01 ExpMax= 1.17D+04 ExpMxC= 4.01D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
|
||||
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
|
||||
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
|
||||
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
|
||||
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
|
||||
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
|
||||
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
|
||||
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
|
||||
Petite list used in FoFCou.
|
||||
Initial guess orbital symmetries:
|
||||
Occupied (A1) (A1) (B2) (A1) (B1)
|
||||
Virtual (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A2) (B1)
|
||||
(A1) (B2) (B2) (A1) (B1) (A2) (A1) (A1) (B2)
|
||||
The electronic state of the initial guess is 1-A1.
|
||||
Keep R1 ints in memory in symmetry-blocked form, NReq=899045.
|
||||
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
|
||||
Requested convergence on MAX density matrix=1.00D-06.
|
||||
Requested convergence on energy=1.00D-06.
|
||||
No special actions if energy rises.
|
||||
SCF Done: E(RHF) = -76.0270218692 A.U. after 10 cycles
|
||||
NFock= 10 Conv=0.37D-08 -V/T= 2.0001
|
||||
|
||||
**********************************************************************
|
||||
|
||||
Population analysis using the SCF density.
|
||||
|
||||
**********************************************************************
|
||||
|
||||
Orbital symmetries:
|
||||
Occupied (A1) (A1) (B2) (A1) (B1)
|
||||
Virtual (A1) (B2) (B2) (A1) (A1) (B1) (B2) (A1) (A2) (B1)
|
||||
(A1) (B2) (B2) (A1) (B1) (A2) (A1) (A1) (B2)
|
||||
The electronic state is 1-A1.
|
||||
Alpha occ. eigenvalues -- -20.54920 -1.34040 -0.70302 -0.56802 -0.49369
|
||||
Alpha virt. eigenvalues -- 0.18675 0.25729 0.79428 0.86143 1.16305
|
||||
Alpha virt. eigenvalues -- 1.20039 1.25297 1.44294 1.47836 1.67576
|
||||
Alpha virt. eigenvalues -- 1.86568 1.94324 2.46971 2.50865 3.29235
|
||||
Alpha virt. eigenvalues -- 3.34575 3.52032 3.87326 4.15604
|
||||
Molecular Orbital Coefficients:
|
||||
1 2 3 4 5
|
||||
(A1)--O (A1)--O (B2)--O (A1)--O (B1)--O
|
||||
Eigenvalues -- -20.54920 -1.34040 -0.70302 -0.56802 -0.49369
|
||||
1 1 H 1S -0.00028 0.19664 0.32943 -0.20637 0.00000
|
||||
2 2S 0.00042 0.00987 0.08843 -0.03877 0.00000
|
||||
3 3PX 0.00000 0.00000 0.00000 0.00000 0.03138
|
||||
4 3PY 0.00059 -0.03777 -0.02324 0.03180 0.00000
|
||||
5 3PZ -0.00050 0.02069 0.03278 0.00778 0.00000
|
||||
6 2 O 1S 0.99709 -0.20851 0.00000 -0.07051 0.00000
|
||||
7 2S 0.01533 0.44166 0.00000 0.15096 0.00000
|
||||
8 3S -0.00262 0.37055 0.00000 0.35244 0.00000
|
||||
9 4PX 0.00000 0.00000 0.00000 0.00000 0.63093
|
||||
10 4PY 0.00000 0.00000 0.49100 0.00000 0.00000
|
||||
11 4PZ -0.00179 -0.08026 0.00000 0.54612 0.00000
|
||||
12 5PX 0.00000 0.00000 0.00000 0.00000 0.49530
|
||||
13 5PY 0.00000 0.00000 0.21981 0.00000 0.00000
|
||||
14 5PZ 0.00046 0.01423 0.00000 0.36440 0.00000
|
||||
15 6D 0 0.00001 0.00126 0.00000 -0.01798 0.00000
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000 -0.01831
|
||||
17 6D-1 0.00000 0.00000 -0.02712 0.00000 0.00000
|
||||
18 6D+2 -0.00015 -0.00309 0.00000 0.00460 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.00028 0.19664 -0.32943 -0.20637 0.00000
|
||||
21 2S 0.00042 0.00987 -0.08843 -0.03877 0.00000
|
||||
22 3PX 0.00000 0.00000 0.00000 0.00000 0.03138
|
||||
23 3PY -0.00059 0.03777 -0.02324 -0.03180 0.00000
|
||||
24 3PZ -0.00050 0.02069 -0.03278 0.00778 0.00000
|
||||
6 7 8 9 10
|
||||
(A1)--V (B2)--V (B2)--V (A1)--V (A1)--V
|
||||
Eigenvalues -- 0.18675 0.25729 0.79428 0.86143 1.16305
|
||||
1 1 H 1S -0.05736 0.02438 0.94544 0.77982 0.56148
|
||||
2 2S -0.83228 1.45858 -0.67483 -0.54297 0.11259
|
||||
3 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
4 3PY 0.01819 -0.02133 0.07599 0.30237 -0.08600
|
||||
5 3PZ -0.01667 0.01785 -0.15491 -0.06066 0.24578
|
||||
6 2 O 1S -0.08470 0.00000 0.00000 0.05179 0.04908
|
||||
7 2S 0.07170 0.00000 0.00000 -0.25498 -0.11616
|
||||
8 3S 1.00958 0.00000 0.00000 0.32136 -0.76806
|
||||
9 4PX 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
10 4PY 0.00000 -0.28107 -0.26539 0.00000 0.00000
|
||||
11 4PZ -0.18794 0.00000 0.00000 0.33069 -0.75153
|
||||
12 5PX 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
13 5PY 0.00000 -0.67110 -0.47510 0.00000 0.00000
|
||||
14 5PZ -0.33396 0.00000 0.00000 -0.01731 1.29116
|
||||
15 6D 0 0.00754 0.00000 0.00000 0.00137 -0.01192
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
17 6D-1 0.00000 0.02180 -0.11235 0.00000 0.00000
|
||||
18 6D+2 -0.01036 0.00000 0.00000 -0.10806 -0.00658
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.05736 -0.02438 -0.94544 0.77982 0.56148
|
||||
21 2S -0.83228 -1.45858 0.67483 -0.54297 0.11259
|
||||
22 3PX 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
23 3PY -0.01819 -0.02133 0.07599 -0.30237 0.08600
|
||||
24 3PZ -0.01667 -0.01785 0.15491 -0.06066 0.24578
|
||||
11 12 13 14 15
|
||||
(B1)--V (B2)--V (A1)--V (A2)--V (B1)--V
|
||||
Eigenvalues -- 1.20039 1.25297 1.44294 1.47836 1.67576
|
||||
1 1 H 1S 0.00000 -0.38329 0.33223 0.00000 0.00000
|
||||
2 2S 0.00000 -0.83750 -0.21212 0.00000 0.00000
|
||||
3 3PX 0.00072 0.00000 0.00000 0.68636 0.76853
|
||||
4 3PY 0.00000 0.30080 -0.32477 0.00000 0.00000
|
||||
5 3PZ 0.00000 -0.19091 -0.55042 0.00000 0.00000
|
||||
6 2 O 1S 0.00000 0.00000 0.03828 0.00000 0.00000
|
||||
7 2S 0.00000 0.00000 -0.52866 0.00000 0.00000
|
||||
8 3S 0.00000 0.00000 0.51190 0.00000 0.00000
|
||||
9 4PX -0.96763 0.00000 0.00000 0.00000 -0.03438
|
||||
10 4PY 0.00000 -0.73129 0.00000 0.00000 0.00000
|
||||
11 4PZ 0.00000 0.00000 -0.12361 0.00000 0.00000
|
||||
12 5PX 1.03124 0.00000 0.00000 0.00000 -0.62892
|
||||
13 5PY 0.00000 1.77186 0.00000 0.00000 0.00000
|
||||
14 5PZ 0.00000 0.00000 0.73469 0.00000 0.00000
|
||||
15 6D 0 0.00000 0.00000 0.11514 0.00000 0.00000
|
||||
16 6D+1 0.00401 0.00000 0.00000 0.00000 -0.16015
|
||||
17 6D-1 0.00000 -0.04687 0.00000 0.00000 0.00000
|
||||
18 6D+2 0.00000 0.00000 0.00231 0.00000 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.13020 0.00000
|
||||
20 3 H 1S 0.00000 0.38329 0.33223 0.00000 0.00000
|
||||
21 2S 0.00000 0.83750 -0.21212 0.00000 0.00000
|
||||
22 3PX 0.00072 0.00000 0.00000 -0.68636 0.76853
|
||||
23 3PY 0.00000 0.30080 0.32477 0.00000 0.00000
|
||||
24 3PZ 0.00000 0.19091 -0.55042 0.00000 0.00000
|
||||
16 17 18 19 20
|
||||
(A1)--V (B2)--V (B2)--V (A1)--V (B1)--V
|
||||
Eigenvalues -- 1.86568 1.94324 2.46971 2.50865 3.29235
|
||||
1 1 H 1S -0.84001 -0.38827 -0.30714 -0.48425 0.00000
|
||||
2 2S -0.39058 -0.09139 -0.32899 -0.15539 0.00000
|
||||
3 3PX 0.00000 0.00000 0.00000 0.00000 0.40419
|
||||
4 3PY 0.37339 -0.47886 0.72852 0.74408 0.00000
|
||||
5 3PZ 0.02270 -0.69333 -0.55830 -0.53873 0.00000
|
||||
6 2 O 1S -0.00133 0.00000 0.00000 -0.05007 0.00000
|
||||
7 2S -1.59472 0.00000 0.00000 0.76301 0.00000
|
||||
8 3S 3.05475 0.00000 0.00000 0.77692 0.00000
|
||||
9 4PX 0.00000 0.00000 0.00000 0.00000 0.00794
|
||||
10 4PY 0.00000 -0.00344 0.84802 0.00000 0.00000
|
||||
11 4PZ -0.12317 0.00000 0.00000 -0.67503 0.00000
|
||||
12 5PX 0.00000 0.00000 0.00000 0.00000 -0.31702
|
||||
13 5PY 0.00000 0.90137 0.15151 0.00000 0.00000
|
||||
14 5PZ -0.96855 0.00000 0.00000 -0.17344 0.00000
|
||||
15 6D 0 -0.11340 0.00000 0.00000 -0.05378 0.00000
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000 1.04510
|
||||
17 6D-1 0.00000 0.03018 0.14264 0.00000 0.00000
|
||||
18 6D+2 0.10791 0.00000 0.00000 0.22259 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.84001 0.38827 0.30714 -0.48425 0.00000
|
||||
21 2S -0.39058 0.09139 0.32899 -0.15539 0.00000
|
||||
22 3PX 0.00000 0.00000 0.00000 0.00000 0.40419
|
||||
23 3PY -0.37339 -0.47886 0.72852 -0.74408 0.00000
|
||||
24 3PZ 0.02270 0.69333 0.55830 -0.53873 0.00000
|
||||
21 22 23 24
|
||||
(A2)--V (A1)--V (A1)--V (B2)--V
|
||||
Eigenvalues -- 3.34575 3.52032 3.87326 4.15604
|
||||
1 1 H 1S 0.00000 -0.31669 -1.26352 1.11159
|
||||
2 2S 0.00000 -0.03908 -0.19214 0.29097
|
||||
3 3PX -0.37623 0.00000 0.00000 0.00000
|
||||
4 3PY 0.00000 0.35703 0.62282 -0.61226
|
||||
5 3PZ 0.00000 0.31793 -0.49973 0.49729
|
||||
6 2 O 1S 0.00000 -0.01447 -0.06182 0.00000
|
||||
7 2S 0.00000 -0.15549 -0.15289 0.00000
|
||||
8 3S 0.00000 0.57546 2.29321 0.00000
|
||||
9 4PX 0.00000 0.00000 0.00000 0.00000
|
||||
10 4PY 0.00000 0.00000 0.00000 -0.48554
|
||||
11 4PZ 0.00000 -0.02517 -0.41868 0.00000
|
||||
12 5PX 0.00000 0.00000 0.00000 0.00000
|
||||
13 5PY 0.00000 0.00000 0.00000 -1.15446
|
||||
14 5PZ 0.00000 -0.54861 -0.92743 0.00000
|
||||
15 6D 0 0.00000 1.08916 0.13090 0.00000
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000
|
||||
17 6D-1 0.00000 0.00000 0.00000 1.32912
|
||||
18 6D+2 0.00000 0.17380 -1.16185 0.00000
|
||||
19 6D-2 1.06901 0.00000 0.00000 0.00000
|
||||
20 3 H 1S 0.00000 -0.31669 -1.26352 -1.11159
|
||||
21 2S 0.00000 -0.03908 -0.19214 -0.29097
|
||||
22 3PX 0.37623 0.00000 0.00000 0.00000
|
||||
23 3PY 0.00000 -0.35703 -0.62282 -0.61226
|
||||
24 3PZ 0.00000 0.31793 -0.49973 -0.49729
|
||||
Density Matrix:
|
||||
1 2 3 4 5
|
||||
1 1 H 1S 0.37956
|
||||
2 2S 0.07815 0.01884
|
||||
3 3PX 0.00000 0.00000 0.00197
|
||||
4 3PY -0.04329 -0.00732 0.00000 0.00596
|
||||
5 3PZ 0.02653 0.00560 0.00000 -0.00259 0.00313
|
||||
6 2 O 1S -0.05346 0.00219 0.00000 0.01245 -0.01072
|
||||
7 2S 0.11138 -0.00297 0.00000 -0.02375 0.02061
|
||||
8 3S 0.00027 -0.02001 0.00000 -0.00558 0.02082
|
||||
9 4PX 0.00000 0.00000 0.03959 0.00000 0.00000
|
||||
10 4PY 0.32350 0.08684 0.00000 -0.02282 0.03219
|
||||
11 4PZ -0.25697 -0.04393 0.00000 0.04080 0.00517
|
||||
12 5PX 0.00000 0.00000 0.03108 0.00000 0.00000
|
||||
13 5PY 0.14483 0.03888 0.00000 -0.01022 0.01441
|
||||
14 5PZ -0.14480 -0.02797 0.00000 0.02210 0.00626
|
||||
15 6D 0 0.00792 0.00142 0.00000 -0.00124 -0.00023
|
||||
16 6D+1 0.00000 0.00000 -0.00115 0.00000 0.00000
|
||||
17 6D-1 -0.01787 -0.00480 0.00000 0.00126 -0.00178
|
||||
18 6D+2 -0.00311 -0.00042 0.00000 0.00053 -0.00006
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.05454 -0.03838 0.00000 -0.01267 -0.01667
|
||||
21 2S -0.03838 -0.01244 0.00000 0.00090 -0.00599
|
||||
22 3PX 0.00000 0.00000 0.00197 0.00000 0.00000
|
||||
23 3PY 0.01267 -0.00090 0.00000 -0.00380 -0.00045
|
||||
24 3PZ -0.01667 -0.00599 0.00000 0.00045 -0.00117
|
||||
6 7 8 9 10
|
||||
6 2 O 1S 2.08528
|
||||
7 2S -0.17489 0.43618
|
||||
8 3S -0.20945 0.43364 0.52305
|
||||
9 4PX 0.00000 0.00000 0.00000 0.79614
|
||||
10 4PY 0.00000 0.00000 0.00000 0.00000 0.48215
|
||||
11 4PZ -0.04710 0.09393 0.32547 0.00000 0.00000
|
||||
12 5PX 0.00000 0.00000 0.00000 0.62500 0.00000
|
||||
13 5PY 0.00000 0.00000 0.00000 0.00000 0.21586
|
||||
14 5PZ -0.05640 0.12261 0.26740 0.00000 0.00000
|
||||
15 6D 0 0.00204 -0.00431 -0.01174 0.00000 0.00000
|
||||
16 6D+1 0.00000 0.00000 0.00000 -0.02311 0.00000
|
||||
17 6D-1 0.00000 0.00000 0.00000 0.00000 -0.02663
|
||||
18 6D+2 0.00033 -0.00134 0.00096 0.00000 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.05346 0.11138 0.00027 0.00000 -0.32350
|
||||
21 2S 0.00219 -0.00297 -0.02001 0.00000 -0.08684
|
||||
22 3PX 0.00000 0.00000 0.00000 0.03959 0.00000
|
||||
23 3PY -0.01245 0.02375 0.00558 0.00000 -0.02282
|
||||
24 3PZ -0.01072 0.02061 0.02082 0.00000 -0.03219
|
||||
11 12 13 14 15
|
||||
11 4PZ 0.60938
|
||||
12 5PX 0.00000 0.49064
|
||||
13 5PY 0.00000 0.00000 0.09664
|
||||
14 5PZ 0.39573 0.00000 0.00000 0.26598
|
||||
15 6D 0 -0.01984 0.00000 0.00000 -0.01306 0.00065
|
||||
16 6D+1 0.00000 -0.01814 0.00000 0.00000 0.00000
|
||||
17 6D-1 0.00000 0.00000 -0.01192 0.00000 0.00000
|
||||
18 6D+2 0.00552 0.00000 0.00000 0.00327 -0.00017
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.25697 0.00000 -0.14483 -0.14480 0.00792
|
||||
21 2S -0.04393 0.00000 -0.03888 -0.02797 0.00142
|
||||
22 3PX 0.00000 0.03108 0.00000 0.00000 0.00000
|
||||
23 3PY -0.04080 0.00000 -0.01022 -0.02210 0.00124
|
||||
24 3PZ 0.00517 0.00000 -0.01441 0.00626 -0.00023
|
||||
16 17 18 19 20
|
||||
16 6D+1 0.00067
|
||||
17 6D-1 0.00000 0.00147
|
||||
18 6D+2 0.00000 0.00000 0.00006
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S 0.00000 0.01787 -0.00311 0.00000 0.37956
|
||||
21 2S 0.00000 0.00480 -0.00042 0.00000 0.07815
|
||||
22 3PX -0.00115 0.00000 0.00000 0.00000 0.00000
|
||||
23 3PY 0.00000 0.00126 -0.00053 0.00000 0.04329
|
||||
24 3PZ 0.00000 0.00178 -0.00006 0.00000 0.02653
|
||||
21 22 23 24
|
||||
21 2S 0.01884
|
||||
22 3PX 0.00000 0.00197
|
||||
23 3PY 0.00732 0.00000 0.00596
|
||||
24 3PZ 0.00560 0.00000 0.00259 0.00313
|
||||
Full Mulliken population analysis:
|
||||
1 2 3 4 5
|
||||
1 1 H 1S 0.37956
|
||||
2 2S 0.05352 0.01884
|
||||
3 3PX 0.00000 0.00000 0.00197
|
||||
4 3PY 0.00000 0.00000 0.00000 0.00596
|
||||
5 3PZ 0.00000 0.00000 0.00000 0.00000 0.00313
|
||||
6 2 O 1S -0.00272 0.00014 0.00000 -0.00106 -0.00071
|
||||
7 2S 0.03388 -0.00106 0.00000 0.00859 0.00577
|
||||
8 3S 0.00013 -0.01302 0.00000 0.00173 0.00501
|
||||
9 4PX 0.00000 0.00000 0.00793 0.00000 0.00000
|
||||
10 4PY 0.07296 0.00727 0.00000 0.00370 0.00904
|
||||
11 4PZ 0.04491 0.00285 0.00000 0.01146 -0.00009
|
||||
12 5PX 0.00000 0.00000 0.01229 0.00000 0.00000
|
||||
13 5PY 0.07135 0.01200 0.00000 -0.00079 0.00355
|
||||
14 5PZ 0.05528 0.00669 0.00000 0.00545 0.00128
|
||||
15 6D 0 0.00012 0.00000 0.00000 0.00022 0.00005
|
||||
16 6D+1 0.00000 0.00000 0.00023 0.00000 0.00000
|
||||
17 6D-1 0.00348 0.00010 0.00000 0.00020 0.00004
|
||||
18 6D+2 0.00039 0.00001 0.00000 -0.00001 0.00001
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.00681 -0.01195 0.00000 0.00209 0.00000
|
||||
21 2S -0.01195 -0.00761 0.00000 -0.00016 0.00000
|
||||
22 3PX 0.00000 0.00000 0.00011 0.00000 0.00000
|
||||
23 3PY 0.00209 -0.00016 0.00000 0.00099 0.00000
|
||||
24 3PZ 0.00000 0.00000 0.00000 0.00000 -0.00006
|
||||
6 7 8 9 10
|
||||
6 2 O 1S 2.08528
|
||||
7 2S -0.03938 0.43618
|
||||
8 3S -0.03850 0.34354 0.52305
|
||||
9 4PX 0.00000 0.00000 0.00000 0.79614
|
||||
10 4PY 0.00000 0.00000 0.00000 0.00000 0.48215
|
||||
11 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
12 5PX 0.00000 0.00000 0.00000 0.31329 0.00000
|
||||
13 5PY 0.00000 0.00000 0.00000 0.00000 0.10820
|
||||
14 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
15 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
17 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
18 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S -0.00272 0.03388 0.00013 0.00000 0.07296
|
||||
21 2S 0.00014 -0.00106 -0.01302 0.00000 0.00727
|
||||
22 3PX 0.00000 0.00000 0.00000 0.00793 0.00000
|
||||
23 3PY -0.00106 0.00859 0.00173 0.00000 0.00370
|
||||
24 3PZ -0.00071 0.00577 0.00501 0.00000 0.00904
|
||||
11 12 13 14 15
|
||||
11 4PZ 0.60938
|
||||
12 5PX 0.00000 0.49064
|
||||
13 5PY 0.00000 0.00000 0.09664
|
||||
14 5PZ 0.19837 0.00000 0.00000 0.26598
|
||||
15 6D 0 0.00000 0.00000 0.00000 0.00000 0.00065
|
||||
16 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
17 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
18 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S 0.04491 0.00000 0.07135 0.05528 0.00012
|
||||
21 2S 0.00285 0.00000 0.01200 0.00669 0.00000
|
||||
22 3PX 0.00000 0.01229 0.00000 0.00000 0.00000
|
||||
23 3PY 0.01146 0.00000 -0.00079 0.00545 0.00022
|
||||
24 3PZ -0.00009 0.00000 0.00355 0.00128 0.00005
|
||||
16 17 18 19 20
|
||||
16 6D+1 0.00067
|
||||
17 6D-1 0.00000 0.00147
|
||||
18 6D+2 0.00000 0.00000 0.00006
|
||||
19 6D-2 0.00000 0.00000 0.00000 0.00000
|
||||
20 3 H 1S 0.00000 0.00348 0.00039 0.00000 0.37956
|
||||
21 2S 0.00000 0.00010 0.00001 0.00000 0.05352
|
||||
22 3PX 0.00023 0.00000 0.00000 0.00000 0.00000
|
||||
23 3PY 0.00000 0.00020 -0.00001 0.00000 0.00000
|
||||
24 3PZ 0.00000 0.00004 0.00001 0.00000 0.00000
|
||||
21 22 23 24
|
||||
21 2S 0.01884
|
||||
22 3PX 0.00000 0.00197
|
||||
23 3PY 0.00000 0.00000 0.00596
|
||||
24 3PZ 0.00000 0.00000 0.00000 0.00313
|
||||
Gross orbital populations:
|
||||
1
|
||||
1 1 H 1S 0.69619
|
||||
2 2S 0.06760
|
||||
3 3PX 0.02253
|
||||
4 3PY 0.03835
|
||||
5 3PZ 0.02702
|
||||
6 2 O 1S 1.99870
|
||||
7 2S 0.83469
|
||||
8 3S 0.81580
|
||||
9 4PX 1.12530
|
||||
10 4PY 0.77630
|
||||
11 4PZ 0.92601
|
||||
12 5PX 0.82852
|
||||
13 5PY 0.37705
|
||||
14 5PZ 0.60175
|
||||
15 6D 0 0.00141
|
||||
16 6D+1 0.00113
|
||||
17 6D-1 0.00912
|
||||
18 6D+2 0.00085
|
||||
19 6D-2 0.00000
|
||||
20 3 H 1S 0.69619
|
||||
21 2S 0.06760
|
||||
22 3PX 0.02253
|
||||
23 3PY 0.03835
|
||||
24 3PZ 0.02702
|
||||
Condensed to atoms (all electrons):
|
||||
1 2 3
|
||||
1 H 0.516491 0.368645 -0.033447
|
||||
2 O 0.368645 7.559331 0.368645
|
||||
3 H -0.033447 0.368645 0.516491
|
||||
Mulliken charges:
|
||||
1
|
||||
1 H 0.148311
|
||||
2 O -0.296621
|
||||
3 H 0.148311
|
||||
Sum of Mulliken charges = 0.00000
|
||||
Mulliken charges with hydrogens summed into heavy atoms:
|
||||
1
|
||||
2 O 0.000000
|
||||
Electronic spatial extent (au): <R**2>= 18.6306
|
||||
Charge= 0.0000 electrons
|
||||
Dipole moment (field-independent basis, Debye):
|
||||
X= 0.0000 Y= 0.0000 Z= -2.0504 Tot= 2.0504
|
||||
Quadrupole moment (field-independent basis, Debye-Ang):
|
||||
XX= -7.0170 YY= -4.1394 ZZ= -5.8813
|
||||
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
|
||||
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
|
||||
XX= -1.3377 YY= 1.5398 ZZ= -0.2021
|
||||
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
|
||||
Octapole moment (field-independent basis, Debye-Ang**2):
|
||||
XXX= 0.0000 YYY= 0.0000 ZZZ= -1.2054 XYY= 0.0000
|
||||
XXY= 0.0000 XXZ= -0.3034 XZZ= 0.0000 YZZ= 0.0000
|
||||
YYZ= -1.2707 XYZ= 0.0000
|
||||
Hexadecapole moment (field-independent basis, Debye-Ang**3):
|
||||
XXXX= -4.8304 YYYY= -5.4619 ZZZZ= -5.7829 XXXY= 0.0000
|
||||
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
|
||||
ZZZY= 0.0000 XXYY= -2.0030 XXZZ= -1.8252 YYZZ= -1.5165
|
||||
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
|
||||
N-N= 9.263662538697D+00 E-N=-1.992894401430D+02 KE= 7.601675874489D+01
|
||||
Symmetry A1 KE= 6.796065821176D+01
|
||||
Symmetry A2 KE= 2.830900309443D-35
|
||||
Symmetry B1 KE= 4.555880950352D+00
|
||||
Symmetry B2 KE= 3.500219582782D+00
|
||||
Orbital energies and kinetic energies (alpha):
|
||||
1 2
|
||||
1 (A1)--O -20.549199 29.200169
|
||||
2 (A1)--O -1.340404 2.611477
|
||||
3 (B2)--O -0.703024 1.750110
|
||||
4 (A1)--O -0.568024 2.168683
|
||||
5 (B1)--O -0.493693 2.277940
|
||||
6 (A1)--V 0.186746 0.769854
|
||||
7 (B2)--V 0.257291 0.751015
|
||||
8 (B2)--V 0.794278 1.917220
|
||||
9 (A1)--V 0.861426 2.258716
|
||||
10 (A1)--V 1.163048 2.989486
|
||||
11 (B1)--V 1.200386 3.667758
|
||||
12 (B2)--V 1.252967 2.845942
|
||||
13 (A1)--V 1.442943 2.225860
|
||||
14 (A2)--V 1.478361 1.966785
|
||||
15 (B1)--V 1.675760 2.128393
|
||||
16 (A1)--V 1.865681 3.518334
|
||||
17 (B2)--V 1.943242 2.337567
|
||||
18 (B2)--V 2.469713 4.302650
|
||||
19 (A1)--V 2.508646 4.514523
|
||||
20 (B1)--V 3.292350 4.420288
|
||||
21 (A2)--V 3.345753 4.501105
|
||||
22 (A1)--V 3.520320 4.698046
|
||||
23 (A1)--V 3.873260 5.467765
|
||||
24 (B2)--V 4.156040 5.820990
|
||||
Total kinetic energy from orbitals= 7.601675874489D+01
|
||||
1\1\GINC-LPQLX139\SP\RHF\CC-pVDZ\H2O1\SCEMAMA\04-Jan-2016\0\\# cc-pvdz
|
||||
gfprint pop=full\\Water\\0,1\H,0,0.751,0.194,0.\O,0,0.,-0.388,0.\H,0,
|
||||
-0.751,0.194,0.\\Version=ES64L-G09RevD.01\State=1-A1\HF=-76.0270219\RM
|
||||
SD=3.738e-09\Dipole=0.,0.8066933,0.\Quadrupole=1.1448392,-0.1502634,-0
|
||||
.9945758,0.,0.,0.\PG=C02V [C2(O1),SGV(H2)]\\@
|
||||
|
||||
|
||||
A DANDELION FROM A LOVER MEANS MORE THAN AN ORCHID FROM A FRIEND.
|
||||
Job cpu time: 0 days 0 hours 0 minutes 0.5 seconds.
|
||||
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1
|
||||
Normal termination of Gaussian 09 at Mon Jan 4 23:00:03 2016.
|
6
test/input/h2o.xyz
Normal file
6
test/input/h2o.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
3
|
||||
XYZ file: coordinates in Angstrom
|
||||
H 0.7510000000 0.1940000000 0.0000000000
|
||||
O 0.0000000000 -0.3880000000 0.0000000000
|
||||
H -0.7510000000 0.1940000000 0.0000000000
|
||||
|
Loading…
Reference in New Issue
Block a user