mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-10 21:18:29 +01:00
CIS_DT cleaned, add Full_ci/parameters.irp.f
This commit is contained in:
parent
762fbd41cc
commit
8bb8e1f7c2
68
src/CIS_dressed/CIS_DT_lapack.irp.f
Normal file
68
src/CIS_dressed/CIS_DT_lapack.irp.f
Normal file
@ -0,0 +1,68 @@
|
||||
program CIS_DT
|
||||
implicit none
|
||||
integer :: i
|
||||
print*,'MP2_dresssing=',mp2_dressing
|
||||
print*,'standard_doubles=',standard_doubles
|
||||
print*,'n_state_CIS=',n_state_CIS
|
||||
print*,'n_core_cis=',n_core_cis
|
||||
print*,'n_act_cis=',n_act_cis
|
||||
print*,''
|
||||
print*,'nuc repulsion E=',nuclear_repulsion
|
||||
if (mp2_dressing==.true.) then
|
||||
print*,'correlation E=',MP2_corr_energy
|
||||
else
|
||||
print*,'correlation E=',EN2_corr_energy
|
||||
endif
|
||||
do i = 1,n_state_CIS
|
||||
print*,''
|
||||
print*,'i = ',i
|
||||
print*,'CIS = ',eigenvalues_CIS(i)
|
||||
print*,'CIS(DdT)= ',eigenvalues_CIS_dress_D_dt(i)
|
||||
print*,'s2(DdT) = ',s_2_CIS_dress_D_dt(i)
|
||||
print*,'<x> = ',CIS_states_properties(1,i)
|
||||
print*,'<y> = ',CIS_states_properties(2,i)
|
||||
print*,'<z> = ',CIS_states_properties(3,i)
|
||||
print*,'<xx> = ',CIS_states_properties(4,i)
|
||||
print*,'<yy> = ',CIS_states_properties(5,i)
|
||||
print*,'<zz> = ',CIS_states_properties(6,i)
|
||||
print*,''
|
||||
enddo
|
||||
double precision :: delta_E_CIS,delta_E_CIS_DT,convert
|
||||
|
||||
convert = 1.d0
|
||||
print*,'Excitation energies : CIS CIS_DT (Hartree)'
|
||||
do i = 2, n_state_CIS
|
||||
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
|
||||
delta_E_CIS_DT = eigenvalues_CIS_dress_D_dt(i) - eigenvalues_CIS_dress_D_dt(1)
|
||||
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
|
||||
enddo
|
||||
|
||||
convert = 27.2114d0
|
||||
print*,'Excitation energies : CIS CIS_DT (eV)'
|
||||
do i = 2, n_state_CIS
|
||||
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
|
||||
delta_E_CIS_DT = eigenvalues_CIS_dress_D_dt(i) - eigenvalues_CIS_dress_D_dt(1)
|
||||
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.6,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
|
||||
enddo
|
||||
|
||||
|
||||
convert = 219475d0
|
||||
print*,'Excitation energies : CIS CIS_DT (cm-1)'
|
||||
do i = 2, n_state_CIS
|
||||
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
|
||||
delta_E_CIS_DT = eigenvalues_CIS_dress_D_dt(i) - eigenvalues_CIS_dress_D_dt(1)
|
||||
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.1,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
|
||||
enddo
|
||||
|
||||
convert = 627.51d0
|
||||
print*,'Excitation energies : CIS CIS_DT (Kcal/mol)'
|
||||
do i = 2, n_state_CIS
|
||||
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
|
||||
delta_E_CIS_DT = eigenvalues_CIS_dress_D_dt(i) - eigenvalues_CIS_dress_D_dt(1)
|
||||
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
|
||||
enddo
|
||||
|
||||
!if(save_all_dm_cis)then
|
||||
! call save_all_density_matrix
|
||||
!endif
|
||||
end
|
@ -207,13 +207,13 @@
|
||||
implicit none
|
||||
double precision,allocatable :: delta_H_matrix_doub(:,:)
|
||||
double precision,allocatable :: eigvalues(:),eigvectors(:,:)
|
||||
double precision :: overlap,max_overlap,s2
|
||||
double precision :: overlap,max_overlap,s2,e_corr
|
||||
integer :: i_overlap,i,j,k
|
||||
allocate (delta_H_matrix_doub(size_psi_CIS,size_psi_CIS))
|
||||
allocate(eigvalues(size_psi_CIS),eigvectors(size_psi_CIS,size_psi_CIS))
|
||||
do i = 1,n_state_CIS
|
||||
! call dress_by_doubles(eigenvalues_CIS(i),coefs_CIS(1,i),delta_H_matrix_doub,size_psi_CIS) !dressing of the Doubles
|
||||
delta_H_matrix_doub = 0.d0
|
||||
call dress_by_doubles(eigenvalues_CIS(i),coefs_CIS(1,i),delta_H_matrix_doub,size_psi_CIS) !dressing of the Doubles
|
||||
! delta_H_matrix_doub = 0.d0
|
||||
|
||||
do j = 1,size_psi_CIS
|
||||
do k = 1,size_psi_CIS
|
||||
@ -246,7 +246,6 @@
|
||||
enddo
|
||||
print*,i,i_overlap
|
||||
print*,'overlap = ',max_overlap
|
||||
i_overlap = i
|
||||
overlap_Ddt=max_overlap
|
||||
do k = 1,size_psi_CIS
|
||||
eigenvectors_CIS_dress_D_dt(k,i) = eigvectors(k,i_overlap)
|
||||
|
@ -1,28 +1,32 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, EN2_corr_energy]
|
||||
&BEGIN_PROVIDER [double precision, p_imp_EN,(elec_alpha_num+1:n_act_cis)]
|
||||
&BEGIN_PROVIDER [double precision, h_imp_EN,(n_core_cis+1:elec_alpha_num)]
|
||||
&BEGIN_PROVIDER [double precision, hp_imp_EN,(n_core_cis+1:elec_alpha_num,elec_alpha_num+1:n_act_cis)]
|
||||
BEGIN_PROVIDER [double precision, EN2_corr_energy]
|
||||
&BEGIN_PROVIDER [double precision, p_imp_EN,(elec_alpha_num+1:n_act_cis)]
|
||||
&BEGIN_PROVIDER [double precision, h_imp_EN,(n_core_cis+1:elec_alpha_num)]
|
||||
&BEGIN_PROVIDER [double precision, hp_imp_EN,(n_core_cis+1:elec_alpha_num,elec_alpha_num+1:n_act_cis)]
|
||||
|
||||
BEGIN_DOC
|
||||
!Calculation of the EN2 correlation energy (EN2_corr_energy)
|
||||
!and calculation of the contribution of the disconnected Triples on the
|
||||
!Singles, via the impossible (p_imp_EN, h_imp_EN, hp_imp_EN)
|
||||
END_DOC
|
||||
BEGIN_DOC
|
||||
!Calculation of the EN2 correlation energy (EN2_corr_energy)
|
||||
!and calculation of the contribution of the disconnected Triples on the
|
||||
!Singles, via the impossible (p_imp_EN, h_imp_EN, hp_imp_EN)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l !variables for going over the occupied (i,j) and virutal (k,l)
|
||||
double precision :: direct,exchg,hij !calculating direct, exchange and total contribution
|
||||
double precision :: get_mo_bielec_integral
|
||||
double precision :: e_i,e_k,e_j,e_l !epsilons of i,j,k,l
|
||||
double precision :: delta_e_ik,delta_e_ikj
|
||||
double precision :: delta_e !delta epsilons
|
||||
double precision :: delta_e_tmp,H_jj_total
|
||||
integer :: ispin1,ispin2,i_ok
|
||||
implicit none
|
||||
integer :: i,j,k,l !variables for going over the occupied (i,j) and virutal (k,l)
|
||||
double precision :: direct,exchg,hij !calculating direct, exchange and total contribution
|
||||
double precision :: get_mo_bielec_integral
|
||||
double precision :: e_i,e_k,e_j,e_l !epsilons of i,j,k,l
|
||||
double precision :: delta_e_ik,delta_e_ikj
|
||||
double precision :: delta_e !delta epsilons
|
||||
double precision :: delta_e_tmp,H_jj_total
|
||||
integer, allocatable :: key_in(:,:)
|
||||
integer, allocatable :: key_out(:,:)
|
||||
integer :: ispin1,ispin2,i_ok
|
||||
allocate(key_in(N_int,2))
|
||||
allocate(key_out(N_int,2))
|
||||
|
||||
print*,'EN2_corr_energy'
|
||||
print*,'EN2_corr_energy'
|
||||
|
||||
EN2_corr_energy=0.d0
|
||||
EN2_corr_energy=0.d0
|
||||
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
h_imp_EN(i)=0.d0
|
||||
@ -31,222 +35,209 @@
|
||||
hp_imp_EN(i,k)=0.d0
|
||||
enddo
|
||||
enddo
|
||||
print*,'HF_energy = ',HF_energy
|
||||
print*,'1'
|
||||
|
||||
if(EN_2_2)then
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
h_imp_EN(i)=0.d0
|
||||
if(EN_2_2)then
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
|
||||
e_i=diagonal_Fock_matrix_mo(i)
|
||||
e_i=Fock_matrix_diag_mo(i)
|
||||
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
hp_imp_EN(i,k)=0.d0
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
|
||||
e_k=diagonal_Fock_matrix_mo(k)
|
||||
delta_e_ik=e_i-e_k
|
||||
e_k=Fock_matrix_diag_mo(k)
|
||||
delta_e_ik=e_i-e_k
|
||||
|
||||
!same spin contribution for EN2_corr_energy
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
!same spin contribution for EN2_corr_energy
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
|
||||
do l=k+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
!
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
|
||||
do l=k+1,n_act_cis
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
!
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+2*hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
EN2_corr_energy=EN2_corr_energy+2*hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
|
||||
p_imp_EN(l)=p_imp_EN(l)+hij
|
||||
h_imp_EN(j)=h_imp_EN(j)+hij
|
||||
p_imp_EN(l)=p_imp_EN(l)+hij
|
||||
h_imp_EN(j)=h_imp_EN(j)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!same spin contribution for hp_imp_EN
|
||||
|
||||
do j=n_core_cis+1,elec_alpha_num
|
||||
if(j==i)cycle
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_alpha_num+1,n_act_cis
|
||||
if(l==k)cycle
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij = 0.5d0 * (-delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij))
|
||||
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!different spin contribution
|
||||
do j=n_core_cis+1,elec_beta_num
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_beta_num+1,n_act_cis
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
|
||||
mo_bielec_integral_jj(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l) + &
|
||||
mo_bielec_integral_jj(i,l) + &
|
||||
mo_bielec_integral_jj(j,k)
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
|
||||
hij=direct*direct
|
||||
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!same spin contribution for hp_imp_EN
|
||||
else
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
|
||||
do j=n_core_cis+1,elec_alpha_num
|
||||
if(j==i)cycle
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
e_i=Fock_matrix_diag_mo(i)
|
||||
|
||||
do l=elec_alpha_num+1,n_act_cis
|
||||
if(l==k)cycle
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
e_k=Fock_matrix_diag_mo(k)
|
||||
delta_e_ik=e_i-e_k
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij = 0.5d0 * (-delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij))
|
||||
!same spin contribution for EN2_corr_energy
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
|
||||
do l=k+1,n_act_cis
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
!
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij=hij/delta_e
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+2*hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
|
||||
p_imp_EN(l)=p_imp_EN(l)+hij
|
||||
h_imp_EN(j)=h_imp_EN(j)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!same spin contribution for hp_imp_EN
|
||||
|
||||
do j=n_core_cis+1,elec_alpha_num
|
||||
if(j==i)cycle
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_alpha_num+1,n_act_cis
|
||||
if(l==k)cycle
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij=hij/delta_e
|
||||
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!different spin contribution
|
||||
do j=n_core_cis+1,elec_beta_num
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_beta_num+1,n_act_cis
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
|
||||
mo_bielec_integral_jj(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l) + &
|
||||
mo_bielec_integral_jj(i,l) + &
|
||||
mo_bielec_integral_jj(j,k)
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
|
||||
hij=direct*direct
|
||||
hij=hij/delta_e
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
!different spin contribution
|
||||
do j=n_core_cis+1,elec_beta_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_beta_num+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
|
||||
mo_bielec_integral_jj(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l) + &
|
||||
mo_bielec_integral_jj(i,l) + &
|
||||
mo_bielec_integral_jj(j,k)
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
|
||||
hij=direct*direct
|
||||
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'2'
|
||||
|
||||
else
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
h_imp_EN(i)=0.d0
|
||||
|
||||
e_i=diagonal_Fock_matrix_mo(i)
|
||||
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
hp_imp_EN(i,k)=0.d0
|
||||
|
||||
e_k=diagonal_Fock_matrix_mo(k)
|
||||
delta_e_ik=e_i-e_k
|
||||
|
||||
!same spin contribution for EN2_corr_energy
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
|
||||
do l=k+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
!
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij = hij*hij/delta_e
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+2*hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
|
||||
p_imp_EN(l)=p_imp_EN(l)+hij
|
||||
h_imp_EN(j)=h_imp_EN(j)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!same spin contribution for hp_imp_EN
|
||||
|
||||
do j=n_core_cis+1,elec_alpha_num
|
||||
if(j==i)cycle
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_alpha_num+1,n_act_cis
|
||||
if(l==k)cycle
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
|
||||
mo_bielec_integral_jj_anti(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(i,l) + &
|
||||
mo_bielec_integral_jj_anti(j,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l)
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
|
||||
hij=(direct-exchg)*(direct-exchg)
|
||||
hij = hij*hij/delta_e
|
||||
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!different spin contribution
|
||||
do j=n_core_cis+1,elec_beta_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_beta_num+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
|
||||
mo_bielec_integral_jj(k,l)
|
||||
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
|
||||
mo_bielec_integral_jj_anti(j,l) + &
|
||||
mo_bielec_integral_jj(i,l) + &
|
||||
mo_bielec_integral_jj(j,k)
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
|
||||
hij=direct*direct
|
||||
hij = hij*hij/delta_e
|
||||
|
||||
EN2_corr_energy=EN2_corr_energy+hij
|
||||
p_imp_EN(k)=p_imp_EN(k)+hij
|
||||
h_imp_EN(i)=h_imp_EN(i)+hij
|
||||
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
print*,'EN correlation energy=',EN2_corr_energy
|
||||
print*,'EN correlation energy=',EN2_corr_energy
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
print*,'EN correlation energy=',EN2_corr_energy
|
||||
print*,'EN correlation energy=',EN2_corr_energy
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -29,22 +29,22 @@
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
h_imp(i)=0.d0
|
||||
|
||||
e_i=diagonal_Fock_matrix_mo(i)
|
||||
e_i=Fock_matrix_diag_mo(i)
|
||||
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
hp_imp(i,k)=0.d0
|
||||
|
||||
e_k=diagonal_Fock_matrix_mo(k)
|
||||
e_k=Fock_matrix_diag_mo(k)
|
||||
delta_e_ik=e_i-e_k
|
||||
|
||||
!same spin contribution for MP2_corr_energy
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
!same spin contribution for MP2_corr_energy and a part of the contribution to p_imp and h_imp
|
||||
do l=k+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
@ -60,7 +60,7 @@
|
||||
|
||||
!remaining same spin contribution for p_imp
|
||||
do l=elec_alpha_num+1,k-1
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
@ -75,11 +75,11 @@
|
||||
|
||||
!remaining same spin contribution for h_imp
|
||||
do j=n_core_cis+1,i-1
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=k+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
@ -94,11 +94,11 @@
|
||||
|
||||
!same spin contribution for hp_imp
|
||||
do j=n_core_cis+1,elec_alpha_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_alpha_num+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
@ -113,11 +113,11 @@
|
||||
|
||||
!different spin contribution
|
||||
do j=n_core_cis+1,elec_beta_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_ikj=delta_e_ik+e_j
|
||||
|
||||
do l=elec_beta_num+1,n_act_cis
|
||||
e_l=diagonal_Fock_matrix_mo(l)
|
||||
e_l=Fock_matrix_diag_mo(l)
|
||||
delta_e=delta_e_ikj-e_l
|
||||
|
||||
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
@ -385,25 +385,20 @@
|
||||
enddo
|
||||
|
||||
else !EN Dressing
|
||||
print*,'coucou !'
|
||||
dress_T_discon_array_CIS(1)=EN2_corr_energy
|
||||
print*,'coucou !'
|
||||
|
||||
! do i=n_core_cis+1,elec_alpha_num
|
||||
! print*,'i',i,n_core_cis
|
||||
! do k=elec_alpha_num+1,n_act_cis
|
||||
! print*,'k',k,n_act_cis
|
||||
! key=psi_CIS_adress(i,k)
|
||||
!
|
||||
! dress_T_discon(i,k)=EN2_corr_energy-p_imp_EN(k)-h_imp_EN(i)+hp_imp_EN(i,k)
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
do k=elec_alpha_num+1,n_act_cis
|
||||
key=psi_CIS_adress(i,k)
|
||||
|
||||
! dress_T_discon_array_CIS(key) = dress_T_discon(i,k)
|
||||
! dress_T_discon_array_CIS(key+1) = dress_T_discon(i,k)
|
||||
dress_T_discon(i,k)=EN2_corr_energy-p_imp_EN(k)-h_imp_EN(i)+hp_imp_EN(i,k)
|
||||
|
||||
! enddo
|
||||
! enddo
|
||||
dress_T_discon_array_CIS(key) = dress_T_discon(i,k)
|
||||
dress_T_discon_array_CIS(key+1) = dress_T_discon(i,k)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
print*,'end'
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -809,24 +804,24 @@
|
||||
delta_H_trip=0.d0
|
||||
!do i=5,6
|
||||
do i=n_core_cis+1,elec_alpha_num
|
||||
e_i=diagonal_Fock_matrix_mo(i)
|
||||
e_i=Fock_matrix_diag_mo(i)
|
||||
!r=7
|
||||
do r=elec_alpha_num+1,n_act_cis
|
||||
e_r=diagonal_Fock_matrix_mo(r)
|
||||
e_r=Fock_matrix_diag_mo(r)
|
||||
delta_e_ir=e_i-e_r
|
||||
key_ir=psi_CIS_adress(i,r)
|
||||
do j=i+1,elec_alpha_num
|
||||
e_j=diagonal_Fock_matrix_mo(j)
|
||||
e_j=Fock_matrix_diag_mo(j)
|
||||
delta_e_irj=delta_e_ir+e_j
|
||||
do s=r+1,n_act_cis
|
||||
e_s=diagonal_Fock_matrix_mo(s)
|
||||
e_s=Fock_matrix_diag_mo(s)
|
||||
delta_e_irjs=delta_e_irj-e_s
|
||||
!alpha-alpha-alpha
|
||||
do k=j+1,elec_alpha_num
|
||||
e_k=diagonal_Fock_matrix_mo(k)
|
||||
e_k=Fock_matrix_diag_mo(k)
|
||||
delta_e_irjsk=delta_e_irjs+e_k
|
||||
do t=s+1,n_act_cis
|
||||
e_t=diagonal_Fock_matrix_mo(t)
|
||||
e_t=Fock_matrix_diag_mo(t)
|
||||
delta_e=delta_e_irjsk-e_t
|
||||
energy=1.d0/(ref_energy-delta_e)
|
||||
occ=i
|
||||
@ -898,10 +893,10 @@
|
||||
enddo
|
||||
!alpha-alpha-beta
|
||||
do k=n_core_cis+1,elec_alpha_num
|
||||
e_k=diagonal_Fock_matrix_mo(k)
|
||||
e_k=Fock_matrix_diag_mo(k)
|
||||
delta_e_irjsk=delta_e_irjs+e_k
|
||||
do t=elec_alpha_num+1,n_act_cis
|
||||
e_t=diagonal_Fock_matrix_mo(t)
|
||||
e_t=Fock_matrix_diag_mo(t)
|
||||
delta_e=delta_e_irjsk-e_t
|
||||
energy=1.d0/(ref_energy-delta_e)
|
||||
occ=i
|
||||
@ -992,23 +987,23 @@
|
||||
!!generating the Singles included in the Triples
|
||||
!! do m=1,n_state_CIS
|
||||
!do i=n_core_cis+1,elec_alpha_num
|
||||
! e_i=diagonal_Fock_matrix_mo(i)
|
||||
! e_i=Fock_matrix_diag_mo(i)
|
||||
|
||||
|
||||
|
||||
!!do r=elec_alpha_num+1,n_state_CIS
|
||||
! do r=elec_alpha_num+1,n_act_cis
|
||||
! e_r=diagonal_Fock_matrix_mo(r)
|
||||
! e_r=Fock_matrix_diag_mo(r)
|
||||
! delta_e_ir=e_i-e_r
|
||||
!key_ir=psi_CIS_adress(i,r)
|
||||
|
||||
! !alpha-alpha-x (=beta-beta-x)
|
||||
! do j=i+1,elec_alpha_num
|
||||
! e_j=diagonal_Fock_matrix_mo(j)
|
||||
! e_j=Fock_matrix_diag_mo(j)
|
||||
! delta_e_irj=delta_e_ir+e_j
|
||||
!key_jr=psi_CIS_adress(j,r)
|
||||
! do s=r+1,n_act_cis
|
||||
! e_s=diagonal_Fock_matrix_mo(s)
|
||||
! e_s=Fock_matrix_diag_mo(s)
|
||||
! delta_e_irjs=delta_e_irj-e_s
|
||||
|
||||
! key_is=psi_CIS_adress(i,s)
|
||||
@ -1017,13 +1012,13 @@
|
||||
|
||||
! !alpha-alpha-alpha (=beta-beta-beta)
|
||||
! do k=j+1,elec_alpha_num
|
||||
! e_k=diagonal_Fock_matrix_mo(k)
|
||||
! e_k=Fock_matrix_diag_mo(k)
|
||||
! delta_e_irjsk=delta_e_irjs+e_k
|
||||
! key_kr=psi_CIS_adress(k,r)
|
||||
! key_ks=psi_CIS_adress(k,s)
|
||||
|
||||
! do t=s+1,n_act_cis
|
||||
! e_t=diagonal_Fock_matrix_mo(t)
|
||||
! e_t=Fock_matrix_diag_mo(t)
|
||||
! delta_e=delta_e_irjsk-e_t
|
||||
|
||||
! key_it=psi_CIS_adress(i,t)
|
||||
@ -1157,7 +1152,7 @@
|
||||
|
||||
! !alpha-alpha-beta (=beta-beta-alpha)
|
||||
! do k=n_core_cis+1,elec_beta_num
|
||||
! e_k=diagonal_Fock_matrix_mo(k)
|
||||
! e_k=Fock_matrix_diag_mo(k)
|
||||
! delta_e_irjsk=delta_e_irjs+e_k
|
||||
|
||||
! key_kr=psi_CIS_adress(k,r)
|
||||
@ -1166,7 +1161,7 @@
|
||||
|
||||
|
||||
! do t=elec_beta_num+1,n_act_cis
|
||||
! e_t=diagonal_Fock_matrix_mo(t)
|
||||
! e_t=Fock_matrix_diag_mo(t)
|
||||
! delta_e=delta_e_irjsk-e_t
|
||||
|
||||
! key_it=psi_CIS_adress(i,t)
|
||||
@ -1298,53 +1293,3 @@
|
||||
!enddo
|
||||
|
||||
END
|
||||
|
||||
subroutine diexcitation(i,j,k,l,ispin1,ispin2,key_in,key_out,i_ok,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
! realize the double excitation i-->k (ispin1) + j-->l (ispin2) on key_in
|
||||
! returns key_out and i_ok (i_ok = 0 means not possible, i_ok = 1 means the excitation was possible)
|
||||
integer, intent(in) :: ispin1,ispin2,i,j,k,l,Nint
|
||||
integer(bit_kind), intent(in) :: key_in(Nint,2)
|
||||
integer, intent(out):: i_ok
|
||||
integer(bit_kind), intent(out):: key_out(Nint,2)
|
||||
integer :: k_hole,j_hole,k_particl,j_particl,i_nint,Nelec_alpha,Nelec_beta
|
||||
integer :: i_test_hole,i_test_particl
|
||||
key_out = key_in
|
||||
|
||||
k_hole = ishft(i-1,-bit_kind_shift)+1
|
||||
j_hole = i-ishft(k_hole-1,bit_kind_shift)-1
|
||||
i_test_hole = ibset(0,j_hole)
|
||||
if(iand(key_in(k_hole,ispin1),i_test_hole).ne.i_test_hole)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_hole,ispin1) = ibclr(key_out(k_hole,ispin1),j_hole)
|
||||
k_particl = ishft(k-1,-bit_kind_shift)+1
|
||||
j_particl = k-ishft(k_particl-1,bit_kind_shift)-1
|
||||
i_test_particl= ibset(0,j_particl)
|
||||
if(iand(key_in(k_particl,ispin1),i_test_particl).ne.0)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_particl,ispin1) = ibset(key_out(k_particl,ispin1),j_particl)
|
||||
|
||||
k_hole = ishft(j-1,-bit_kind_shift)+1
|
||||
j_hole = j-ishft(k_hole-1,bit_kind_shift)-1
|
||||
i_test_hole = ibset(0,j_hole)
|
||||
if(iand(key_in(k_hole,ispin2),i_test_hole).ne.i_test_hole)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_hole,ispin2) = ibclr(key_out(k_hole,ispin2),j_hole)
|
||||
k_particl = ishft(l-1,-bit_kind_shift)+1
|
||||
j_particl = l-ishft(k_particl-1,bit_kind_shift)-1
|
||||
i_test_particl = ibset(0,j_particl)
|
||||
if(iand(key_in(k_particl,ispin2),i_test_particl).ne.0)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_particl,ispin2) = ibset(key_out(k_particl,ispin2),j_particl)
|
||||
i_ok = 1
|
||||
end
|
||||
|
||||
|
@ -56,7 +56,7 @@
|
||||
enddo
|
||||
do k = 1, mo_tot_num
|
||||
do l = 1, mo_tot_num
|
||||
c_k = eigvectors(k,j) * eigvectors(l,j)
|
||||
c_k = eigvectors(k,i) * eigvectors(l,i)
|
||||
particle_natural_orb_CIS_properties(1,i) += c_k * mo_dipole_x(k,l)
|
||||
particle_natural_orb_CIS_properties(2,i) += c_k * mo_dipole_y(k,l)
|
||||
particle_natural_orb_CIS_properties(3,i) += c_k * mo_dipole_z(k,l)
|
||||
|
@ -10,7 +10,8 @@ BEGIN_PROVIDER [ integer , n_state_cis ]
|
||||
if (has) then
|
||||
call ezfio_get_cis_dressed_n_state_cis(n_state_cis)
|
||||
else
|
||||
n_state_cis = 5
|
||||
n_state_cis = 10
|
||||
call ezfio_set_cis_dressed_n_state_cis(n_state_cis)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
178
src/CIS_dressed/repeat_all_doubles.irp.f
Normal file
178
src/CIS_dressed/repeat_all_doubles.irp.f
Normal file
@ -0,0 +1,178 @@
|
||||
subroutine repeat_all_doubles(key_in, e_corr)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
double precision, intent(out) :: e_corr
|
||||
integer :: i,j,k,l
|
||||
integer :: s1,s2
|
||||
integer :: i_ok
|
||||
double precision :: hij,get_mo_bielec_integral,diag_H_mat_elem,delta_e
|
||||
integer(bit_kind) :: key_out(N_int,2)
|
||||
! same spin (alpha)
|
||||
if(mp2_dressing)then
|
||||
s1 = 1
|
||||
e_corr = 0.d0
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = i + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = k+1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s1,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) &
|
||||
-get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
e_corr += hij*hij/(Fock_matrix_diag_mo(i)+Fock_matrix_diag_mo(j) &
|
||||
-Fock_matrix_diag_mo(l)-Fock_matrix_diag_mo(k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s1 = 2
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = i + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = k+1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s1,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) &
|
||||
-get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
e_corr += hij*hij/(Fock_matrix_diag_mo(i)+Fock_matrix_diag_mo(j) &
|
||||
-Fock_matrix_diag_mo(l)-Fock_matrix_diag_mo(k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = n_core_cis + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = elec_alpha_num + 1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s2,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
e_corr += hij*hij/(Fock_matrix_diag_mo(i)+Fock_matrix_diag_mo(j) &
|
||||
-Fock_matrix_diag_mo(l)-Fock_matrix_diag_mo(k))
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
! same spin (alpha)
|
||||
s1 = 1
|
||||
e_corr = 0.d0
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = i + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = k+1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s1,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) &
|
||||
-get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
call diexcitation(i,j,k,l,s1,s1,ref_bitmask,key_out,i_ok,N_int)
|
||||
delta_e = HF_energy - diag_H_mat_elem(key_out,N_int)
|
||||
e_corr += hij*hij/delta_e
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s1 = 2
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = i + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = k+1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s1,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) &
|
||||
-get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
|
||||
call diexcitation(i,j,k,l,s1,s1,ref_bitmask,key_out,i_ok,N_int)
|
||||
delta_e = HF_energy - diag_H_mat_elem(key_out,N_int)
|
||||
e_corr += hij*hij/delta_e
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
do i = n_core_cis + 1, elec_alpha_num
|
||||
do j = n_core_cis + 1, elec_alpha_num
|
||||
do k = elec_alpha_num + 1, n_act_cis
|
||||
do l = elec_alpha_num + 1, n_act_cis
|
||||
! a^+ k(s1) a^+ l(s1) a_j(s1) a_i(s1) |key_in>
|
||||
call diexcitation(i,j,k,l,s1,s2,key_in,key_out,i_ok,N_int)
|
||||
if(i_ok.ne.0)then
|
||||
hij = get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
|
||||
call diexcitation(i,j,k,l,s1,s2,ref_bitmask,key_out,i_ok,N_int)
|
||||
delta_e = HF_energy - diag_H_mat_elem(key_out,N_int)
|
||||
e_corr += hij*hij/delta_e
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine diexcitation(i,j,k,l,ispin1,ispin2,key_in,key_out,i_ok,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
! realize the double excitation i-->k (ispin1) + j-->l (ispin2) on key_in
|
||||
! returns key_out and i_ok (i_ok = 0 means not possible, i_ok = 1 means the excitation was possible)
|
||||
integer, intent(in) :: ispin1,ispin2,i,j,k,l,Nint
|
||||
integer(bit_kind), intent(in) :: key_in(Nint,2)
|
||||
integer, intent(out):: i_ok
|
||||
integer(bit_kind), intent(out):: key_out(Nint,2)
|
||||
integer :: k_hole,j_hole,k_particl,j_particl,i_nint,Nelec_alpha,Nelec_beta
|
||||
integer(bit_kind) :: i_test_hole,i_test_particl
|
||||
character*(512) :: output(2)
|
||||
key_out = key_in
|
||||
|
||||
k_hole = ishft(i-1,-bit_kind_shift)+1
|
||||
j_hole = i-ishft(k_hole-1,bit_kind_shift)-1
|
||||
i_test_hole = ibset(0_bit_kind,j_hole)
|
||||
if(iand(key_in(k_hole,ispin1),i_test_hole).ne.i_test_hole)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_hole,ispin1) = ibclr(key_out(k_hole,ispin1),j_hole)
|
||||
k_particl = ishft(k-1,-bit_kind_shift)+1
|
||||
j_particl = k-ishft(k_particl-1,bit_kind_shift)-1
|
||||
i_test_particl= ibset(0_bit_kind,j_particl)
|
||||
if(iand(key_in(k_particl,ispin1),i_test_particl).ne.0_bit_kind)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_particl,ispin1) = ibset(key_out(k_particl,ispin1),j_particl)
|
||||
|
||||
k_hole = ishft(j-1,-bit_kind_shift)+1
|
||||
j_hole = j-ishft(k_hole-1,bit_kind_shift)-1
|
||||
i_test_hole = ibset(0_bit_kind,j_hole)
|
||||
if(iand(key_in(k_hole,ispin2),i_test_hole).ne.i_test_hole)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_hole,ispin2) = ibclr(key_out(k_hole,ispin2),j_hole)
|
||||
k_particl = ishft(l-1,-bit_kind_shift)+1
|
||||
j_particl = l-ishft(k_particl-1,bit_kind_shift)-1
|
||||
i_test_particl = ibset(0_bit_kind,j_particl)
|
||||
if(iand(key_in(k_particl,ispin2),i_test_particl).ne.0_bit_kind)then
|
||||
i_ok = 0
|
||||
return
|
||||
endif
|
||||
key_out(k_particl,ispin2) = ibset(key_out(k_particl,ispin2),j_particl)
|
||||
i_ok = 1
|
||||
end
|
||||
|
51
src/Full_CI/parameters.irp.f
Normal file
51
src/Full_CI/parameters.irp.f
Normal file
@ -0,0 +1,51 @@
|
||||
BEGIN_PROVIDER [ integer, N_det_max_fci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Max number od determinants in the wave function
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_full_ci_n_det_max_fci(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_full_ci_n_det_max_fci(n_det_max_fci)
|
||||
else
|
||||
n_det_max_fci = 10000
|
||||
endif
|
||||
call write_int(output_full_ci,n_det_max_fci,'Max number of determinants ')
|
||||
ASSERT (n_det_max_fci > 0)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ logical , do_pt2_end ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! if True then compute the PT2 when the selection process is finished
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_full_ci_do_pt2_end(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_full_ci_do_pt2_end(do_pt2_end)
|
||||
else
|
||||
do_pt2_end = .True.
|
||||
endif
|
||||
!call write_i(output_full_ci,do_pt2_end,' computes the PT2 at the end of the selection ')
|
||||
ASSERT (do_pt2_end > 0)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision , pt2_max ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! The selection process stops when the largest PT2 (for all the states) is lower than pt2_max
|
||||
! in absolute value
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_full_ci_pt2_max(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_full_ci_pt2_max(pt2_max)
|
||||
else
|
||||
pt2_max = 0.1d0
|
||||
endif
|
||||
END_PROVIDER
|
@ -115,6 +115,7 @@ END_PROVIDER
|
||||
if (do_direct_integrals) then
|
||||
PROVIDE all_utils ao_overlap_abs ao_integrals_threshold
|
||||
PROVIDE HF_density_matrix_ao_alpha HF_density_matrix_ao_beta
|
||||
PROVIDE ao_bi_elec_integral_alpha
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral) &
|
||||
!$OMP SHARED(ao_num,ao_bi_elec_integral_alpha,ao_mono_elec_integral,&
|
||||
@ -147,6 +148,8 @@ END_PROVIDER
|
||||
!$OMP END PARALLEL
|
||||
|
||||
else
|
||||
PROVIDE ao_bielec_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ao_ints_val,ao_ints_idx,kmax) &
|
||||
!$OMP SHARED(ao_num,ao_bi_elec_integral_alpha,ao_mono_elec_integral,&
|
||||
|
Loading…
Reference in New Issue
Block a user