mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-22 20:35:19 +01:00
OpenMP davidson
This commit is contained in:
parent
23685ab5d0
commit
923eec3c25
@ -662,20 +662,15 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_singles, n_doubles
|
||||
integer, allocatable :: singles(:), doubles(:)
|
||||
integer, allocatable :: singles_a(:,:), singles_b(:,:)
|
||||
integer, allocatable :: singles_b(:,:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
logical, allocatable :: is_single_a(:)
|
||||
logical, allocatable :: is_single_b(:)
|
||||
integer :: maxab, n_singles_max
|
||||
integer :: maxab, n_singles_max, kcol_prev
|
||||
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: v_t, s_t, u_t
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)
|
||||
allocate( buffer(N_int,maxab), &
|
||||
singles(maxab), doubles(maxab), &
|
||||
is_single_a(N_det_alpha_unique), &
|
||||
is_single_b(N_det_beta_unique), &
|
||||
idx(maxab), idx0(maxab), &
|
||||
allocate(idx0(maxab), &
|
||||
u_t(N_st,N_det), v_t(N_st,N_det), s_t(N_st,N_det) )
|
||||
|
||||
do i=1,maxab
|
||||
@ -692,25 +687,127 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
n_singles_max = 0
|
||||
do i=1,N_det_alpha_unique
|
||||
spindet(1:N_int) = psi_det_alpha_unique(1:N_int, i)
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, spindet, N_int, N_det_alpha_unique,&
|
||||
singles, n_singles)
|
||||
n_singles_max = max(n_singles_max, n_singles)
|
||||
enddo
|
||||
|
||||
allocate (singles_a(0:n_singles_max, N_det_alpha_unique))
|
||||
do i=1,N_det_alpha_unique
|
||||
spindet(1:N_int) = psi_det_alpha_unique(1:N_int, i)
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, spindet, N_int, N_det_alpha_unique,&
|
||||
singles_a(1,i), singles_a(0,i))
|
||||
enddo
|
||||
|
||||
v_t = 0.d0
|
||||
s_t = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||||
!$OMP psi_bilinear_matrix_columns, &
|
||||
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
|
||||
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
|
||||
!$OMP psi_bilinear_matrix_transp_rows, &
|
||||
!$OMP psi_bilinear_matrix_transp_columns, &
|
||||
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
!$OMP singles_alpha, psi_bilinear_matrix_columns_loc, &
|
||||
!$OMP idx0, u_t, v_t, s_t, maxab) &
|
||||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||||
!$OMP lcol, lrow, is_single_a,l_a, l_b, &
|
||||
!$OMP buffer, singles, doubles, n_singles, n_doubles, &
|
||||
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer(N_int,maxab), &
|
||||
singles(maxab), doubles(maxab), &
|
||||
idx(maxab), &
|
||||
! v_t(N_st,N_det), s_t(N_st,N_det), &
|
||||
is_single_a(N_det_alpha_unique))
|
||||
is_single_a = .False.
|
||||
kcol_prev=-1
|
||||
krow=1
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do k_a=1,N_det
|
||||
|
||||
do k=1,singles_alpha(0,krow)
|
||||
is_single_a( singles_alpha(k,krow) ) = .False.
|
||||
enddo
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow)
|
||||
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol)
|
||||
|
||||
do k=1,singles_alpha(0,krow)
|
||||
is_single_a( singles_alpha(k,krow) ) = .True.
|
||||
enddo
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, tmp_det(1,2), N_int, N_det_beta_unique,&
|
||||
singles, n_singles)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles
|
||||
lcol = singles(i)
|
||||
if (lcol <= kcol) cycle
|
||||
|
||||
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do while (l_a <= k_a)
|
||||
l_a += 1
|
||||
enddo
|
||||
|
||||
n_doubles=1
|
||||
do while ( l_a < psi_bilinear_matrix_columns_loc(lcol+1) )
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
if (.not.is_single_a(lrow)) then
|
||||
continue
|
||||
else
|
||||
doubles(n_doubles) = lrow
|
||||
idx(n_doubles) = l_a
|
||||
n_doubles = n_doubles+1
|
||||
endif
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
n_doubles = n_doubles-1
|
||||
|
||||
do k=1,n_doubles
|
||||
lrow = doubles(k)
|
||||
l_a = idx(k)
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
|
||||
call get_s2(tmp_det,tmp_det2,N_int,sij)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
!$OMP ATOMIC
|
||||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
|
||||
!$OMP ATOMIC
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
s_t(l,l_a) = s_t(l,l_a) + sij * u_t(l,k_a)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! Diagonal contribution
|
||||
! ---------------------
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
|
||||
hij = diag_H_mat_elem(tmp_det,N_int)
|
||||
sij = diag_S_mat_elem(tmp_det,N_int)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do k_a=1,N_det
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
@ -765,7 +862,9 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! single => sij = 0
|
||||
enddo
|
||||
@ -783,7 +882,9 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
enddo
|
||||
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, doubles(i)), N_int, hij)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! same spin => sij = 0
|
||||
enddo
|
||||
@ -831,7 +932,9 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! single => sij = 0
|
||||
enddo
|
||||
@ -850,104 +953,18 @@ subroutine H_S2_u_0_nstates_bilinear_order(v_0,s_0,u_0,N_st,sze_8)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, doubles(i)), N_int, hij)
|
||||
do l=1,N_st
|
||||
!$OMP ATOMIC
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
!$OMP ATOMIC
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! same spin => sij = 0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
is_single_a = .False.
|
||||
krow = 1
|
||||
do k_a=1,N_det
|
||||
|
||||
do k=1,singles_a(0,krow)
|
||||
is_single_a( singles_a(k,krow) ) = .False.
|
||||
enddo
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow)
|
||||
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol)
|
||||
|
||||
do k=1,singles_a(0,krow)
|
||||
is_single_a( singles_a(k,krow) ) = .True.
|
||||
enddo
|
||||
|
||||
if (k_a > 1) then
|
||||
if (kcol /= psi_bilinear_matrix_columns(k_a-1)) then
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, tmp_det(1,2), N_int, N_det_beta_unique,&
|
||||
singles, n_singles)
|
||||
endif
|
||||
else
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, tmp_det(1,2), N_int, N_det_beta_unique,&
|
||||
singles, n_singles)
|
||||
endif
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles
|
||||
lcol = singles(i)
|
||||
if (lcol <= kcol) cycle
|
||||
|
||||
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do while (l_a <= k_a)
|
||||
l_a += 1
|
||||
enddo
|
||||
|
||||
n_doubles=0
|
||||
do while ( l_a < psi_bilinear_matrix_columns_loc(lcol+1) )
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
if (.not.is_single_a(lrow)) then
|
||||
continue
|
||||
else
|
||||
n_doubles = n_doubles+1
|
||||
doubles(n_doubles) = lrow
|
||||
idx(n_doubles) = l_a
|
||||
endif
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
|
||||
do k=1,n_doubles
|
||||
lrow = doubles(k)
|
||||
l_a = idx(k)
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
|
||||
call get_s2(tmp_det,tmp_det2,N_int,sij)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
|
||||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
|
||||
s_t(l,l_a) = s_t(l,l_a) + sij * u_t(l,k_a)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! Diagonal contribution
|
||||
! ---------------------
|
||||
|
||||
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
|
||||
|
||||
hij = diag_H_mat_elem(tmp_det,N_int)
|
||||
sij = diag_S_mat_elem(tmp_det,N_int)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
|
||||
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dtranspose( &
|
||||
v_t, &
|
||||
|
@ -1405,3 +1405,38 @@ subroutine copy_psi_bilinear_to_psi(psi, isize)
|
||||
psi(1:N_int,2,k) = psi_det_beta_unique(1:N_int,j)
|
||||
enddo
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ integer, singles_alpha_size ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dimension of the singles_alpha array
|
||||
END_DOC
|
||||
singles_alpha_size = elec_alpha_num * (mo_tot_num - elec_alpha_num)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, singles_alpha, (0:singles_alpha_size, N_det_alpha_unique) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dimension of the singles_alpha array
|
||||
END_DOC
|
||||
integer :: i
|
||||
integer, allocatable :: idx0(:)
|
||||
allocate (idx0(N_det_alpha_unique))
|
||||
do i=1, N_det_alpha_unique
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP SHARED(singles_alpha, N_det_alpha_unique, psi_det_alpha_unique, &
|
||||
!$OMP idx0, N_int) &
|
||||
!$OMP PRIVATE(i)
|
||||
do i=1, N_det_alpha_unique
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int, &
|
||||
N_det_alpha_unique, singles_alpha(1,i), singles_alpha(0,i))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(idx0)
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user