10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-10 13:08:23 +01:00

simple N^4 integral map - integral driven d0

This commit is contained in:
Yann Garniron 2016-07-25 17:12:26 +02:00
parent a117ac1a6b
commit 993517cef0

View File

@ -1,5 +1,18 @@
BEGIN_PROVIDER [ double precision, integral8, (mo_tot_num, mo_tot_num, mo_tot_num, mo_tot_num) ]
integral8 = 0d0
integer :: h1, h2
print *, "provide int"
do h1=1, mo_tot_num
do h2=1, mo_tot_num
call get_mo_bielec_integrals_ij(h1, h2 ,mo_tot_num,integral8(1,1,h1,h2),mo_integrals_map)
end do
end do
print *, "end provide int"
END_PROVIDER
subroutine selection_slave(thread,iproc) subroutine selection_slave(thread,iproc)
use f77_zmq use f77_zmq
use selection_types use selection_types
@ -611,11 +624,13 @@ subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,p
call check_past_s(exc_det, microlist(1,1,ptr_microlist(sporb)), N_microlist(sporb) - N_futur_microlist(sporb), nok, N_int) call check_past_s(exc_det, microlist(1,1,ptr_microlist(sporb)), N_microlist(sporb) - N_futur_microlist(sporb), nok, N_int)
if(nok) cycle if(nok) cycle
!DET DRIVEN !DET DRIVEN
if(N_futur_microlist(0) > 0) then ! if(N_futur_microlist(0) > 0) then
call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(0)),psi_coef_microlist(ptr_futur_microlist(0), 1),N_int,N_futur_microlist(0),psi_selectors_size*4,N_states,i_H_psi_value) ! call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(0)),psi_coef_microlist(ptr_futur_microlist(0), 1),N_int,N_futur_microlist(0),psi_selectors_size*4,N_states,i_H_psi_value)
end if ! end if
!INTEGRAL DRIVEN !INTEGRAL DRIVEN
! i_H_psi_value = d0s(mod(p1-1, mo_tot_num)+1, mod(p2-1, mo_tot_num)+1, :) do j=1, N_states
i_H_psi_value(j) = d0s(mod(p1-1, mo_tot_num)+1, mod(p2-1, mo_tot_num)+1, j)
end do
if(N_futur_microlist(sporb) > 0) then if(N_futur_microlist(sporb) > 0) then
@ -888,10 +903,13 @@ subroutine create_microlist_double(minilist, i_cur, N_minilist, key_mask, microl
integer, allocatable :: n_element(:,:), idx(:), list(:,:,:) integer, allocatable :: n_element(:,:), idx(:), list(:,:,:)
integer :: cur_microlist(0:mo_tot_num*2+1), cur_tmicrolist(0:mo_tot_num*2+1) integer :: cur_microlist(0:mo_tot_num*2+1), cur_tmicrolist(0:mo_tot_num*2+1)
integer(bit_kind) :: key_mask_neg(Nint,2), mobileMask(Nint,2) integer(bit_kind) :: key_mask_neg(Nint,2), mobileMask(Nint,2)
integer :: mo_tot_num_2 integer :: mo_tot_num_2, pwen(4), pweni
logical,intent(out) :: isinwf(mo_tot_num*2, mo_tot_num*2) logical,intent(out) :: isinwf(mo_tot_num*2, mo_tot_num*2)
double precision, intent(out) :: d0s(mo_tot_num, mo_tot_num, N_states) double precision, intent(out) :: d0s(mo_tot_num, mo_tot_num, N_states)
double precision :: integ(mo_tot_num, mo_tot_num) double precision :: integ(mo_tot_num, mo_tot_num)
logical :: banned(mo_tot_num*2), banned_pair(mo_tot_num*2, mo_tot_num*2)
banned = .false.
banned_pair = .false.
allocate(list(4,2,N_minilist), n_element(2,N_minilist), idx(0:N_minilist)) allocate(list(4,2,N_minilist), n_element(2,N_minilist), idx(0:N_minilist))
@ -961,6 +979,44 @@ subroutine create_microlist_double(minilist, i_cur, N_minilist, key_mask, microl
end do end do
do i=1, idx(0)
if(n_element(1, i) + n_element(2, i) == 2) cycle
pweni = 0
do s = 1, 2
do j=1,n_element(s,i)
nt = list(j,s,i) + mo_tot_num * (s-1)
if(n_element(1,i) + n_element(2,i) == 4) then
pweni += 1
pwen(pweni) = nt
idx_microlist(cur_microlist(nt)) = idx(i)
do k=1,Nint
microlist(k,1,cur_microlist(nt)) = minilist(k,1,idx(i))
microlist(k,2,cur_microlist(nt)) = minilist(k,2,idx(i))
enddo
cur_microlist(nt) = cur_microlist(nt) + 1
else
if(idx(i) < i_cur) banned(nt) = .true.
idx_tmicrolist(cur_tmicrolist(nt)) = idx(i)
do k=1,Nint
tmicrolist(k,1,cur_tmicrolist(nt)) = minilist(k,1,idx(i))
tmicrolist(k,2,cur_tmicrolist(nt)) = minilist(k,2,idx(i))
enddo
cur_tmicrolist(nt) = cur_tmicrolist(nt) + 1
endif
end do
end do
if(idx(i) < i_cur .and. pweni == 4) then
do j=1,4
do k=j+1,4
banned_pair(pwen(j), pwen(k)) = .true.
banned_pair(pwen(k), pwen(j)) = .true.
end do
end do
end if
end do
do i=1, idx(0) do i=1, idx(0)
if(n_element(1, i) + n_element(2, i) <= 2) then if(n_element(1, i) + n_element(2, i) <= 2) then
idx_microlist(cur_microlist(0)) = idx(i) idx_microlist(cur_microlist(0)) = idx(i)
@ -978,108 +1034,47 @@ subroutine create_microlist_double(minilist, i_cur, N_minilist, key_mask, microl
isinwf(nt, nt2) = .true. isinwf(nt, nt2) = .true.
isinwf(nt2, nt) = .true. isinwf(nt2, nt) = .true.
!!!! INTEGRAL DRIVEN !!!! INTEGRAL DRIVEN
!!!!!!!!!!!!!!!!!!!! ! !!!!!!!!!!!!!!!!!!!!
! call get_d0(minilist(1,1,idx(i)), integ, key_mask, 1+(nt2-1)/mo_tot_num, 1+(nt-1)/mo_tot_num, & call get_d0(minilist(1,1,idx(i)), banned, banned_pair, integ, key_mask, 1+(nt2-1)/mo_tot_num, 1+(nt-1)/mo_tot_num, &
! mod(nt2-1, mo_tot_num)+1, mod(nt-1, mo_tot_num)+1) mod(nt2-1, mo_tot_num)+1, mod(nt-1, mo_tot_num)+1)
!
! do j=1, N_states
! do nt=1, mo_tot_num
! do nt2=1, mo_tot_num
! d0s(nt,nt2,j) = d0s(nt,nt2,j) + (integ(nt,nt2) * psi_selectors_coef(idx(i), j)) !!! SUPPOSE MINILIST = SELECTORS !!!!
! end do
! end do
! end do
else
do s = 1, 2
do j=1,n_element(s,i)
nt = list(j,s,i) + mo_tot_num * (s-1)
if(n_element(1,i) + n_element(2,i) == 4) then do j=1, N_states
idx_microlist(cur_microlist(nt)) = idx(i) do nt2=1, mo_tot_num
do k=1,Nint do nt=1, mo_tot_num
microlist(k,1,cur_microlist(nt)) = minilist(k,1,idx(i)) d0s(nt,nt2,j) = d0s(nt,nt2,j) + (integ(nt,nt2) * psi_selectors_coef(idx(i), j)) !!! SUPPOSE MINILIST = SELECTORS !!!!
microlist(k,2,cur_microlist(nt)) = minilist(k,2,idx(i))
end do end do
cur_microlist(nt) = cur_microlist(nt) + 1
else
idx_tmicrolist(cur_tmicrolist(nt)) = idx(i)
do k=1,Nint
tmicrolist(k,1,cur_tmicrolist(nt)) = minilist(k,1,idx(i))
tmicrolist(k,2,cur_tmicrolist(nt)) = minilist(k,2,idx(i))
enddo
cur_tmicrolist(nt) = cur_tmicrolist(nt) + 1
endif
end do end do
end do end do
end if end if
end do end do
end subroutine end subroutine
subroutine check_past(det, list, idx, N, cur, ok, Nint) subroutine get_d0(gen, banned, banned_pair, mat, mask, s1, s2, h1, h2)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, idx(N), N, cur
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
if(idx(i) >= cur) exit
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine
subroutine check_past_s(det, list, N, ok, Nint)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, N
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine
subroutine get_d0(gen, mat, mask, s1, s2, h1, h2)
use bitmasks use bitmasks
implicit none implicit none
double precision, intent(out) :: mat(mo_tot_num, mo_tot_num) double precision, intent(out) :: mat(mo_tot_num, mo_tot_num)
logical, intent(in) :: banned(mo_tot_num*2), banned_pair(mo_tot_num*2, mo_tot_num*2)
double precision :: mat_mwen(mo_tot_num, mo_tot_num) double precision :: mat_mwen(mo_tot_num, mo_tot_num)
integer, intent(in) :: h1, h2, s1, s2 integer, intent(in) :: h1, h2, s1, s2
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind) :: det1(N_int, 2), det2(N_int, 2) integer(bit_kind) :: det1(N_int, 2), det2(N_int, 2)
logical :: ok, mono logical :: ok, mono
double precision :: phase, phase2, inv double precision :: phase, phase2, inv
integer :: p1, p2, hmi, hma integer :: p1, p2, hmi, hma, ns1, ns2
logical, external :: detEq logical, external :: detEq
integer :: exc(0:2, 2, 2), exc2(0:2,2,2) integer :: exc(0:2, 2, 2), exc2(0:2,2,2)
exc = 0 exc = 0
call get_mo_bielec_integrals_ij(h1, h2 ,mo_tot_num,mat_mwen,mo_integrals_map) ! mat_mwen = integral8(:,:,h1,h2)
!call get_mo_bielec_integrals_ij(h1, h2 ,mo_tot_num,mat_mwen,mo_integrals_map)
ns1 = mo_tot_num*(s1-1)
ns2 = mo_tot_num*(s2-1)
mat = 0d0 mat = 0d0
if(s1 == s2) then if(s1 == s2) then
hmi = min(h1, h2) hmi = min(h1, h2)
@ -1089,20 +1084,22 @@ subroutine get_d0(gen, mat, mask, s1, s2, h1, h2)
exc(0, :, s1) = 2 exc(0, :, s1) = 2
exc(1, 1, s1) = hmi exc(1, 1, s1) = hmi
exc(2, 1, s1) = hma exc(2, 1, s1) = hma
do p1=1,mo_tot_num
do p2=1,mo_tot_num do p2=1,mo_tot_num
if(banned(p2 + ns2)) cycle
do p1=1,mo_tot_num
if(banned(p1 + ns1)) cycle
if(p1 == p2) cycle if(p1 == p2) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
call apply_particle(mask, (/s1,p1,s2,p2/), det2, ok, N_int) call apply_particle(mask, (/s1,p1,s2,p2/), det2, ok, N_int)
if(.not. ok) cycle if(.not. ok) cycle
mono = (hmi == p1 .or. hma == p2 .or. hmi == p2 .or. hma == p1) mono = (hmi == p1 .or. hma == p2 .or. hmi == p2 .or. hma == p1)
if(mono) then if(mono) then
call i_h_j(gen, det2, N_int, mat(p1, p2)) call i_h_j(gen, det2, N_int, mat(p1, p2))
!mat(p1, p2) = phase
else else
exc(1, 2, s1) = min(p1, p2) exc(1, 2, s1) = min(p1, p2)
exc(2, 2, s2) = max(p2, p1) exc(2, 2, s2) = max(p2, p1)
call get_double_excitation_phase(gen, det2, exc, phase, N_int) call get_double_excitation_phase(gen, det2, exc, phase, N_int)
mat(p1, p2) = inv * (mat_mwen(p1, p2) - mat_mwen(p2, p1)) * phase mat(p1, p2) = inv * (integral8(p1, p2, h1, h2) - integral8(p2, p1, h1, h2)) * phase
end if end if
end do end do
end do end do
@ -1113,19 +1110,21 @@ subroutine get_d0(gen, mat, mask, s1, s2, h1, h2)
exc(1, 1, 1) = h2 exc(1, 1, 1) = h2
exc(1, 1, 2) = h1 exc(1, 1, 2) = h1
do p1=1, mo_tot_num
do p2=1, mo_tot_num do p2=1, mo_tot_num
if(banned(p2 + ns2)) cycle
do p1=1, mo_tot_num
if(banned(p1 + ns1)) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
call apply_particle(mask, (/s1,p1,s2,p2/), det2, ok, N_int) call apply_particle(mask, (/s1,p1,s2,p2/), det2, ok, N_int)
if(.not. ok) cycle if(.not. ok) cycle
mono = (h1 == p1 .or. h2 == p2) mono = (h1 == p1 .or. h2 == p2)
if(mono) then if(mono) then
call i_h_j(gen, det2, N_int, phase) call i_h_j(gen, det2, N_int, mat(p1, p2))
mat(p1, p2) = phase
else else
exc(1, 2, s1) = p1 exc(1, 2, s1) = p1
exc(1, 2, s2) = p2 exc(1, 2, s2) = p2
call get_double_excitation_phase(gen, det2, exc, phase, N_int) call get_double_excitation_phase(gen, det2, exc, phase, N_int)
mat(p1, p2) = mat_mwen(p1, p2) * phase mat(p1, p2) = integral8(p1, p2, h1, h2) * phase
end if end if
end do end do
end do end do
@ -1263,3 +1262,52 @@ subroutine get_double_excitation_phase(det1,det2,exc,phase,Nint)
enddo enddo
phase = phase_dble(iand(nperm,1)) phase = phase_dble(iand(nperm,1))
end end
subroutine check_past(det, list, idx, N, cur, ok, Nint)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, idx(N), N, cur
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
if(idx(i) >= cur) exit
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine
subroutine check_past_s(det, list, N, ok, Nint)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, N
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine