10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-12 17:13:54 +01:00

add Makefile.config.example

This commit is contained in:
Manu 2014-05-22 11:17:36 +02:00
parent 9e16c5526a
commit 8860deb8b8
8 changed files with 733 additions and 44 deletions

View File

@ -50,28 +50,45 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`copy_h_apply_buffer_to_wf <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L93>`_
`copy_h_apply_buffer_to_wf <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/subroutine copy_H_apply_buffer_to_wf/;">`_
Undocumented
`h_apply_buffer_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L82>`_
Buffer of determinants/coefficients for H_apply. Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/&BEGIN_PROVIDER [ double precision, H_apply_buffer_coef,(H_apply_buffer_size,N_states) ]/;">`_
Buffer of determinants/coefficients/perturbative energy for H_apply.
Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L81>`_
Buffer of determinants/coefficients for H_apply. Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), H_apply_buffer_det,(N_int,2,H_apply_buffer_size) ]/;">`_
Buffer of determinants/coefficients/perturbative energy for H_apply.
Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L83>`_
Buffer of determinants/coefficients for H_apply. Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_e2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/&BEGIN_PROVIDER [ double precision, H_apply_buffer_e2,(H_apply_buffer_size,N_states) ]/;">`_
Buffer of determinants/coefficients/perturbative energy for H_apply.
Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L22>`_
`h_apply_buffer_n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/&BEGIN_PROVIDER [ integer, H_apply_buffer_N_det ]/;">`_
Buffer of determinants/coefficients/perturbative energy for H_apply.
Uninitialized. Filled by H_apply subroutines.
`h_apply_buffer_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/BEGIN_PROVIDER [ integer*8, H_apply_buffer_size ]/;">`_
Size of the H_apply buffer.
`h_apply_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L3>`_
`h_apply_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/BEGIN_PROVIDER [ double precision, H_apply_threshold ]/;">`_
Theshold on | <Di|H|Dj> |
`resize_h_apply_buffer_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L31>`_
`resize_h_apply_buffer_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/H_apply.irp.f#L/subroutine resize_H_apply_buffer_det(new_size)/;">`_
Undocumented
`davidson_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L18>`_
`connected_to_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/connected_to_ref.irp.f#L/integer function connected_to_ref(key,keys,Nint,N_past_in,Ndet,thresh)/;">`_
Undocumented
`det_is_not_or_may_be_in_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/connected_to_ref.irp.f#L/logical function det_is_not_or_may_be_in_ref(key,Nint)/;">`_
If true, det is not in ref
If false, det may be in ref
`key_pattern_not_in_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/connected_to_ref.irp.f#L/BEGIN_PROVIDER [ logical, key_pattern_not_in_ref, (-128:127,N_int,2) ]/;">`_
Min and max values of the integers of the keys of the reference
`davidson_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L/subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint)/;">`_
Davidson diagonalization.
.br
dets_in : bitmasks corresponding to determinants
@ -87,102 +104,164 @@ Documentation
.br
Initial guess vectors are not necessarily orthonormal
`davidson_iter_max <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L1>`_
`davidson_iter_max <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L/BEGIN_PROVIDER [ integer, davidson_iter_max]/;">`_
Max number of Davidson iterations
`davidson_sze_max <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L9>`_
`davidson_sze_max <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/davidson.irp.f#L/BEGIN_PROVIDER [ integer, davidson_sze_max]/;">`_
Max number of Davidson sizes
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L11>`_
`n_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer, N_det ]/;">`_
Number of determinants in the wave function
`n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L55>`_
`n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer, N_det_generators ]/;">`_
Number of generator determinants in the wave function
`n_states <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L3>`_
`n_states <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer, N_states ]/;">`_
Number of states to consider
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L28>`_
`psi_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/&BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]/;">`_
The wave function. Initialized with Hartree-Fock
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L27>`_
`psi_det <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), psi_det, (N_int,2,psi_det_size) ]/;">`_
The wave function. Initialized with Hartree-Fock
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L19>`_
`psi_det_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer, psi_det_size ]/;">`_
Size of the psi_det/psi_coef arrays
`psi_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L63>`_
`psi_generators <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), psi_generators, (N_int,2,psi_det_size) ]/;">`_
Determinants on which H is applied
`double_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L40>`_
`psi_ref <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), psi_ref, (N_int,2,psi_ref_size) ]/;">`_
Determinants on which H is applied
`psi_ref_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/&BEGIN_PROVIDER [ double precision, psi_ref_coef, (psi_ref_size,N_states) ]/;">`_
Determinants on which H is applied
`psi_ref_size <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants.irp.f#L/BEGIN_PROVIDER [ integer, psi_ref_size]/;">`_
Number of generator determinants in the wave function
`double_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), double_exc_bitmask, (N_int, 4, N_double_exc_bitmasks) ]/;">`_
double_exc_bitmask(:,1,i) is the bitmask for holes of excitation 1
double_exc_bitmask(:,2,i) is the bitmask for particles of excitation 1
double_exc_bitmask(:,3,i) is the bitmask for holes of excitation 2
double_exc_bitmask(:,4,i) is the bitmask for particles of excitation 2
for a given couple of hole/particle excitations i.
`n_double_exc_bitmasks <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L31>`_
`n_double_exc_bitmasks <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L/BEGIN_PROVIDER [ integer, N_double_exc_bitmasks ]/;">`_
Number of double excitation bitmasks
`n_single_exc_bitmasks <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L8>`_
`n_single_exc_bitmasks <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L/BEGIN_PROVIDER [ integer, N_single_exc_bitmasks ]/;">`_
Number of single excitation bitmasks
`single_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L17>`_
`single_exc_bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/determinants_bitmasks.irp.f#L/BEGIN_PROVIDER [ integer(bit_kind), single_exc_bitmask, (N_int, 2, N_single_exc_bitmasks) ]/;">`_
single_exc_bitmask(:,1,i) is the bitmask for holes
single_exc_bitmask(:,2,i) is the bitmask for particles
for a given couple of hole/particle excitations i.
`get_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/s2.irp.f#L1>`_
`filter_connected <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/filter_connected.irp.f#L/subroutine filter_connected(key1,key2,Nint,sze,idx)/;">`_
Filters out the determinants that are not connected by H
.br
returns the array idx which contains the index of the
.br
determinants in the array key1 that interact
.br
via the H operator with key2.
.br
idx(0) is the number of determinants that interact with key1
`filter_connected_i_h_psi0 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/filter_connected.irp.f#L/subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx)/;">`_
returns the array idx which contains the index of the
.br
determinants in the array key1 that interact
.br
via the H operator with key2.
.br
idx(0) is the number of determinants that interact with key1
`filter_connected_i_h_psi0_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/filter_connected.irp.f#L/subroutine filter_connected_i_H_psi0_SC2(key1,key2,Nint,sze,idx,idx_repeat)/;">`_
standard filter_connected_i_H_psi but returns in addition
.br
the array of the index of the non connected determinants to key1
.br
in order to know what double excitation can be repeated on key1
.br
idx_repeat(0) is the number of determinants that can be used
.br
to repeat the excitations
`get_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/s2.irp.f#L/subroutine get_s2(key_i,key_j,phase,Nint)/;">`_
Returns <S^2>
`a_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L666>`_
`get_s2_u0 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/s2.irp.f#L/subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2)/;">`_
Undocumented
`s_z <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/s2.irp.f#L/BEGIN_PROVIDER [ double precision, S_z ]/;">`_
Undocumented
`s_z2_sz <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/s2.irp.f#L/&BEGIN_PROVIDER [ double precision, S_z2_Sz ]/;">`_
Undocumented
`a_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb)/;">`_
Needed for diag_H_mat_elem
`ac_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L711>`_
`ac_operator <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb)/;">`_
Needed for diag_H_mat_elem
`decode_exc <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L76>`_
`decode_exc <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)/;">`_
Decodes the exc arrays returned by get_excitation.
h1,h2 : Holes
p1,p2 : Particles
s1,s2 : Spins (1:alpha, 2:beta)
degree : Degree of excitation
`diag_h_mat_elem <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L604>`_
`diag_h_mat_elem <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/double precision function diag_H_mat_elem(det_in,Nint)/;">`_
Computes <i|H|i>
`get_double_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L141>`_
`get_double_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_double_excitation(det1,det2,exc,phase,Nint)/;">`_
Returns the two excitation operators between two doubly excited determinants and the phase
`get_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L30>`_
`get_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_excitation(det1,det2,exc,degree,phase,Nint)/;">`_
Returns the excitation operators between two determinants and the phase
`get_excitation_degree <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L1>`_
`get_excitation_degree <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_excitation_degree(key1,key2,degree,Nint)/;">`_
Returns the excitation degree between two determinants
`get_excitation_degree_vector <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L520>`_
`get_excitation_degree_vector <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)/;">`_
Applies get_excitation_degree to an array of determinants
`get_mono_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L274>`_
`get_mono_excitation <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_mono_excitation(det1,det2,exc,phase,Nint)/;">`_
Returns the excitation operator between two singly excited determinants and the phase
`get_occ_from_key <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L759>`_
`get_occ_from_key <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine get_occ_from_key(key,occ,Nint)/;">`_
Returns a list of occupation numbers from a bitstring
`h_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L775>`_
`h_u_0 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint)/;">`_
Computes v_0 = H|u_0>
.br
n : number of determinants
.br
H_jj : array of <j|H|j>
`i_h_j <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L355>`_
`i_h_j <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine i_H_j(key_i,key_j,Nint,hij)/;">`_
Returns <i|H|j> where i and j are determinants
`i_h_psi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L491>`_
Undocumented
`i_h_psi <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)/;">`_
<key|H|psi> for the various Nstate
`h_matrix_all_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/utils.irp.f#L1>`_
`i_h_psi_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/slater_rules.irp.f#L/subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat)/;">`_
<key|H|psi> for the various Nstate
.br
returns in addition
.br
the array of the index of the non connected determinants to key1
.br
in order to know what double excitation can be repeated on key1
.br
idx_repeat(0) is the number of determinants that can be used
.br
to repeat the excitations
`h_matrix_all_dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets/utils.irp.f#L/BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(n_det,n_det) ]/;">`_
H matrix on the basis of the slater deter;inants defined by psi_det

View File

@ -75,3 +75,31 @@ BEGIN_PROVIDER [ integer(bit_kind), psi_generators, (N_int,2,psi_det_size) ]
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_ref_size]
implicit none
BEGIN_DOC
! Number of generator determinants in the wave function
END_DOC
psi_det_size = N_det
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_ref, (N_int,2,psi_ref_size) ]
&BEGIN_PROVIDER [ double precision, psi_ref_coef, (psi_ref_size,N_states) ]
implicit none
BEGIN_DOC
! Determinants on which H is applied
END_DOC
integer :: i,k
do k = 1, psi_ref_size
do i=1,N_int
psi_ref(i,1,k) = psi_det(i,1,k)
psi_ref(i,2,k) = psi_det(i,1,k)
enddo
do i = 1, N_states
psi_ref_coef(k,i) = psi_coef(k,i)
enddo
enddo
END_PROVIDER

View File

@ -3,7 +3,16 @@ subroutine filter_connected(key1,key2,Nint,sze,idx)
use bitmasks
implicit none
BEGIN_DOC
! Filters out the determinants that are not connected by H
! Filters out the determinants that are not connected by H
!
! returns the array idx which contains the index of the
!
! determinants in the array key1 that interact
!
! via the H operator with key2.
!
! idx(0) is the number of determinants that interact with key1
END_DOC
END_DOC
integer, intent(in) :: Nint, sze
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
@ -85,6 +94,15 @@ end
subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx)
use bitmasks
BEGIN_DOC
! returns the array idx which contains the index of the
!
! determinants in the array key1 that interact
!
! via the H operator with key2.
!
! idx(0) is the number of determinants that interact with key1
END_DOC
implicit none
integer, intent(in) :: Nint, sze
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
@ -173,3 +191,215 @@ subroutine filter_connected_i_H_psi0(key1,key2,Nint,sze,idx)
idx(0) = l-1
end
subroutine filter_connected_i_H_psi0_SC2(key1,key2,Nint,sze,idx,idx_repeat)
use bitmasks
BEGIN_DOC
! standard filter_connected_i_H_psi but returns in addition
!
! the array of the index of the non connected determinants to key1
!
! in order to know what double excitation can be repeated on key1
!
! idx_repeat(0) is the number of determinants that can be used
!
! to repeat the excitations
END_DOC
implicit none
integer, intent(in) :: Nint, sze
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: idx(0:sze)
integer, intent(out) :: idx_repeat(0:sze)
integer :: i,l,l_repeat
integer :: degree_x2
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
ASSERT (sze > 0)
l=1
l_repeat=1
call get_excitation_degree(ref_bitmask,key2,degree,Nint)
integer :: degree
if(degree == 2)then
if (Nint==1) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
elseif(degree>6)then
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else if (Nint==2) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,2,i), key2(2,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
elseif(degree>6)then
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else if (Nint==3) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2))) + &
popcnt(xor( key1(3,1,i), key2(3,1))) + &
popcnt(xor( key1(3,2,i), key2(3,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
elseif(degree>6)then
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = 0
!DEC$ LOOP COUNT MIN(4)
do l=1,Nint
degree_x2 = degree_x2+ popcnt(xor( key1(l,1,i), key2(l,1))) +&
popcnt(xor( key1(l,2,i), key2(l,2)))
if (degree_x2 > 4) then
exit
endif
enddo
if (degree_x2 <= 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
elseif(degree>6)then
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
endif
elseif(degree==1)then
if (Nint==1) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
else
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else if (Nint==2) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,2,i), key2(2,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
else
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else if (Nint==3) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2))) + &
popcnt(xor( key1(3,1,i), key2(3,1))) + &
popcnt(xor( key1(3,2,i), key2(3,2)))
if (degree_x2 < 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
else
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
else
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = 0
!DEC$ LOOP COUNT MIN(4)
do l=1,Nint
degree_x2 = degree_x2+ popcnt(xor( key1(l,1,i), key2(l,1))) +&
popcnt(xor( key1(l,2,i), key2(l,2)))
if (degree_x2 > 4) then
exit
endif
enddo
if (degree_x2 <= 5) then
if(degree_x2 .ne. 0)then
idx(l) = i
l = l+1
endif
else
idx_repeat(l_repeat) = i
l_repeat = l_repeat + 1
endif
enddo
endif
else
print*,'more than a double excitation, can not apply the '
print*,'SC2 dressing of the diagonal element .....'
print*,'stop !!'
print*,'degree = ',degree
stop
endif
idx(0) = l-1
idx_repeat(0) = l_repeat-1
end

View File

@ -502,6 +502,9 @@ subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)
integer :: exc(0:2,2,2)
double precision :: hij
integer :: idx(0:Ndet)
BEGIN_DOC
! <key|H|psi> for the various Nstate
END_DOC
ASSERT (Nint > 0)
ASSERT (N_int == Nint)
@ -517,7 +520,55 @@ subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)
do j = 1, Nstate
i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij
enddo
print *, 'x', coef(i,1), hij, i_H_psi_array(1)
! print *, 'x', coef(i,1), hij, i_H_psi_array(1)
enddo
end
subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat)
use bitmasks
BEGIN_DOC
! <key|H|psi> for the various Nstate
!
! returns in addition
!
! the array of the index of the non connected determinants to key1
!
! in order to know what double excitation can be repeated on key1
!
! idx_repeat(0) is the number of determinants that can be used
!
! to repeat the excitations
END_DOC
implicit none
integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate
integer(bit_kind), intent(in) :: keys(Nint,2,Ndet)
integer(bit_kind), intent(in) :: key(Nint,2)
double precision, intent(in) :: coef(Ndet_max,Nstate)
double precision, intent(out) :: i_H_psi_array(Nstate)
integer , intent(out) :: idx_repeat(0:Ndet)
integer :: i, ii,j
double precision :: phase
integer :: exc(0:2,2,2)
double precision :: hij
integer :: idx(0:Ndet)
ASSERT (Nint > 0)
ASSERT (N_int == Nint)
ASSERT (Nstate > 0)
ASSERT (Ndet > 0)
ASSERT (Ndet_max >= Ndet)
i_H_psi_array = 0.d0
call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat)
do ii=1,idx(0)
i = idx(ii)
!DEC$ FORCEINLINE
call i_H_j(keys(1,1,i),key,Nint,hij)
do j = 1, Nstate
i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij
enddo
! print *, 'x', coef(i,1), hij, i_H_psi_array(1)
enddo
end

View File

@ -0,0 +1,29 @@
OPENMP =1
PROFILE =0
DEBUG = 0
IRPF90_FLAGS+= --align=32
FC = ifort -g
FCFLAGS=
FCFLAGS+= -xHost
#FCFLAGS+= -xAVX
FCFLAGS+= -O2
FCFLAGS+= -ip
FCFLAGS+= -opt-prefetch
FCFLAGS+= -ftz
MKL=-mkl=parallel
ifeq ($(PROFILE),1)
FC += -p -g
CXX += -pg
endif
ifeq ($(OPENMP),1)
FC += -openmp
CXX += -fopenmp
endif
ifeq ($(DEBUG),1)
FC += -C -traceback -fpe0
#FCFLAGS =-O0
endif

View File

@ -0,0 +1,41 @@
subroutine pt2_moller_plesset(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,n_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag
double precision :: i_H_psi_array(N_st)
BEGIN_DOC
! compute the standard Moller-Plesset perturbative first order coefficient and second order energetic contribution
!
! for the various n_st states.
!
! c_pert(i) = <psi(i)|H|det_pert>/(difference of orbital energies)
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/(difference of orbital energies)
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase,delta_e
integer :: h1,h2,p1,p2,s1,s2
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call get_excitation(det_pert,ref_bitmask,exc,degree,phase,Nint)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) + Fock_matrix_diag_mo(h2) - &
Fock_matrix_diag_mo(p1) + Fock_matrix_diag_mo(p2)
delta_e = 1.d0/delta_e
call i_H_psi(det_pert,psi_ref,psi_ref_coef,Nint,ndet,psi_ref_size,n_st,i_H_psi_array)
H_pert_diag = diag_H_mat_elem(det_pert,Nint)
do i =1,n_st
c_pert(i) = i_H_psi_array(i) *delta_e
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo
end

View File

@ -82,7 +82,7 @@ Documentation
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L1>`_
`pt2_epstein_nesbet <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various n_st states.
@ -92,7 +92,7 @@ Documentation
e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
.br
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L33>`_
`pt2_epstein_nesbet_2x2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet_2x2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
.br
for the various n_st states.
@ -102,6 +102,76 @@ Documentation
c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
.br
`pt2_epstein_nesbet_2x2_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet_2x2_SC2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
.br
for the various n_st states.
.br
but with the correction in the denominator
.br
comming from the interaction of that determinant with all the others determinants
.br
that can be repeated by repeating all the double excitations
.br
: you repeat all the correlation energy already taken into account in reference_energy(1)
.br
that could be repeated to this determinant.
.br
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
.br
e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
.br
c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
.br
`pt2_epstein_nesbet_sc2 <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet_SC2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various n_st states,
.br
but with the correction in the denominator
.br
comming from the interaction of that determinant with all the others determinants
.br
that can be repeated by repeating all the double excitations
.br
: you repeat all the correlation energy already taken into account in reference_energy(1)
.br
that could be repeated to this determinant.
.br
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
.br
c_pert(i) = <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
.br
e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - (<det_pert|H|det_pert> ) )
.br
`pt2_epstein_nesbet_sc2_projected <http://github.com/LCPQ/quantum_package/tree/master/src/Perturbation/epstein_nesbet.irp.f#L/subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)/;">`_
compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
.br
for the various n_st states,
.br
but with the correction in the denominator
.br
comming from the interaction of that determinant with all the others determinants
.br
that can be repeated by repeating all the double excitations
.br
: you repeat all the correlation energy already taken into account in reference_energy(1)
.br
that could be repeated to this determinant.
.br
BUT on the contrary with ""pt2_epstein_nesbet_SC2"", you compute the energy by projection
.br
<det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
.br
c_pert(1) = 1/c_HF <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
.br
e_2_pert(1) = <HF|H|det_pert> c_pert(1)
.br
NOTE :::: if you satisfy Brillouin Theorem, the singles don't contribute !!
.br
Needed Modules

View File

@ -66,3 +66,164 @@ subroutine pt2_epstein_nesbet_2x2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet
print *, e_2_pert, delta_e , i_H_psi_array
end
subroutine pt2_epstein_nesbet_SC2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,n_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(ndet)
BEGIN_DOC
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various n_st states,
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in reference_energy(1)
!
! that could be repeated to this determinant.
!
! <det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
!
! c_pert(i) = <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - (<det_pert|H|det_pert> ) )
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem,accu_e_corr,hij
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_ref,psi_ref_coef,Nint,ndet,psi_ref_size,n_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
do i = 1, idx_repeat(0)
call i_H_j(psi_ref(1,1,idx_repeat(i)),det_pert,Nint,hij)
accu_e_corr = accu_e_corr + hij * psi_ref_coef(idx_repeat(i))
enddo
accu_e_corr = accu_e_corr / psi_ref_coef(1)
H_pert_diag = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
do i =1,n_st
c_pert(i) = i_H_psi_array(i) / (reference_energy(i) - H_pert_diag)
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo
end
subroutine pt2_epstein_nesbet_2x2_SC2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,n_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(ndet)
BEGIN_DOC
! compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
!
! for the various n_st states.
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in reference_energy(1)
!
! that could be repeated to this determinant.
!
! <det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
!
! e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
!
! c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem,accu_e_corr,hij,delta_e
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_ref,psi_ref_coef,Nint,ndet,psi_ref_size,n_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
do i = 1, idx_repeat(0)
call i_H_j(psi_ref(1,1,idx_repeat(i)),det_pert,Nint,hij)
accu_e_corr = accu_e_corr + hij * psi_ref_coef(idx_repeat(i))
enddo
accu_e_corr = accu_e_corr / psi_ref_coef(1)
H_pert_diag = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
do i =1,n_st
delta_e = H_pert_diag - reference_energy(i)
e_2_pert(i) = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
c_pert(i) = e_2_pert(i)/i_H_psi_array(i)
enddo
end
subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,n_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(ndet)
BEGIN_DOC
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various n_st states,
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in reference_energy(1)
!
! that could be repeated to this determinant.
!
! BUT on the contrary with ""pt2_epstein_nesbet_SC2"", you compute the energy by projection
!
! <det_pert|H|det_pert> ---> <det_pert|H|det_pert> + delta_e_corr
!
! c_pert(1) = 1/c_HF <psi(i)|H|det_pert>/( E(i) - (<det_pert|H|det_pert> ) )
!
! e_2_pert(1) = <HF|H|det_pert> c_pert(1)
!
! NOTE :::: if you satisfy Brillouin Theorem, the singles don't contribute !!
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem,accu_e_corr,hij,h0j
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_ref,psi_ref_coef,Nint,ndet,psi_ref_size,n_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
call i_H_j(ref_bitmask,det_pert,Nint,h0j)
do i = 1, idx_repeat(0)
call i_H_j(psi_ref(1,1,idx_repeat(i)),det_pert,Nint,hij)
accu_e_corr = accu_e_corr + hij * psi_ref_coef(idx_repeat(i))
enddo
accu_e_corr = accu_e_corr / psi_ref_coef(1)
H_pert_diag = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
c_pert(1) = 1.d0/psi_ref_coef(1) * i_H_psi_array(1) / (reference_energy(i) - H_pert_diag)
e_2_pert(1) = c_pert(i) * h0j
do i =2,n_st
c_pert(i) = i_H_psi_array(i) / (reference_energy(i) - H_pert_diag)
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo
end