10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-19 04:22:36 +01:00

minor changes

This commit is contained in:
Manu 2014-10-06 15:49:16 +02:00
parent 0a8ebcfbd3
commit 8718f5fd35
11 changed files with 194 additions and 22 deletions

View File

@ -4,7 +4,7 @@ from generate_h_apply import *
from perturbation import perturbations from perturbation import perturbations
s = H_apply("PT2",SingleRef=True) s = H_apply("PT2",SingleRef=True)
s.set_perturbation("epstein_nesbet_sc2_projected") s.set_perturbation("epstein_nesbet_sc2_no_projected")
print s print s
s = H_apply("PT2_en_sc2",SingleRef=True) s = H_apply("PT2_en_sc2",SingleRef=True)

View File

@ -12,8 +12,9 @@ program cisd_sc2_selected
pt2 = 1.d0 pt2 = 1.d0
perturbation = "epstein_nesbet_sc2_projected" perturbation = "epstein_nesbet_sc2_projected"
E_old(1) = HF_energy E_old(1) = HF_energy
davidson_threshold = 1.d-8 davidson_threshold = 1.d-10
if (N_det > n_det_max_cisd_sc2) then if (N_det > n_det_max_cisd_sc2) then
call diagonalize_CI_SC2 call diagonalize_CI_SC2
call save_wavefunction call save_wavefunction
@ -31,6 +32,8 @@ program cisd_sc2_selected
print *, '-----' print *, '-----'
endif endif
integer :: i_count
i_count = 0
do while (N_det < n_det_max_cisd_sc2.and.maxval(abs(pt2(1:N_st))) > pt2_max) do while (N_det < n_det_max_cisd_sc2.and.maxval(abs(pt2(1:N_st))) > pt2_max)
print*,'----' print*,'----'
print*,'' print*,''
@ -49,6 +52,13 @@ program cisd_sc2_selected
E_old(i) = CI_SC2_energy(i) E_old(i) = CI_SC2_energy(i)
enddo enddo
! print *, 'E corr = ', (E_old(1)) - HF_energy ! print *, 'E corr = ', (E_old(1)) - HF_energy
if(dabs(E_old(i) - CI_SC2_energy(i) ).le.1.d-12)then
i_count += 1
selection_criterion_factor = selection_criterion_factor * 0.5d0
if(i_count > 5)then
exit
endif
endif
if (abort_all) then if (abort_all) then
exit exit
endif endif
@ -81,7 +91,7 @@ program cisd_sc2_selected
print *, 'PT2(SC2) = ', pt2(i) print *, 'PT2(SC2) = ', pt2(i)
print *, 'E(SC2) = ', CI_SC2_energy(i) print *, 'E(SC2) = ', CI_SC2_energy(i)
print *, 'E_before(SC2)+PT2(SC2) = ', CI_SC2_energy(i)+pt2(i) print *, 'E_before(SC2)+PT2(SC2) = ', CI_SC2_energy(i)+pt2(i)
print *, 'E_before(SC2)+PT2(SC2)_new = ', CI_SC2_energy(i)+pt2(i)*(1.d0+norm_pert) print *, 'E_before(SC2)+PT2(SC2)_new = ', CI_SC2_energy(i)+pt2(i)* (1.d0 + norm_pert) - H_pert_diag(i)
print*,'greater coeficient of the state : ',dabs(psi_coef(imax,i)) print*,'greater coeficient of the state : ',dabs(psi_coef(imax,i))
call get_excitation_degree(ref_bitmask,psi_det(1,1,imax),degree,N_int) call get_excitation_degree(ref_bitmask,psi_det(1,1,imax),degree,N_int)

View File

@ -13,4 +13,5 @@ determinants
det_occ integer (electrons_elec_alpha_num,determinants_det_num,2) det_occ integer (electrons_elec_alpha_num,determinants_det_num,2)
det_coef double precision (determinants_det_num) det_coef double precision (determinants_det_num)
read_wf logical read_wf logical
expected_s2 double precision

View File

@ -59,12 +59,21 @@ END_PROVIDER
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0
do j=1,min(N_states,N_det) integer :: i_state
double precision :: s2
j=0
i_state = 0
! do while(i_state.lt.N_states)
j+=1
! call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
! if(dabs(s2-expected_s2).le.0.1d0)then
i_state += 1
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j) CI_eigenvectors(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
enddo enddo
CI_electronic_energy(i_state) = eigenvalues(j)
! endif
! enddo
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif

View File

@ -20,7 +20,7 @@ END_PROVIDER
BEGIN_DOC BEGIN_DOC
! convergence of the correlation energy of SC2 iterations ! convergence of the correlation energy of SC2 iterations
END_DOC END_DOC
threshold_convergence_SC2 = 1.d-8 threshold_convergence_SC2 = 1.d-10
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states) ] BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states) ]
@ -33,8 +33,8 @@ END_PROVIDER
do j=1,N_states do j=1,N_states
do i=1,N_det do i=1,N_det
! CI_SC2_eigenvectors(i,j) = psi_coef(i,j) CI_SC2_eigenvectors(i,j) = psi_coef(i,j)
CI_SC2_eigenvectors(i,j) = CI_eigenvectors(i,j) ! CI_SC2_eigenvectors(i,j) = CI_eigenvectors(i,j)
enddo enddo
CI_SC2_electronic_energy(j) = CI_electronic_energy(j) CI_SC2_electronic_energy(j) = CI_electronic_energy(j)
enddo enddo

View File

@ -20,6 +20,7 @@ T.set_doc ( "If true, read the wave function from the EZFIO file" )
T.set_ezfio_name( "read_wf" ) T.set_ezfio_name( "read_wf" )
T.set_output ( "output_dets" ) T.set_output ( "output_dets" )
print T print T
END_SHELL END_SHELL

View File

@ -42,6 +42,21 @@ BEGIN_PROVIDER [ double precision, S_z ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, expected_s2]
implicit none
PROVIDE ezfio_filename
logical :: has_expected_s2
call ezfio_has_determinants_expected_s2(has_expected_s2)
if (has_expected_s2) then
call ezfio_get_determinants_expected_s2(expected_s2)
else
expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num))
call ezfio_set_determinants_expected_s2(expected_s2)
endif
END_PROVIDER
subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2) subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2)
implicit none implicit none

View File

@ -72,8 +72,8 @@ subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag
enddo enddo
if(degree==4)then if(degree==4)then
! <psi|delta_H|psi> ! <psi|delta_H|psi>
H_pert_diag(1) = e_2_pert(1) e_2_pert_fonda = e_2_pert(1)
e_2_pert_fonda = H_pert_diag(1) H_pert_diag(1) = e_2_pert(1) * c_pert(1) * c_pert(1)
do i = 1, N_st do i = 1, N_st
do j = 1, idx_repeat(0) do j = 1, idx_repeat(0)
e_2_pert(i) += e_2_pert_fonda * psi_selectors_coef(idx_repeat(j),i) * psi_selectors_coef(idx_repeat(j),i) e_2_pert(i) += e_2_pert_fonda * psi_selectors_coef(idx_repeat(j),i) * psi_selectors_coef(idx_repeat(j),i)
@ -83,6 +83,76 @@ subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag
end end
subroutine pt2_epstein_nesbet_SC2_no_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,N_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(N_st),e_2_pert(N_st),H_pert_diag(N_st)
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(0:ndet)
BEGIN_DOC
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states,
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
!
! that could be repeated to this determinant.
!
! In addition, for the perturbative energetic contribution you have the standard second order
!
! e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
!
! and also the purely projected contribution
!
! H_pert_diag = <HF|H|det_pert> c_pert
END_DOC
integer :: i,j,degree,l
double precision :: diag_H_mat_elem,accu_e_corr,hij,h0j,h,delta_E
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
!$IVDEP
do i = 1, idx_repeat(0)
accu_e_corr = accu_e_corr + E_corr_per_selectors(idx_repeat(i))
enddo
h = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
delta_E = 1.d0/(CI_SC2_electronic_energy(1) - h)
c_pert(1) = i_H_psi_array(1) /(CI_SC2_electronic_energy(1) - h)
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
do i =2,N_st
H_pert_diag(i) = h
if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (-dabs(CI_SC2_electronic_energy(i) - h))
e_2_pert(i) = (c_pert(i) * i_H_psi_array(i))
else
c_pert(i) = i_H_psi_array(i)
e_2_pert(i) = -dabs(i_H_psi_array(i))
endif
enddo
end
double precision function repeat_all_e_corr(key_in) double precision function repeat_all_e_corr(key_in)
implicit none implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2) integer(bit_kind), intent(in) :: key_in(N_int,2)

View File

@ -307,6 +307,72 @@ subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
deallocate(A,eigenvalues) deallocate(A,eigenvalues)
end end
subroutine lapack_diag_s2(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
double precision, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
double precision, intent(in) :: H(nmax,n)
double precision,allocatable :: eigenvalues(:)
double precision,allocatable :: work(:)
double precision,allocatable :: A(:,:)
integer :: lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 6*n+ 1
allocate (work(lwork))
lwork = -1
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
deallocate (work)
allocate (work(lwork))
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
deallocate(work)
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'DSYEV Failed'
stop 1
end if
eigvectors = 0.d0
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_partial_diag(eigvalues,eigvectors,H,nmax,n,n_st) subroutine lapack_partial_diag(eigvalues,eigvectors,H,nmax,n,n_st)
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -15,10 +15,10 @@ double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_
call give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_p,iorder_p,alpha,& call give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_p,iorder_p,alpha,&
beta,power_A,power_B,A_center,B_center,dim) beta,power_A,power_B,A_center,B_center,dim)
if(fact_p.lt.0.000001d0)then ! if(fact_p.lt.0.000001d0)then
overlap_gaussian_x = 0.d0 ! overlap_gaussian_x = 0.d0
return ! return
endif ! endif
overlap_gaussian_x = 0.d0 overlap_gaussian_x = 0.d0
integer :: i integer :: i

View File

@ -49,17 +49,17 @@ double precision function binom_func(i,j)
end end
BEGIN_PROVIDER [ double precision, binom, (0:20,0:20) ] BEGIN_PROVIDER [ double precision, binom, (0:40,0:40) ]
&BEGIN_PROVIDER [ double precision, binom_transp, (0:20,0:20) ] &BEGIN_PROVIDER [ double precision, binom_transp, (0:40,0:40) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Binomial coefficients ! Binomial coefficients
END_DOC END_DOC
integer :: k,l integer :: k,l
double precision :: fact, f double precision :: fact, f
do k=0,20 do k=0,40
f = fact(k) f = fact(k)
do l=0,20 do l=0,40
binom(k,l) = f/(fact(l)*fact(k-l)) binom(k,l) = f/(fact(l)*fact(k-l))
binom_transp(l,k) = binom(k,l) binom_transp(l,k) = binom(k,l)
enddo enddo