From 9ddb60fd2e7dbd7debb975f18614cb898a247f6a Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Thu, 15 Sep 2016 16:11:34 +0200 Subject: [PATCH] Removed diagonalize_s2 --- plugins/MRCC_Utils/mrcc_utils.irp.f | 149 +++++++++++-------------- src/Determinants/EZFIO.cfg | 6 - src/Determinants/diagonalize_CI.irp.f | 155 +++++++++++--------------- 3 files changed, 131 insertions(+), 179 deletions(-) diff --git a/plugins/MRCC_Utils/mrcc_utils.irp.f b/plugins/MRCC_Utils/mrcc_utils.irp.f index 2b51368d..336b5596 100644 --- a/plugins/MRCC_Utils/mrcc_utils.irp.f +++ b/plugins/MRCC_Utils/mrcc_utils.irp.f @@ -167,7 +167,7 @@ END_PROVIDER if (s2_eig) then do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) - if(dabs(s2-expected_s2).le.0.3d0)then + if(dabs(s2-expected_s2).le.0.5d0)then i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) @@ -193,95 +193,73 @@ END_PROVIDER deallocate(eigenvectors,eigenvalues) endif - if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then - ! Diagonalizing S^2 within the "n_states_diag" states found - allocate(s2_eigvalues(N_states_diag)) - call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues) + if(s2_eig.and.n_states_diag > 1.and. n_det >= n_states_diag)then + ! Diagonalizing S^2 within the "n_states_diag" states found + allocate(s2_eigvalues(N_states_diag)) + call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues) - do j = 1, N_states_diag - do i = 1, N_det - psi_coef(i,j) = CI_eigenvectors_dressed(i,j) - enddo - enddo + do j = 1, N_states_diag + do i = 1, N_det + psi_coef(i,j) = CI_eigenvectors_dressed(i,j) + enddo + enddo - if(s2_eig)then + ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value + ! closer to the "expected_s2" set as input - ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value - ! closer to the "expected_s2" set as input + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + i_state = 0 + do j = 1, N_states_diag + if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then + good_state_array(j) = .True. + i_state +=1 + index_good_state_array(i_state) = j + endif + enddo + ! Sorting the i_state good states by energy + allocate(e_array(i_state),iorder(i_state)) + do j = 1, i_state + do i = 1, N_det + CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(j)) + enddo + CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) + call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) + CI_electronic_energy_dressed(j) = e_0 + e_array(j) = e_0 + iorder(j) = j + enddo + call dsort(e_array,iorder,i_state) + do j = 1, i_state + CI_electronic_energy_dressed(j) = e_array(j) + CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(iorder(j))) + do i = 1, N_det + CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(iorder(j))) + enddo + ! call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) + ! print*,'e = ',CI_electronic_energy_dressed(j) + ! print*,' = ',e_0 + ! call get_s2_u0(psi_det,CI_eigenvectors_dressed(1,j),N_det,size(CI_eigenvectors_dressed,1),s2) + ! print*,'s^2 = ',CI_eigenvectors_s2_dressed(j) + ! print*,'= ',s2 + enddo + deallocate(e_array,iorder) - allocate(index_good_state_array(N_det),good_state_array(N_det)) - good_state_array = .False. - i_state = 0 - do j = 1, N_states_diag - if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then - good_state_array(j) = .True. - i_state +=1 - index_good_state_array(i_state) = j - endif - enddo - ! Sorting the i_state good states by energy - allocate(e_array(i_state),iorder(i_state)) - do j = 1, i_state - do i = 1, N_det - CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(j)) - enddo - CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) - call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) - CI_electronic_energy_dressed(j) = e_0 - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,i_state) - do j = 1, i_state - CI_electronic_energy_dressed(j) = e_array(j) - CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(iorder(j))) - do i = 1, N_det - CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(iorder(j))) - enddo - ! call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) - ! print*,'e = ',CI_electronic_energy_dressed(j) - ! print*,' = ',e_0 - ! call get_s2_u0(psi_det,CI_eigenvectors_dressed(1,j),N_det,size(CI_eigenvectors_dressed,1),s2) - ! print*,'s^2 = ',CI_eigenvectors_s2_dressed(j) - ! print*,'= ',s2 - enddo - deallocate(e_array,iorder) + ! Then setting the other states without any specific energy order + i_other_state = 0 + do j = 1, N_states_diag + if(good_state_array(j))cycle + i_other_state +=1 + do i = 1, N_det + CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef(i,j) + enddo + CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j) + call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,i_state + i_other_state),n_det,psi_det,N_int,mrcc_state) + CI_electronic_energy_dressed(i_state + i_other_state) = e_0 + enddo + deallocate(index_good_state_array,good_state_array) - ! Then setting the other states without any specific energy order - i_other_state = 0 - do j = 1, N_states_diag - if(good_state_array(j))cycle - i_other_state +=1 - do i = 1, N_det - CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef(i,j) - enddo - CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j) - call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,i_state + i_other_state),n_det,psi_det,N_int,mrcc_state) - CI_electronic_energy_dressed(i_state + i_other_state) = e_0 - enddo - deallocate(index_good_state_array,good_state_array) - - else - - ! Sorting the N_states_diag by energy, whatever the S^2 value is - - allocate(e_array(n_states_diag),iorder(n_states_diag)) - do j = 1, N_states_diag - call u0_H_u_0_mrcc(e_0,CI_eigenvectors_dressed(1,j),n_det,psi_det,N_int,mrcc_state) - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,n_states_diag) - do j = 1, N_states_diag - CI_electronic_energy_dressed(j) = e_array(j) - do i = 1, N_det - CI_eigenvectors_dressed(i,j) = psi_coef(i,iorder(j)) - enddo - CI_eigenvectors_s2_dressed(j) = s2_eigvalues(iorder(j)) - enddo - deallocate(e_array,iorder) - endif - deallocate(s2_eigvalues) + deallocate(s2_eigvalues) endif @@ -297,6 +275,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] character*(8) :: st call write_time(output_determinants) do j=1,N_states_diag + write(st,'(I4)') j CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) diff --git a/src/Determinants/EZFIO.cfg b/src/Determinants/EZFIO.cfg index b1c459ba..4ab84b7a 100644 --- a/src/Determinants/EZFIO.cfg +++ b/src/Determinants/EZFIO.cfg @@ -40,12 +40,6 @@ doc: Force the wave function to be an eigenfunction of S^2 interface: ezfio,provider,ocaml default: False -[diagonalize_s2] -type: logical -doc: Diagonalize the S^2 operator within the n_states_diag states required. Notice : the vectors are sorted by increasing S^2 values. -interface: ezfio,provider,ocaml -default: True - [threshold_davidson] type: Threshold doc: Thresholds of Davidson's algorithm diff --git a/src/Determinants/diagonalize_CI.irp.f b/src/Determinants/diagonalize_CI.irp.f index d4716b86..479c91a9 100644 --- a/src/Determinants/diagonalize_CI.irp.f +++ b/src/Determinants/diagonalize_CI.irp.f @@ -92,7 +92,7 @@ END_PROVIDER call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) s2_eigvalues(j) = s2 ! Select at least n_states states with S^2 values closed to "expected_s2" - if(dabs(s2-expected_s2).le.0.3d0)then + if(dabs(s2-expected_s2).le.0.5d0)then i_state +=1 index_good_state_array(i_state) = j good_state_array(j) = .True. @@ -133,7 +133,7 @@ END_PROVIDER print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' as the CI_eigenvectors' - print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space' + print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,'' do j=1,min(N_states_diag,N_det) do i=1,N_det @@ -159,94 +159,73 @@ END_PROVIDER deallocate(eigenvectors,eigenvalues) endif - if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then - ! Diagonalizing S^2 within the "n_states_diag" states found - allocate(s2_eigvalues(N_states_diag)) - call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues) + + if( s2_eig.and.(n_states_diag > 1).and.(n_det >= n_states_diag) )then + ! Diagonalizing S^2 within the "n_states_diag" states found + allocate(s2_eigvalues(N_states_diag)) + call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues) + + do j = 1, N_states_diag + do i = 1, N_det + psi_coef(i,j) = CI_eigenvectors(i,j) + enddo + enddo - do j = 1, N_states_diag - do i = 1, N_det - psi_coef(i,j) = CI_eigenvectors(i,j) - enddo - enddo - - if(s2_eig)then + ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value + ! closer to the "expected_s2" set as input + + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + i_state = 0 + do j = 1, N_states_diag + if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then + good_state_array(j) = .True. + i_state +=1 + index_good_state_array(i_state) = j + endif + enddo + ! Sorting the i_state good states by energy + allocate(e_array(i_state),iorder(i_state)) + do j = 1, i_state + do i = 1, N_det + CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j)) + enddo + CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) + call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) + CI_electronic_energy(j) = e_0 + e_array(j) = e_0 + iorder(j) = j + enddo + call dsort(e_array,iorder,i_state) + do j = 1, i_state + CI_electronic_energy(j) = e_array(j) + CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j))) + do i = 1, N_det + CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j))) + enddo + ! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) + ! print*,'e = ',CI_electronic_energy(j) + ! print*,' = ',e_0 + ! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2) + ! print*,'s^2 = ',CI_eigenvectors_s2(j) + ! print*,'= ',s2 + enddo + deallocate(e_array,iorder) + + ! Then setting the other states without any specific energy order + i_other_state = 0 + do j = 1, N_states_diag + if(good_state_array(j))cycle + i_other_state +=1 + do i = 1, N_det + CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j) + enddo + CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j) + call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int) + CI_electronic_energy(i_state + i_other_state) = e_0 + enddo + deallocate(index_good_state_array,good_state_array) - ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value - ! closer to the "expected_s2" set as input - - allocate(index_good_state_array(N_det),good_state_array(N_det)) - good_state_array = .False. - i_state = 0 - do j = 1, N_states_diag - if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then - good_state_array(j) = .True. - i_state +=1 - index_good_state_array(i_state) = j - endif - enddo - ! Sorting the i_state good states by energy - allocate(e_array(i_state),iorder(i_state)) - do j = 1, i_state - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j)) - enddo - CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) - call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) - CI_electronic_energy(j) = e_0 - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,i_state) - do j = 1, i_state - CI_electronic_energy(j) = e_array(j) - CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j))) - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j))) - enddo - ! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) - ! print*,'e = ',CI_electronic_energy(j) - ! print*,' = ',e_0 - ! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2) - ! print*,'s^2 = ',CI_eigenvectors_s2(j) - ! print*,'= ',s2 - enddo - deallocate(e_array,iorder) - - ! Then setting the other states without any specific energy order - i_other_state = 0 - do j = 1, N_states_diag - if(good_state_array(j))cycle - i_other_state +=1 - do i = 1, N_det - CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j) - enddo - CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j) - call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int) - CI_electronic_energy(i_state + i_other_state) = e_0 - enddo - deallocate(index_good_state_array,good_state_array) - - else - - ! Sorting the N_states_diag by energy, whatever the S^2 value is - - allocate(e_array(n_states_diag),iorder(n_states_diag)) - do j = 1, N_states_diag - call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,n_states_diag) - do j = 1, N_states_diag - CI_electronic_energy(j) = e_array(j) - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,iorder(j)) - enddo - CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j)) - enddo - deallocate(e_array,iorder) - endif deallocate(s2_eigvalues) endif