10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 20:35:19 +01:00

Working on mrpt

This commit is contained in:
Anthony Scemama 2016-11-03 12:05:19 +01:00
parent 7769ea536c
commit a592143744
3 changed files with 169 additions and 216 deletions

View File

@ -94,7 +94,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
double precision, allocatable :: overlap(:,:)
double precision :: u_dot_v, u_dot_u
integer, allocatable :: kl_pairs(:,:)
integer :: k_pairs, kl
integer :: iter2
@ -144,7 +143,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
sze_8 = align_double(sze)
allocate( &
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st_diag,davidson_sze_max), &
U(sze_8,N_st_diag,davidson_sze_max), &
R(sze_8,N_st_diag), &
@ -360,7 +358,6 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
call write_time(iunit)
deallocate ( &
kl_pairs, &
W, residual_norm, &
U, overlap, &
R, c, &
@ -649,7 +646,6 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
double precision, allocatable :: overlap(:,:)
double precision :: u_dot_v, u_dot_u
integer, allocatable :: kl_pairs(:,:)
integer :: k_pairs, kl
integer :: iter2
@ -661,7 +657,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
integer :: shift, shift2
integer :: shift, shift2, itermax
include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, R, S, y, h, lambda
@ -710,23 +706,30 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
else
delta = 0.d0
endif
allocate( &
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st_diag*davidson_sze_max), &
U(sze_8,N_st_diag*davidson_sze_max), &
R(sze_8,N_st_diag), &
S(sze_8,N_st_diag*davidson_sze_max), &
h(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
y(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_tmp(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
residual_norm(N_st_diag), &
overlap(N_st_diag,N_st_diag), &
c(N_st_diag*davidson_sze_max), &
s2(N_st_diag*davidson_sze_max), &
lambda(N_st_diag*davidson_sze_max))
itermax = min(davidson_sze_max, sze/N_st_diag)
allocate( &
W(sze_8,N_st_diag*itermax), &
U(sze_8,N_st_diag*itermax), &
S(sze_8,N_st_diag*itermax), &
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
c(N_st_diag*itermax), &
s2(N_st_diag*itermax), &
lambda(N_st_diag*itermax))
h = 0.d0
s_ = 0.d0
s_tmp = 0.d0
U = 0.d0
W = 0.d0
S = 0.d0
y = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
@ -738,25 +741,25 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
converged = .False.
do k=1,N_st
call normalize(u_in(1,k),sze)
enddo
do k=N_st+1,N_st_diag
double precision :: r1, r2
do k=N_st+1,N_st_diag-2,2
do i=1,sze
double precision :: r1, r2
call random_number(r1)
call random_number(r2)
u_in(i,k) = dsqrt(-2.d0*dlog(r1))*dcos(dtwo_pi*r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
u_in(i,k+1) = r1*dsin(r2)
enddo
enddo
do k=N_st_diag-1,N_st_diag
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
! Gram-Schmidt
! ------------
call dgemv('T',sze,k-1,1.d0,u_in,size(u_in,1), &
u_in(1,k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,u_in,size(u_in,1), &
c,1,1.d0,u_in(1,k),1)
call normalize(u_in(1,k),sze)
enddo
@ -773,10 +776,10 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
call ortho_qr(U,size(U,1),sze,shift2)
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------------
call H_S2_u_0_mrcc_nstates(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,&
istate,N_st_diag,sze_8)
@ -786,19 +789,6 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! -------------------------------------------
! do l=1,N_st_diag
! do k=1,N_st_diag
! do iter2=1,iter-1
! h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
! h(k,iter,l,iter2) = h(k,iter2,l,iter)
! enddo
! enddo
! do k=1,l
! h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
! h(l,iter,k,iter) = h(k,iter,l,iter)
! enddo
! enddo
call dgemm('T','N', shift2, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,shift+1), size(W,1), &
0.d0, h(1,shift+1), size(h,1))
@ -829,7 +819,7 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.3d0)
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
enddo
do k=1,shift2
if (.not. state_ok(k)) then
@ -851,22 +841,6 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
! do k=1,N_st_diag
! do i=1,sze
! U(i,shift2+k) = 0.d0
! W(i,shift2+k) = 0.d0
! S(i,shift2+k) = 0.d0
! enddo
! do l=1,N_st_diag*iter
! do i=1,sze
! U(i,shift2+k) = U(i,shift2+k) + U(i,l)*y(l,k)
! W(i,shift2+k) = W(i,shift2+k) + W(i,l)*y(l,k)
! S(i,shift2+k) = S(i,shift2+k) + S(i,l)*y(l,k)
! enddo
! enddo
! enddo
!
!
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
@ -876,83 +850,39 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
! Compute residual vector
! -----------------------
! do k=1,N_st_diag
! print *, s2(k)
! s2(k) = u_dot_v(U(1,shift2+k), S(1,shift2+k), sze) + S_z2_Sz
! print *, s2(k)
! print *, ''
! pause
! enddo
do k=1,N_st_diag
do i=1,sze
R(i,k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz)
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz &
)/max(H_jj(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(R(1,k),sze)
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = s2(k)
to_print(3,k) = residual_norm(k)
if (residual_norm(k) > 1.e9) then
stop 'Davidson failed'
endif
endif
enddo
write(iunit,'(X,I3,X,100(X,F16.10,X,F11.6,X,E11.3))') iter, to_print(:,1:N_st)
write(iunit,'(X,I3,X,100(X,F16.10,X,F11.6,X,E11.3))') iter, to_print(1:3,1:N_st)
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
do k=1,N_st
if (residual_norm(k) > 1.e8) then
print *, ''
stop 'Davidson failed'
endif
enddo
if (converged) then
exit
endif
! Davidson step
! -------------
do k=1,N_st_diag
do i=1,sze
U(i,shift2+k) = - R(i,k)/max(H_jj(i) - lambda(k),1.d-2)
enddo
enddo
! Gram-Schmidt
! ------------
do k=1,N_st_diag
! do l=1,N_st_diag*iter
! c(1) = u_dot_v(U(1,shift2+k),U(1,l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,l)
! enddo
! enddo
!
call dgemv('T',sze,N_st_diag*iter,1.d0,U,size(U,1), &
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,N_st_diag*iter,-1.d0,U,size(U,1), &
c,1,1.d0,U(1,shift2+k),1)
!
! do l=1,k-1
! c(1) = u_dot_v(U(1,shift2+k),U(1,shift2+l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,shift2+l)
! enddo
! enddo
!
call dgemv('T',sze,k-1,1.d0,U(1,shift2+1),size(U,1), &
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,U(1,shift2+1),size(U,1), &
c,1,1.d0,U(1,shift2+k),1)
call normalize( U(1,shift2+k), sze )
enddo
enddo
if (.not.converged) then
iter = davidson_sze_max-1
iter = itermax-1
endif
! Re-contract to u_in
! -----------
@ -960,15 +890,6 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
energies(k) = lambda(k)
enddo
! do k=1,N_st_diag
! do i=1,sze
! do l=1,iter*N_st_diag
! u_in(i,k) += U(i,l)*y(l,k)
! enddo
! enddo
! enddo
! enddo
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
@ -983,7 +904,6 @@ subroutine davidson_diag_hjj_sjj_mrcc(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sz
call write_time(iunit)
deallocate ( &
kl_pairs, &
W, residual_norm, &
U, overlap, &
R, c, S, &

View File

@ -0,0 +1,35 @@
subroutine give_2h2p(contrib_2h2p)
implicit none
double precision, intent(out) :: contrib_2h2p(N_states)
integer :: i,j,k,l,m
integer :: iorb,jorb,korb,lorb
double precision :: get_mo_bielec_integral
double precision :: direct_int,exchange_int
double precision :: numerator,denominator(N_states)
contrib_2h2p = 0.d0
do i = 1, n_inact_orb
iorb = list_inact(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
do k = 1, n_virt_orb
korb = list_virt(k)
do l = 1, n_virt_orb
lorb = list_virt(l)
direct_int = get_mo_bielec_integral(iorb,jorb,korb,lorb ,mo_integrals_map)
exchange_int = get_mo_bielec_integral(iorb,jorb,lorb,korb ,mo_integrals_map)
numerator = 3.d0 * direct_int*direct_int + exchange_int*exchange_int -2.d0 * exchange_int * direct_int
do m = 1, N_states
denominator(m) = fock_core_inactive_total_spin_trace(iorb,m) + fock_core_inactive_total_spin_trace(jorb,m) &
-fock_virt_total_spin_trace(korb,m) - fock_virt_total_spin_trace(lorb,m)
contrib_2h2p(m) += numerator / denominator(m)
enddo
enddo
enddo
enddo
enddo
contrib_2h2p = contrib_2h2p*0.5d0
end

View File

@ -262,89 +262,87 @@ END_PROVIDER
print*, 'Davidson not yet implemented for the dressing ... '
stop
else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
Hmatrix_dressed_pt2_new_symmetrized(1,1,1),N_det,N_det)
CI_electronic_dressed_pt2_new_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
s2_eigvalues(j) = s2
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2-expected_s2).le.0.3d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(index_good_state_array(j))
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(i_state+i_other_state) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(i_state+i_other_state) = s2
enddo
deallocate(index_good_state_array,good_state_array)
else if (diag_algorithm == "Lapack") then
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_dressed_pt2_new_eigenvectors'
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(j)
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
endif
deallocate(s2_eigvalues)
else
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(j) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0(CI_eigenvectors_s2,eigenvectors,N_det,psi_det,N_int,&
min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER