mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-09 04:43:18 +01:00
Optim pseudos
This commit is contained in:
parent
c9d6f89aa8
commit
91e412c783
@ -109,9 +109,10 @@ end
|
||||
DIMENSION PM(0:100,0:100)
|
||||
MM=100
|
||||
pi=dacos(-1.d0)
|
||||
fourpi=4.d0*pi
|
||||
iabs_m=iabs(m)
|
||||
if(iabs_m.gt.l)stop 'm must be between -l and l'
|
||||
factor= dsqrt( ((2*l+1)*fact(l-iabs_m))/(4.d0*pi*fact(l+iabs_m)) )
|
||||
factor= dsqrt( ((l+l+1)*fact(l-iabs_m))/(fourpi*fact(l+iabs_m)) )
|
||||
if(dabs(x).gt.1.d0)then
|
||||
print*,'pb. in ylm_no'
|
||||
print*,'x=',x
|
||||
@ -124,7 +125,6 @@ end
|
||||
if(m.eq.0)ylm_real=coef
|
||||
if(m.lt.0)ylm_real=dsqrt(2.d0)*coef*dsin(iabs_m*phi)
|
||||
|
||||
fourpi=4.d0*dacos(-1.d0)
|
||||
if(l.eq.0)ylm_real=dsqrt(1.d0/fourpi)
|
||||
|
||||
xchap=dsqrt(1.d0-x**2)*dcos(phi)
|
||||
@ -134,9 +134,9 @@ end
|
||||
if(l.eq.1.and.m.eq.0)ylm_real=dsqrt(3.d0/fourpi)*zchap
|
||||
if(l.eq.1.and.m.eq.-1)ylm_real=dsqrt(3.d0/fourpi)*ychap
|
||||
|
||||
if(l.eq.2.and.m.eq.2)ylm_real=dsqrt(15.d0/16.d0/pi)*(xchap**2-ychap**2)
|
||||
if(l.eq.2.and.m.eq.2)ylm_real=dsqrt(15.d0/16.d0/pi)*(xchap*xchap-ychap*ychap)
|
||||
if(l.eq.2.and.m.eq.1)ylm_real=dsqrt(15.d0/fourpi)*xchap*zchap
|
||||
if(l.eq.2.and.m.eq.0)ylm_real=dsqrt(5.d0/16.d0/pi)*(-xchap**2-ychap**2+2.d0*zchap**2)
|
||||
if(l.eq.2.and.m.eq.0)ylm_real=dsqrt(5.d0/16.d0/pi)*(-xchap*xchap-ychap*ychap+2.d0*zchap*zchap)
|
||||
if(l.eq.2.and.m.eq.-1)ylm_real=dsqrt(15.d0/fourpi)*ychap*zchap
|
||||
if(l.eq.2.and.m.eq.-2)ylm_real=dsqrt(15.d0/fourpi)*xchap*ychap
|
||||
|
||||
@ -313,7 +313,7 @@ else if(ac.ne.0.d0.and.bc.ne.0.d0)then
|
||||
! I n i t !
|
||||
!=!=!=!=!=!
|
||||
|
||||
f=fourpi**2
|
||||
f=fourpi*fourpi
|
||||
|
||||
theta_AC0=dacos( (a(3)-c(3))/ac )
|
||||
phi_AC0=datan2((a(2)-c(2))/ac,(a(1)-c(1))/ac)
|
||||
@ -1775,15 +1775,6 @@ double precision function binom_gen(alpha,n)
|
||||
enddo
|
||||
end
|
||||
|
||||
double precision FUNCTION ERF(X)
|
||||
implicit double precision(a-h,o-z)
|
||||
IF(X.LT.0.d0)THEN
|
||||
ERF=-GAMMP(.5d0,X**2)
|
||||
ELSE
|
||||
ERF=GAMMP(.5d0,X**2)
|
||||
ENDIF
|
||||
RETURN
|
||||
END
|
||||
|
||||
double precision function coef_nk(n,k)
|
||||
implicit none
|
||||
@ -1791,7 +1782,7 @@ double precision function coef_nk(n,k)
|
||||
|
||||
double precision gam,dble_fact,fact
|
||||
|
||||
gam=dble_fact(2*(n+k)+1)
|
||||
gam=dble_fact(n+n+k+k+1)
|
||||
|
||||
! coef_nk=1.d0/(dble(ISHFT(1,k))*fact(k)*gam)
|
||||
|
||||
@ -1862,7 +1853,7 @@ double precision function int_prod_bessel(l,gam,n,m,a,b,arg)
|
||||
term_rap = term_a / (2.d0*gam)**expo
|
||||
|
||||
s_0_0=term_rap*a**(n)*b**(m)
|
||||
if(mod(nlm,2).eq.0)s_0_0=s_0_0*dsqrt(pi/2.d0)
|
||||
if(mod(nlm,2).eq.0)s_0_0=s_0_0*dsqrt(pi*.5d0)
|
||||
|
||||
! Initialise the first recurence terme for the q loop
|
||||
s_q_0 = s_0_0
|
||||
@ -1887,7 +1878,7 @@ double precision function int_prod_bessel(l,gam,n,m,a,b,arg)
|
||||
two_qkmp1 = two_qkmp1-2.d0
|
||||
qk = qk-1.d0
|
||||
enddo
|
||||
inverses(q) = a_over_b_square/(dble(2*(q+n)+3) * dble(q+1))
|
||||
inverses(q) = a_over_b_square/(dble(q+n+q+n+3) * dble(q+1))
|
||||
! do k=0,q
|
||||
! sum=sum+s_q_k
|
||||
! s_q_k = a_over_b_square * ( dble(2*(q-k+m)+1)*dble(q-k)/(dble(2*(k+n)+3) * dble(k+1)) ) * s_q_k
|
||||
@ -1900,9 +1891,10 @@ double precision function int_prod_bessel(l,gam,n,m,a,b,arg)
|
||||
else
|
||||
|
||||
!Compute the s_q+1_0
|
||||
s_q_0=s_q_0*(2.d0*q+nlm+1)*b**2/((2.d0*(m+q)+3)*4.d0*(q+1)*gam)
|
||||
! s_q_0=s_q_0*(2.d0*q+nlm+1)*b**2/((2.d0*(m+q)+3)*4.d0*(q+1)*gam)
|
||||
s_q_0=s_q_0*(2.d0*q+nlm+1)*b*b/((8.d0*(m+q)+12.d0)*(q+1)*gam)
|
||||
|
||||
if(mod(n+m+l,2).eq.1)s_q_0=s_q_0*dsqrt(pi/2.d0)
|
||||
if(mod(n+m+l,2).eq.1)s_q_0=s_q_0*dsqrt(pi*.5d0)
|
||||
! Increment q
|
||||
q=q+1
|
||||
intold=int
|
||||
@ -2017,7 +2009,7 @@ double precision function int_prod_bessel_loc(l,gam,n,a)
|
||||
! Int f_0
|
||||
coef_nk=1.d0/dble_fact( n+n+1 )
|
||||
expo=0.5d0*dfloat(n+l+1)
|
||||
crochet=dble_fact(n+l-1)/(2.d0*gam)**expo
|
||||
crochet=dble_fact(n+l-1)/(gam+gam)**expo
|
||||
if(mod(n+l,2).eq.0)crochet=crochet*dsqrt(0.5d0*pi)
|
||||
|
||||
f_0 = coef_nk*a**n*crochet
|
||||
@ -2029,7 +2021,7 @@ double precision function int_prod_bessel_loc(l,gam,n,a)
|
||||
|
||||
int=int+f_k
|
||||
|
||||
f_k = f_k*(a**2*(2*(k+1)+n+l-1)) / (2*(k+1)*(2*(n+k+1)+1)*2*gam)
|
||||
f_k = f_k*(a*a*dble(k+k+2+n+l-1)) / (dble((k+k+2)*(2*(n+k+1)+1)*2)*gam)
|
||||
|
||||
if(dabs(int-intold).lt.1d-15)then
|
||||
done=.true.
|
||||
|
Loading…
Reference in New Issue
Block a user