10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 12:23:48 +01:00

no vvv integrals is ok

This commit is contained in:
Emmanuel Giner 2016-10-11 19:03:23 +02:00
parent 50d1f364e0
commit 82a29d5603
22 changed files with 2838 additions and 165 deletions

View File

@ -18,7 +18,7 @@ IRPF90_FLAGS : --ninja --align=32
# 0 : Deactivate
#
[OPTION]
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 1 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags

View File

@ -89,11 +89,11 @@ subroutine standard_dress(delta_ij_generators_,size_buffer,Ndet_generators,i_gen
end
subroutine is_a_good_candidate(threshold,is_ok,verbose)
subroutine is_a_good_candidate(threshold,is_ok,verbose,exit_loop)
use bitmasks
implicit none
double precision, intent(in) :: threshold
logical, intent(out) :: is_ok
logical, intent(out) :: is_ok,exit_loop
logical, intent(in) :: verbose
integer :: l,k,m
@ -111,7 +111,7 @@ subroutine is_a_good_candidate(threshold,is_ok,verbose)
enddo
enddo
!call H_apply_dressed_pert(dressed_H_matrix,N_det_generators,psi_det_generators_input)
call dress_H_matrix_from_psi_det_input(psi_det_generators_input,N_det_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose)
call dress_H_matrix_from_psi_det_input(psi_det_generators_input,N_det_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose,exit_loop)
if(do_it_perturbative)then
if(is_ok)then
N_det = N_det_generators
@ -135,14 +135,14 @@ subroutine is_a_good_candidate(threshold,is_ok,verbose)
end
subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose)
subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_generators,is_ok,psi_coef_diagonalized_tmp, dressed_H_matrix,threshold,verbose,exit_loop)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: psi_det_generators_input(N_int,2,Ndet_generators)
integer, intent(in) :: Ndet_generators
double precision, intent(in) :: threshold
logical, intent(in) :: verbose
logical, intent(out) :: is_ok
logical, intent(out) :: is_ok,exit_loop
double precision, intent(out) :: psi_coef_diagonalized_tmp(Ndet_generators,N_states)
double precision, intent(inout) :: dressed_H_matrix(Ndet_generators, Ndet_generators)
@ -151,6 +151,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
double precision :: eigvalues(Ndet_generators), eigvectors(Ndet_generators,Ndet_generators),hij
double precision :: psi_coef_ref(Ndet_generators,N_states),diag_h_mat_average,diag_h_mat_no_ref_average
logical :: is_a_ref_det(Ndet_generators)
exit_loop = .False.
is_a_ref_det = .False.
do i = 1, N_det_generators
@ -191,6 +192,7 @@ subroutine dress_H_matrix_from_psi_det_input(psi_det_generators_input,Ndet_gener
if(number_of_holes(psi_det_generators_input(1,1,i)).eq.0 .and. number_of_particles(psi_det_generators_input(1,1,i)).eq.1)then
if(diag_h_mat_average - dressed_H_matrix(index_ref_generators_restart,index_ref_generators_restart) .gt.2.d0)then
is_ok = .False.
exit_loop = .True.
return
endif
endif

View File

@ -1,6 +1,6 @@
program foboscf
implicit none
call run_prepare
!call run_prepare
no_oa_or_av_opt = .True.
touch no_oa_or_av_opt
call routine_fobo_scf

View File

@ -38,6 +38,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
integer(bit_kind) , allocatable :: psi_singles(:,:,:)
logical :: lmct
double precision, allocatable :: psi_singles_coef(:,:)
logical :: exit_loop
allocate( zero_bitmask(N_int,2) )
do i = 1, n_inact_orb
lmct = .True.
@ -55,7 +56,7 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,'Passed set generators'
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
allocate(dressing_matrix(N_det_generators,N_det_generators))
@ -161,9 +162,9 @@ subroutine FOBOCI_lmct_mlct_old_thr
print*,'--------------------------'
! First set the current generators to the one of restart
call check_symetry(i_particl_osoci,thr,test_sym)
call set_generators_to_generators_restart
call set_psi_det_to_generators
call check_symetry(i_particl_osoci,thr,test_sym)
if(.not.test_sym)cycle
print*,'i_particl_osoci= ',i_particl_osoci
! Initialize the bitmask to the restart ones
@ -180,9 +181,15 @@ subroutine FOBOCI_lmct_mlct_old_thr
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
!! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
if(.not. is_ok)then
if(exit_loop)then
exit
else
cycle
endif
endif
allocate(dressing_matrix(N_det_generators,N_det_generators))
if(.not.do_it_perturbative)then
dressing_matrix = 0.d0
@ -234,7 +241,7 @@ subroutine FOBOCI_mlct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
logical :: verbose,is_ok
logical :: verbose,is_ok,exit_loop
verbose = .False.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
@ -274,7 +281,7 @@ subroutine FOBOCI_mlct_old
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
! ! so all the mono excitation on the new generators
call is_a_good_candidate(threshold_mlct,is_ok,verbose)
call is_a_good_candidate(threshold_mlct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
is_ok =.True.
if(.not.is_ok)cycle
@ -308,7 +315,7 @@ subroutine FOBOCI_lmct_old
double precision :: norm_tmp,norm_total
logical :: test_sym
double precision :: thr
logical :: verbose,is_ok
logical :: verbose,is_ok,exit_loop
verbose = .False.
thr = 1.d-12
allocate(unpaired_bitmask(N_int,2))
@ -346,7 +353,7 @@ subroutine FOBOCI_lmct_old
call set_generators_to_psi_det
call set_bitmask_particl_as_input(reunion_of_bitmask)
call set_bitmask_hole_as_input(reunion_of_bitmask)
call is_a_good_candidate(threshold_lmct,is_ok,verbose)
call is_a_good_candidate(threshold_lmct,is_ok,verbose,exit_loop)
print*,'is_ok = ',is_ok
if(.not.is_ok)cycle
! ! so all the mono excitation on the new generators

View File

@ -212,8 +212,8 @@ subroutine update_density_matrix_osoci
integer :: iorb,jorb
do i = 1, mo_tot_num
do j = 1, mo_tot_num
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
one_body_dm_mo_alpha_osoci(i,j) = one_body_dm_mo_alpha_osoci(i,j) + (one_body_dm_mo_alpha_average(i,j) - one_body_dm_mo_alpha_generators_restart(i,j))
one_body_dm_mo_beta_osoci(i,j) = one_body_dm_mo_beta_osoci(i,j) + (one_body_dm_mo_beta_average(i,j) - one_body_dm_mo_beta_generators_restart(i,j))
enddo
enddo
@ -588,14 +588,14 @@ end
integer :: i
double precision :: accu_tot,accu_sd
print*,'touched the one_body_dm_mo_beta'
one_body_dm_mo_alpha = one_body_dm_mo_alpha_osoci
one_body_dm_mo_beta = one_body_dm_mo_beta_osoci
one_body_dm_mo_alpha_average = one_body_dm_mo_alpha_osoci
one_body_dm_mo_beta_average = one_body_dm_mo_beta_osoci
touch one_body_dm_mo_alpha one_body_dm_mo_beta
accu_tot = 0.d0
accu_sd = 0.d0
do i = 1, mo_tot_num
accu_tot += one_body_dm_mo_alpha(i,i) + one_body_dm_mo_beta(i,i)
accu_sd += one_body_dm_mo_alpha(i,i) - one_body_dm_mo_beta(i,i)
accu_tot += one_body_dm_mo_alpha_average(i,i) + one_body_dm_mo_beta_average(i,i)
accu_sd += one_body_dm_mo_alpha_average(i,i) - one_body_dm_mo_beta_average(i,i)
enddo
print*,'accu_tot = ',accu_tot
print*,'accu_sdt = ',accu_sd

View File

@ -10,14 +10,28 @@ BEGIN_PROVIDER [ double precision, energy_cas_dyall, (N_states)]
END_PROVIDER
BEGIN_PROVIDER [ double precision, energy_cas_dyall_no_exchange, (N_states)]
implicit none
integer :: i
double precision :: energies(N_states_diag)
do i = 1, N_states
call u0_H_dyall_u0_no_exchange(energies,psi_active,psi_coef,n_det,psi_det_size,psi_det_size,N_states_diag,i)
energy_cas_dyall_no_exchange(i) = energies(i)
print*, 'energy_cas_dyall(i)_no_exchange', energy_cas_dyall_no_exchange(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_creat, (n_act_orb,2,N_states)]
implicit none
integer :: i,j
integer :: ispin
integer :: orb, hole_particle,spin_exc
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,N_det)
double precision :: psi_in_out_coef(N_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
use bitmasks
integer :: iorb
@ -45,6 +59,7 @@ BEGIN_PROVIDER [ double precision, one_creat, (n_act_orb,2,N_states)]
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -54,9 +69,10 @@ BEGIN_PROVIDER [ double precision, one_anhil, (n_act_orb,2,N_states)]
integer :: ispin
integer :: orb, hole_particle,spin_exc
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb
integer :: state_target
@ -83,6 +99,7 @@ BEGIN_PROVIDER [ double precision, one_anhil, (n_act_orb,2,N_states)]
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -93,9 +110,10 @@ BEGIN_PROVIDER [ double precision, two_creat, (n_act_orb,n_act_orb,2,2,N_states)
integer :: orb_i, hole_particle_i,spin_exc_i
integer :: orb_j, hole_particle_j,spin_exc_j
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: state_target
@ -131,6 +149,7 @@ BEGIN_PROVIDER [ double precision, two_creat, (n_act_orb,n_act_orb,2,2,N_states)
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -141,9 +160,10 @@ BEGIN_PROVIDER [ double precision, two_anhil, (n_act_orb,n_act_orb,2,2,N_states)
integer :: orb_i, hole_particle_i,spin_exc_i
integer :: orb_j, hole_particle_j,spin_exc_j
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: state_target
@ -178,6 +198,7 @@ BEGIN_PROVIDER [ double precision, two_anhil, (n_act_orb,n_act_orb,2,2,N_states)
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -188,10 +209,11 @@ BEGIN_PROVIDER [ double precision, one_anhil_one_creat, (n_act_orb,n_act_orb,2,2
integer :: orb_i, hole_particle_i,spin_exc_i
integer :: orb_j, hole_particle_j,spin_exc_j
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: state_target
double precision :: energies(n_states_diag)
@ -205,23 +227,28 @@ BEGIN_PROVIDER [ double precision, one_anhil_one_creat, (n_act_orb,n_act_orb,2,2
orb_j = list_act(jorb)
hole_particle_j = -1
spin_exc_j = jspin
do i = 1, n_det
do j = 1, n_states_diag
psi_in_out_coef(i,j) = psi_coef(i,j)
do i = 1, n_det
do j = 1, n_states_diag
psi_in_out_coef(i,j) = psi_coef(i,j)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = psi_active(j,1,i)
psi_in_out(j,2,i) = psi_active(j,2,i)
enddo
enddo
do j = 1, N_int
psi_in_out(j,1,i) = psi_active(j,1,i)
psi_in_out(j,2,i) = psi_active(j,2,i)
do state_target = 1, N_states
call apply_exc_to_psi(orb_j,hole_particle_j,spin_exc_j, &
norm_out,psi_in_out,psi_in_out_coef, n_det,n_det,n_det,N_states_diag)
call apply_exc_to_psi(orb_i,hole_particle_i,spin_exc_i, &
norm_out,psi_in_out,psi_in_out_coef, n_det,n_det,n_det,N_states_diag)
if(orb_i == orb_j .and. ispin .ne. jspin)then
call u0_H_dyall_u0_no_exchange(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
one_anhil_one_creat(iorb,jorb,ispin,jspin,state_target) = energy_cas_dyall_no_exchange(state_target) - energies(state_target)
else
call u0_H_dyall_u0(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
one_anhil_one_creat(iorb,jorb,ispin,jspin,state_target) = energy_cas_dyall(state_target) - energies(state_target)
endif
enddo
enddo
do state_target = 1, N_states
call apply_exc_to_psi(orb_j,hole_particle_j,spin_exc_j, &
norm_out,psi_in_out,psi_in_out_coef, n_det,n_det,n_det,N_states_diag)
call apply_exc_to_psi(orb_i,hole_particle_i,spin_exc_i, &
norm_out,psi_in_out,psi_in_out_coef, n_det,n_det,n_det,N_states_diag)
call u0_H_dyall_u0(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
one_anhil_one_creat(iorb,jorb,ispin,jspin,state_target) = energy_cas_dyall(state_target) - energies(state_target)
enddo
enddo
enddo
enddo
@ -229,6 +256,7 @@ BEGIN_PROVIDER [ double precision, one_anhil_one_creat, (n_act_orb,n_act_orb,2,2
END_PROVIDER
BEGIN_PROVIDER [ double precision, two_anhil_one_creat, (n_act_orb,n_act_orb,n_act_orb,2,2,2,N_states)]
implicit none
integer :: i,j
@ -237,9 +265,10 @@ BEGIN_PROVIDER [ double precision, two_anhil_one_creat, (n_act_orb,n_act_orb,n_a
integer :: orb_j, hole_particle_j,spin_exc_j
integer :: orb_k, hole_particle_k,spin_exc_k
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: korb
@ -286,6 +315,7 @@ BEGIN_PROVIDER [ double precision, two_anhil_one_creat, (n_act_orb,n_act_orb,n_a
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -297,9 +327,10 @@ BEGIN_PROVIDER [ double precision, two_creat_one_anhil, (n_act_orb,n_act_orb,n_a
integer :: orb_j, hole_particle_j,spin_exc_j
integer :: orb_k, hole_particle_k,spin_exc_k
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: korb
@ -345,6 +376,7 @@ BEGIN_PROVIDER [ double precision, two_creat_one_anhil, (n_act_orb,n_act_orb,n_a
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -356,9 +388,10 @@ BEGIN_PROVIDER [ double precision, three_creat, (n_act_orb,n_act_orb,n_act_orb,2
integer :: orb_j, hole_particle_j,spin_exc_j
integer :: orb_k, hole_particle_k,spin_exc_k
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: korb
@ -404,6 +437,7 @@ BEGIN_PROVIDER [ double precision, three_creat, (n_act_orb,n_act_orb,n_act_orb,2
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
@ -415,9 +449,10 @@ BEGIN_PROVIDER [ double precision, three_anhil, (n_act_orb,n_act_orb,n_act_orb,2
integer :: orb_j, hole_particle_j,spin_exc_j
integer :: orb_k, hole_particle_k,spin_exc_k
double precision :: norm_out(N_states_diag)
integer(bit_kind) :: psi_in_out(N_int,2,n_det)
double precision :: psi_in_out_coef(n_det,N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb
integer :: korb
@ -463,5 +498,617 @@ BEGIN_PROVIDER [ double precision, three_anhil, (n_act_orb,n_act_orb,n_act_orb,2
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_anhil_one_creat_inact_virt, (n_inact_orb,n_virt_orb,N_States)]
&BEGIN_PROVIDER [ double precision, one_anhil_one_creat_inact_virt_norm, (n_inact_orb,n_virt_orb,N_States,2)]
implicit none
integer :: i,vorb,j
integer :: ispin,jspin
integer :: orb_i, hole_particle_i
integer :: orb_v
double precision :: norm_out(N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb,i_ok
integer :: state_target
double precision :: energies(n_states_diag)
double precision :: hij
double precision :: norm(N_states,2),norm_no_inv(N_states,2),norm_bis(N_states,2)
double precision :: energies_alpha_beta(N_states,2)
double precision :: thresh_norm
thresh_norm = 1.d-10
do vorb = 1,n_virt_orb
orb_v = list_virt(vorb)
do iorb = 1, n_inact_orb
orb_i = list_inact(iorb)
norm = 0.d0
norm_bis = 0.d0
do ispin = 1,2
do state_target =1 , N_states
one_anhil_one_creat_inact_virt_norm(iorb,vorb,state_target,ispin) = 0.d0
enddo
do i = 1, n_det
do j = 1, N_int
psi_in_out(j,1,i) = psi_det(j,1,i)
psi_in_out(j,2,i) = psi_det(j,2,i)
enddo
call do_mono_excitation(psi_in_out(1,1,i),orb_i,orb_v,ispin,i_ok)
if(i_ok.ne.1)then
print*, orb_i,orb_v
call debug_det(psi_in_out,N_int)
print*, 'pb, i_ok ne 0 !!!'
endif
call i_H_j(psi_in_out(1,1,i),psi_det(1,1,i),N_int,hij)
do j = 1, n_states
double precision :: coef,contrib
coef = psi_coef(i,j) !* psi_coef(i,j)
psi_in_out_coef(i,j) = sign(coef,psi_coef(i,j)) * hij
norm(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j)
enddo
enddo
do j = 1, N_states
if (dabs(norm(j,ispin)) .le. thresh_norm)then
norm(j,ispin) = 0.d0
norm_no_inv(j,ispin) = norm(j,ispin)
one_anhil_one_creat_inact_virt_norm(iorb,vorb,j,ispin) = 0.d0
else
norm_no_inv(j,ispin) = norm(j,ispin)
one_anhil_one_creat_inact_virt_norm(iorb,vorb,j,ispin) = 1.d0 / norm(j,ispin)
norm(j,ispin) = 1.d0/dsqrt(norm(j,ispin))
endif
enddo
do i = 1, N_det
do j = 1, N_states
psi_in_out_coef(i,j) = psi_in_out_coef(i,j) * norm(j,ispin)
norm_bis(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = psi_active(j,1,i)
psi_in_out(j,2,i) = psi_active(j,2,i)
enddo
enddo
do state_target = 1, N_states
energies_alpha_beta(state_target, ispin) = - mo_bielec_integral_jj_exchange(orb_i,orb_v)
! energies_alpha_beta(state_target, ispin) = 0.d0
if(norm(state_target,ispin) .ne. 0.d0 .and. dabs(norm_no_inv(state_target,ispin)) .gt. thresh_norm)then
call u0_H_dyall_u0(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
energies_alpha_beta(state_target, ispin) += energies(state_target)
endif
enddo
enddo ! ispin
do state_target = 1, N_states
if((norm_no_inv(state_target,1) + norm_no_inv(state_target,2)) .ne. 0.d0)then
! one_anhil_one_creat_inact_virt(iorb,vorb,state_target) = 0.5d0 * &
! ( energy_cas_dyall(state_target) - energies_alpha_beta(state_target,1) + &
! energy_cas_dyall(state_target) - energies_alpha_beta(state_target,2) )
! print*, energies_alpha_beta(state_target,1) , energies_alpha_beta(state_target,2)
! print*, norm_bis(state_target,1) , norm_bis(state_target,2)
one_anhil_one_creat_inact_virt(iorb,vorb,state_target) = energy_cas_dyall(state_target) - &
( energies_alpha_beta(state_target,1) + energies_alpha_beta(state_target,2) ) &
/( norm_bis(state_target,1) + norm_bis(state_target,2) )
else
one_anhil_one_creat_inact_virt(iorb,vorb,state_target) = 0.d0
endif
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_anhil_inact, (n_inact_orb,n_act_orb,N_States)]
implicit none
integer :: i,iorb,j
integer :: ispin,jspin
integer :: orb_i, hole_particle_i
double precision :: norm_out(N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: jorb,i_ok,aorb,orb_a
integer :: state_target
double precision :: energies(n_states_diag)
double precision :: hij
double precision :: norm(N_states,2),norm_no_inv(N_states,2)
double precision :: energies_alpha_beta(N_states,2)
double precision :: norm_alpha_beta(N_states,2)
double precision :: thresh_norm
thresh_norm = 1.d-10
do aorb = 1,n_act_orb
orb_a = list_act(aorb)
do iorb = 1, n_inact_orb
orb_i = list_inact(iorb)
do state_target = 1, N_states
one_anhil_inact(iorb,aorb,state_target) = 0.d0
enddo
norm_alpha_beta = 0.d0
norm = 0.d0
norm_bis = 0.d0
do ispin = 1,2
do i = 1, n_det
do j = 1, N_int
psi_in_out(j,1,i) = psi_det(j,1,i)
psi_in_out(j,2,i) = psi_det(j,2,i)
enddo
call do_mono_excitation(psi_in_out(1,1,i),orb_i,orb_a,ispin,i_ok)
if(i_ok.ne.1)then
do j = 1, n_states
psi_in_out_coef(i,j) = 0.d0
enddo
else
call i_H_j(psi_in_out(1,1,i),psi_det(1,1,i),N_int,hij)
do j = 1, n_states
double precision :: coef,contrib
coef = psi_coef(i,j) !* psi_coef(i,j)
psi_in_out_coef(i,j) = sign(coef,psi_coef(i,j)) * hij
norm(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j)
enddo
endif
enddo
do j = 1, N_states
if (dabs(norm(j,ispin)) .le. thresh_norm)then
norm(j,ispin) = 0.d0
norm_no_inv(j,ispin) = norm(j,ispin)
else
norm_no_inv(j,ispin) = norm(j,ispin)
norm(j,ispin) = 1.d0/dsqrt(norm(j,ispin))
endif
enddo
double precision :: norm_bis(N_states,2)
do i = 1, N_det
do j = 1, N_states
psi_in_out_coef(i,j) = psi_in_out_coef(i,j) * norm(j,ispin)
norm_bis(j,ispin) += psi_in_out_coef(i,j)* psi_in_out_coef(i,j)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = iand(psi_in_out(j,1,i),cas_bitmask(j,1,1))
psi_in_out(j,2,i) = iand(psi_in_out(j,2,i),cas_bitmask(j,1,1))
enddo
enddo
do state_target = 1, N_states
energies_alpha_beta(state_target, ispin) = 0.d0
if(norm(state_target,ispin) .ne. 0.d0 .and. dabs(norm_no_inv(state_target,ispin)) .gt. thresh_norm)then
call u0_H_dyall_u0(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
energies_alpha_beta(state_target, ispin) += energies(state_target)
endif
enddo
enddo ! ispin
do state_target = 1, N_states
if((norm_no_inv(state_target,1) + norm_no_inv(state_target,2)) .ne. 0.d0)then
one_anhil_inact(iorb,aorb,state_target) = energy_cas_dyall(state_target) - &
( energies_alpha_beta(state_target,1) + energies_alpha_beta(state_target,2) ) &
/( norm_bis(state_target,1) + norm_bis(state_target,2) )
else
one_anhil_inact(iorb,aorb,state_target) = 0.d0
endif
! print*, '********'
! print*, energies_alpha_beta(state_target,1) , energies_alpha_beta(state_target,2)
! print*, norm_bis(state_target,1) , norm_bis(state_target,2)
! print*, one_anhil_inact(iorb,aorb,state_target)
! print*, one_creat(aorb,1,state_target)
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_creat_virt, (n_act_orb,n_virt_orb,N_States)]
implicit none
integer :: i,vorb,j
integer :: ispin,jspin
integer :: orb_i, hole_particle_i
integer :: orb_v
double precision :: norm_out(N_states_diag)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag))
integer :: iorb,jorb,i_ok,aorb,orb_a
integer :: state_target
double precision :: energies(n_states_diag)
double precision :: hij
double precision :: norm(N_states,2),norm_no_inv(N_states,2)
double precision :: energies_alpha_beta(N_states,2)
double precision :: norm_alpha_beta(N_states,2)
double precision :: thresh_norm
thresh_norm = 1.d-10
do aorb = 1,n_act_orb
orb_a = list_act(aorb)
do vorb = 1, n_virt_orb
orb_v = list_virt(vorb)
do state_target = 1, N_states
one_creat_virt(aorb,vorb,state_target) = 0.d0
enddo
norm_alpha_beta = 0.d0
norm = 0.d0
norm_bis = 0.d0
do ispin = 1,2
do i = 1, n_det
do j = 1, N_int
psi_in_out(j,1,i) = psi_det(j,1,i)
psi_in_out(j,2,i) = psi_det(j,2,i)
enddo
call do_mono_excitation(psi_in_out(1,1,i),orb_a,orb_v,ispin,i_ok)
if(i_ok.ne.1)then
do j = 1, n_states
psi_in_out_coef(i,j) = 0.d0
enddo
else
call i_H_j(psi_in_out(1,1,i),psi_det(1,1,i),N_int,hij)
do j = 1, n_states
double precision :: coef,contrib
coef = psi_coef(i,j) !* psi_coef(i,j)
psi_in_out_coef(i,j) = sign(coef,psi_coef(i,j)) * hij
norm(j,ispin) += psi_in_out_coef(i,j) * psi_in_out_coef(i,j)
enddo
endif
enddo
do j = 1, N_states
if (dabs(norm(j,ispin)) .le. thresh_norm)then
norm(j,ispin) = 0.d0
norm_no_inv(j,ispin) = norm(j,ispin)
else
norm_no_inv(j,ispin) = norm(j,ispin)
norm(j,ispin) = 1.d0/dsqrt(norm(j,ispin))
endif
enddo
double precision :: norm_bis(N_states,2)
do i = 1, N_det
do j = 1, N_states
psi_in_out_coef(i,j) = psi_in_out_coef(i,j) * norm(j,ispin)
norm_bis(j,ispin) += psi_in_out_coef(i,j)* psi_in_out_coef(i,j)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = iand(psi_in_out(j,1,i),cas_bitmask(j,1,1))
psi_in_out(j,2,i) = iand(psi_in_out(j,2,i),cas_bitmask(j,1,1))
enddo
enddo
do state_target = 1, N_states
energies_alpha_beta(state_target, ispin) = 0.d0
if(norm(state_target,ispin) .ne. 0.d0 .and. dabs(norm_no_inv(state_target,ispin)) .gt. thresh_norm)then
call u0_H_dyall_u0(energies,psi_in_out,psi_in_out_coef,n_det,n_det,n_det,N_states_diag,state_target)
! print*, energies(state_target)
energies_alpha_beta(state_target, ispin) += energies(state_target)
endif
enddo
enddo ! ispin
do state_target = 1, N_states
if((norm_no_inv(state_target,1) + norm_no_inv(state_target,2)) .ne. 0.d0)then
one_creat_virt(aorb,vorb,state_target) = energy_cas_dyall(state_target) - &
( energies_alpha_beta(state_target,1) + energies_alpha_beta(state_target,2) ) &
/( norm_bis(state_target,1) + norm_bis(state_target,2) )
else
one_creat_virt(aorb,vorb,state_target) = 0.d0
endif
! print*, '********'
! print*, energies_alpha_beta(state_target,1) , energies_alpha_beta(state_target,2)
! print*, norm_bis(state_target,1) , norm_bis(state_target,2)
! print*, one_creat_virt(aorb,vorb,state_target)
! print*, one_anhil(aorb,1,state_target)
enddo
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef)
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_anhil_one_creat_inact_virt_bis, (n_inact_orb,n_virt_orb,N_det,N_States)]
&BEGIN_PROVIDER [ double precision, corr_e_from_1h1p, (N_States)]
implicit none
integer :: i,vorb,j
integer :: ispin,jspin
integer :: orb_i, hole_particle_i
integer :: orb_v
double precision :: norm_out(N_states_diag),diag_elem(N_det),interact_psi0(N_det)
double precision :: delta_e_inact_virt(N_states)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
double precision, allocatable :: H_matrix(:,:),eigenvectors(:,:),eigenvalues(:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag),H_matrix(N_det+1,N_det+1))
allocate (eigenvectors(size(H_matrix,1),N_det+1))
allocate (eigenvalues(N_det+1))
integer :: iorb,jorb,i_ok
integer :: state_target
double precision :: energies(n_states_diag)
double precision :: hij
double precision :: energies_alpha_beta(N_states,2)
double precision :: accu(N_states),norm
double precision :: amplitudes_alpha_beta(N_det,2)
double precision :: delta_e_alpha_beta(N_det,2)
corr_e_from_1h1p = 0.d0
do vorb = 1,n_virt_orb
orb_v = list_virt(vorb)
do iorb = 1, n_inact_orb
orb_i = list_inact(iorb)
! print*, '---------------------------------------------------------------------------'
do j = 1, N_states
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(orb_i,j) &
- fock_virt_total_spin_trace(orb_v,j)
enddo
do ispin = 1,2
do i = 1, n_det
do j = 1, N_int
psi_in_out(j,1,i) = psi_det(j,1,i)
psi_in_out(j,2,i) = psi_det(j,2,i)
enddo
call do_mono_excitation(psi_in_out(1,1,i),orb_i,orb_v,ispin,i_ok)
if(i_ok.ne.1)then
print*, orb_i,orb_v
call debug_det(psi_in_out,N_int)
print*, 'pb, i_ok ne 0 !!!'
endif
interact_psi0(i) = 0.d0
do j = 1 , N_det
call i_H_j(psi_in_out(1,1,i),psi_det(1,1,j),N_int,hij)
interact_psi0(i) += hij * psi_coef(j,1)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = psi_active(j,1,i)
psi_in_out(j,2,i) = psi_active(j,2,i)
enddo
call i_H_j_dyall(psi_active(1,1,i),psi_active(1,1,i),N_int,hij)
diag_elem(i) = hij
enddo
do state_target = 1, N_states
! Building the Hamiltonian matrix
H_matrix(1,1) = energy_cas_dyall(state_target)
do i = 1, N_det
! interaction with psi0
H_matrix(1,i+1) = interact_psi0(i)!* psi_coef(i,state_target)
H_matrix(i+1,1) = interact_psi0(i)!* psi_coef(i,state_target)
! diagonal elements
H_matrix(i+1,i+1) = diag_elem(i) - delta_e_inact_virt(state_target)
! print*, 'H_matrix(i+1,i+1)',H_matrix(i+1,i+1)
do j = i+1, N_det
call i_H_j_dyall(psi_in_out(1,1,i),psi_in_out(1,1,j),N_int,hij)
H_matrix(i+1,j+1) = hij !0.d0 !
H_matrix(j+1,i+1) = hij !0.d0 !
enddo
enddo
print*, '***'
do i = 1, N_det+1
write(*,'(100(F16.10,X))')H_matrix(i,:)
enddo
call lapack_diag(eigenvalues,eigenvectors,H_matrix,size(H_matrix,1),N_det+1)
corr_e_from_1h1p(state_target) += eigenvalues(1) - energy_cas_dyall(state_target)
norm = 0.d0
do i = 1, N_det
psi_in_out_coef(i,state_target) = eigenvectors(i+1,1)/eigenvectors(1,1)
!! if(dabs(psi_coef(i,state_target)*) .gt. 1.d-8)then
if(dabs(psi_in_out_coef(i,state_target)) .gt. 1.d-8)then
! if(dabs(interact_psi0(i)) .gt. 1.d-8)then
delta_e_alpha_beta(i,ispin) = H_matrix(1,i+1) / psi_in_out_coef(i,state_target)
! delta_e_alpha_beta(i,ispin) = interact_psi0(i) / psi_in_out_coef(i,state_target)
amplitudes_alpha_beta(i,ispin) = psi_in_out_coef(i,state_target) / psi_coef(i,state_target)
else
amplitudes_alpha_beta(i,ispin) = 0.d0
delta_e_alpha_beta(i,ispin) = delta_e_inact_virt(state_target)
endif
!! one_anhil_one_creat_inact_virt_bis(iorb,vorb,i,ispin,state_target) = amplitudes_alpha_beta(i,ispin)
norm += psi_in_out_coef(i,state_target) * psi_in_out_coef(i,state_target)
enddo
print*, 'Coef '
write(*,'(100(X,F16.10))')psi_coef(1:N_det,state_target)
write(*,'(100(X,F16.10))')psi_in_out_coef(:,state_target)
double precision :: coef_tmp(N_det)
do i = 1, N_det
coef_tmp(i) = psi_coef(i,1) * interact_psi0(i) / delta_e_alpha_beta(i,ispin)
enddo
write(*,'(100(X,F16.10))')coef_tmp(:)
print*, 'naked interactions'
write(*,'(100(X,F16.10))')interact_psi0(:)
print*, ''
print*, 'norm ',norm
norm = 1.d0/(norm)
accu(state_target) = 0.d0
do i = 1, N_det
accu(state_target) += psi_in_out_coef(i,state_target) * psi_in_out_coef(i,state_target) * H_matrix(i+1,i+1)
do j = i+1, N_det
accu(state_target) += 2.d0 * psi_in_out_coef(i,state_target) * psi_in_out_coef(j,state_target) * H_matrix(i+1,j+1)
enddo
enddo
accu(state_target) = accu(state_target) * norm
print*, delta_e_inact_virt(state_target)
print*, eigenvalues(1),accu(state_target),eigenvectors(1,1)
print*, energy_cas_dyall(state_target) - accu(state_target), one_anhil_one_creat_inact_virt(iorb,vorb,state_target) + delta_e_inact_virt(state_target)
enddo
enddo ! ispin
do state_target = 1, N_states
do i = 1, N_det
one_anhil_one_creat_inact_virt_bis(iorb,vorb,i,state_target) = 0.5d0 * &
( delta_e_alpha_beta(i,1) + delta_e_alpha_beta(i,1))
enddo
enddo
print*, '***'
write(*,'(100(X,F16.10))')
write(*,'(100(X,F16.10))')delta_e_alpha_beta(:,2)
! write(*,'(100(X,F16.10))')one_anhil_one_creat_inact_virt_bis(iorb,vorb,:,1,:)
! write(*,'(100(X,F16.10))')one_anhil_one_creat_inact_virt_bis(iorb,vorb,:,2,:)
print*, '---------------------------------------------------------------------------'
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef,H_matrix,eigenvectors,eigenvalues)
print*, 'corr_e_from_1h1p,',corr_e_from_1h1p(:)
END_PROVIDER
subroutine give_singles_and_partial_doubles_1h1p_contrib(matrix_1h1p,e_corr_from_1h1p_singles)
implicit none
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,N_states)
double precision , intent(out) :: e_corr_from_1h1p_singles(N_states)
integer :: i,vorb,j
integer :: ispin,jspin
integer :: orb_i, hole_particle_i
integer :: orb_v
double precision :: norm_out(N_states_diag),diag_elem(N_det),interact_psi0(N_det)
double precision :: delta_e_inact_virt(N_states)
integer(bit_kind), allocatable :: psi_in_out(:,:,:)
double precision, allocatable :: psi_in_out_coef(:,:)
double precision, allocatable :: H_matrix(:,:),eigenvectors(:,:),eigenvalues(:),interact_cas(:,:)
double precision, allocatable :: delta_e_det(:,:)
use bitmasks
allocate (psi_in_out(N_int,2,n_det),psi_in_out_coef(n_det,N_states_diag),H_matrix(N_det+1,N_det+1))
allocate (eigenvectors(size(H_matrix,1),N_det+1))
allocate (eigenvalues(N_det+1),interact_cas(N_det,N_det))
allocate (delta_e_det(N_det,N_det))
integer :: iorb,jorb,i_ok
integer :: state_target
double precision :: energies(n_states_diag)
double precision :: hij
double precision :: energies_alpha_beta(N_states,2)
double precision :: lamda_pt2(N_det)
double precision :: accu(N_states),norm
double precision :: amplitudes_alpha_beta(N_det,2)
double precision :: delta_e_alpha_beta(N_det,2)
double precision :: coef_array(N_states)
double precision :: coef_perturb(N_det)
double precision :: coef_perturb_bis(N_det)
do vorb = 1,n_virt_orb
orb_v = list_virt(vorb)
do iorb = 1, n_inact_orb
orb_i = list_inact(iorb)
do j = 1, N_states
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(orb_i,j) &
- fock_virt_total_spin_trace(orb_v,j)
enddo
do ispin = 1,2
do i = 1, n_det
do j = 1, N_int
psi_in_out(j,1,i) = psi_det(j,1,i)
psi_in_out(j,2,i) = psi_det(j,2,i)
enddo
call do_mono_excitation(psi_in_out(1,1,i),orb_i,orb_v,ispin,i_ok)
if(i_ok.ne.1)then
print*, orb_i,orb_v
call debug_det(psi_in_out,N_int)
print*, 'pb, i_ok ne 0 !!!'
endif
interact_psi0(i) = 0.d0
do j = 1 , N_det
call i_H_j(psi_in_out(1,1,i),psi_det(1,1,j),N_int,hij)
call get_delta_e_dyall(psi_det(1,1,j),psi_in_out(1,1,i),coef_array,hij,delta_e_det(i,j))
interact_cas(i,j) = hij
interact_psi0(i) += hij * psi_coef(j,1)
enddo
do j = 1, N_int
psi_in_out(j,1,i) = psi_active(j,1,i)
psi_in_out(j,2,i) = psi_active(j,2,i)
enddo
call i_H_j_dyall(psi_active(1,1,i),psi_active(1,1,i),N_int,hij)
diag_elem(i) = hij
enddo
do state_target = 1, N_states
! Building the Hamiltonian matrix
H_matrix(1,1) = energy_cas_dyall(state_target)
do i = 1, N_det
! interaction with psi0
H_matrix(1,i+1) = interact_psi0(i)!* psi_coef(i,state_target)
H_matrix(i+1,1) = interact_psi0(i)!* psi_coef(i,state_target)
! diagonal elements
H_matrix(i+1,i+1) = diag_elem(i) - delta_e_inact_virt(state_target)
! print*, 'H_matrix(i+1,i+1)',H_matrix(i+1,i+1)
do j = i+1, N_det
call i_H_j_dyall(psi_in_out(1,1,i),psi_in_out(1,1,j),N_int,hij)
H_matrix(i+1,j+1) = hij !0.d0 !
H_matrix(j+1,i+1) = hij !0.d0 !
enddo
enddo
call lapack_diag(eigenvalues,eigenvectors,H_matrix,size(H_matrix,1),N_det+1)
e_corr_from_1h1p_singles(state_target) += eigenvalues(1) - energy_cas_dyall(state_target)
do i = 1, N_det
psi_in_out_coef(i,state_target) = eigenvectors(i+1,1)/eigenvectors(1,1)
coef_perturb(i) = 0.d0
do j = 1, N_det
coef_perturb(i) += psi_coef(j,state_target) * interact_cas(i,j) *1.d0/delta_e_det(i,j)
enddo
coef_perturb_bis(i) = interact_psi0(i) / (eigenvalues(1) - H_matrix(i+1,i+1))
if(dabs(interact_psi0(i)) .gt. 1.d-12)then
lamda_pt2(i) = psi_in_out_coef(i,state_target) / interact_psi0(i)
else
lamda_pt2(i) =energy_cas_dyall(state_target) - H_matrix(i+1,i+1)
endif
enddo
if(dabs(eigenvalues(1) - energy_cas_dyall(state_target)).gt.1.d-10)then
print*, ''
do i = 1, N_det+1
write(*,'(100(F16.10))') H_matrix(i,:)
enddo
accu = 0.d0
do i = 1, N_det
accu(state_target) += psi_in_out_coef(i,state_target) * interact_psi0(i)
enddo
print*, ''
print*, 'e corr diagonal ',accu(state_target)
accu = 0.d0
do i = 1, N_det
accu(state_target) += coef_perturb(i) * interact_psi0(i)
enddo
print*, 'e corr perturb ',accu(state_target)
accu = 0.d0
do i = 1, N_det
accu(state_target) += coef_perturb_bis(i) * interact_psi0(i)
enddo
print*, 'e corr perturb EN',accu(state_target)
print*, ''
print*, 'coef diagonalized'
write(*,'(100(F16.10,X))')psi_in_out_coef(:,state_target)
print*, 'coef_perturb'
write(*,'(100(F16.10,X))')coef_perturb(:)
print*, 'coef_perturb EN'
write(*,'(100(F16.10,X))')coef_perturb_bis(:)
endif
integer :: k
do k = 1, N_det
do i = 1, N_det
matrix_1h1p(i,i,state_target) += interact_cas(k,i) * interact_cas(k,i) * lamda_pt2(k)
do j = i+1, N_det
matrix_1h1p(i,j,state_target) += interact_cas(k,i) * interact_cas(k,j) * lamda_pt2(k)
matrix_1h1p(j,i,state_target) += interact_cas(k,i) * interact_cas(k,j) * lamda_pt2(k)
enddo
enddo
enddo
enddo
enddo ! ispin
enddo
enddo
deallocate(psi_in_out,psi_in_out_coef,H_matrix,eigenvectors,eigenvalues,interact_cas)
deallocate(delta_e_det)
end

View File

@ -382,8 +382,6 @@ subroutine i_H_j_dyall(key_i,key_j,Nint,hij)
endif
hij = phase*(hij + mo_mono_elec_integral(m,p) + fock_operator_active_from_core_inact(m,p) )
! hij = phase*(mo_mono_elec_integral(m,p) ) ! + fock_operator_active_from_core_inact(m,p) )
! hij = 0.d0
case (0)
hij = diag_H_mat_elem_no_elec_check(key_i,Nint)
@ -422,3 +420,289 @@ subroutine u0_H_dyall_u0(energies,psi_in,psi_in_coef,ndet,dim_psi_in,dim_psi_coe
energies(state_target) = accu
deallocate(psi_coef_tmp)
end
double precision function coulomb_value_no_check(det_in,Nint)
implicit none
BEGIN_DOC
! Computes <i|H|i>
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
integer :: i, j, iorb, jorb
integer :: occ(Nint*bit_kind_size,2)
integer :: elec_num_tab_local(2)
double precision :: core_act
double precision :: alpha_alpha
double precision :: alpha_beta
double precision :: beta_beta
double precision :: mono_elec
core_act = 0.d0
alpha_alpha = 0.d0
alpha_beta = 0.d0
beta_beta = 0.d0
mono_elec = 0.d0
coulomb_value_no_check = 0.d0
call bitstring_to_list(det_in(1,1), occ(1,1), elec_num_tab_local(1), N_int)
call bitstring_to_list(det_in(1,2), occ(1,2), elec_num_tab_local(2), N_int)
! alpha - alpha
do i = 1, elec_num_tab_local(1)
iorb = occ(i,1)
do j = i+1, elec_num_tab_local(1)
jorb = occ(j,1)
coulomb_value_no_check += mo_bielec_integral_jj_anti(jorb,iorb)
alpha_alpha += mo_bielec_integral_jj_anti(jorb,iorb)
enddo
enddo
! beta - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
do j = i+1, elec_num_tab_local(2)
jorb = occ(j,2)
coulomb_value_no_check += mo_bielec_integral_jj_anti(jorb,iorb)
beta_beta += mo_bielec_integral_jj_anti(jorb,iorb)
enddo
enddo
! alpha - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
do j = 1, elec_num_tab_local(1)
jorb = occ(j,1)
coulomb_value_no_check += mo_bielec_integral_jj(jorb,iorb)
alpha_beta += mo_bielec_integral_jj(jorb,iorb)
enddo
enddo
end
subroutine i_H_j_dyall_no_exchange(key_i,key_j,Nint,hij)
use bitmasks
implicit none
BEGIN_DOC
! Returns <i|H|j> where i and j are determinants
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hij
integer :: exc(0:2,2,2)
integer :: degree
double precision :: get_mo_bielec_integral_schwartz
integer :: m,n,p,q
integer :: i,j,k
integer :: occ(Nint*bit_kind_size,2)
double precision :: diag_H_mat_elem_no_elec_check_no_exchange, phase,phase_2
integer :: n_occ_ab(2)
logical :: has_mipi(Nint*bit_kind_size)
double precision :: mipi(Nint*bit_kind_size)
PROVIDE mo_bielec_integrals_in_map mo_integrals_map
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
hij = 0.d0
!DIR$ FORCEINLINE
call get_excitation_degree(key_i,key_j,degree,Nint)
select case (degree)
case (2)
call get_double_excitation(key_i,key_j,exc,phase,Nint)
if (exc(0,1,1) == 1) then
! Mono alpha, mono beta
if(exc(1,1,1) == exc(1,2,2) .and. exc(1,2,1) == exc(1,1,2))then
hij = 0.d0
else
hij = phase*get_mo_bielec_integral_schwartz( &
exc(1,1,1), &
exc(1,1,2), &
exc(1,2,1), &
exc(1,2,2) ,mo_integrals_map)
endif
else if (exc(0,1,1) == 2) then
! Double alpha
hij = phase*get_mo_bielec_integral_schwartz( &
exc(1,1,1), &
exc(2,1,1), &
exc(1,2,1), &
exc(2,2,1) ,mo_integrals_map)
else if (exc(0,1,2) == 2) then
! Double beta
hij = phase*get_mo_bielec_integral_schwartz( &
exc(1,1,2), &
exc(2,1,2), &
exc(1,2,2), &
exc(2,2,2) ,mo_integrals_map)
endif
case (1)
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint)
has_mipi = .False.
if (exc(0,1,1) == 1) then
! Mono alpha
m = exc(1,1,1)
p = exc(1,2,1)
do k = 1, n_occ_ab(1)
i = occ(k,1)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral_schwartz(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, n_occ_ab(2)
i = occ(k,2)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral_schwartz(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, n_occ_ab(1)
hij = hij + mipi(occ(k,1))
enddo
do k = 1, n_occ_ab(2)
hij = hij + mipi(occ(k,2))
enddo
else
! Mono beta
m = exc(1,1,2)
p = exc(1,2,2)
do k = 1, n_occ_ab(2)
i = occ(k,2)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral_schwartz(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, n_occ_ab(1)
i = occ(k,1)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral_schwartz(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, n_occ_ab(1)
hij = hij + mipi(occ(k,1))
enddo
do k = 1, n_occ_ab(2)
hij = hij + mipi(occ(k,2))
enddo
endif
hij = phase*(hij + mo_mono_elec_integral(m,p) + fock_operator_active_from_core_inact(m,p) )
case (0)
hij = diag_H_mat_elem_no_elec_check_no_exchange(key_i,Nint)
end select
end
double precision function diag_H_mat_elem_no_elec_check_no_exchange(det_in,Nint)
implicit none
BEGIN_DOC
! Computes <i|H|i>
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
integer :: i, j, iorb, jorb
integer :: occ(Nint*bit_kind_size,2)
integer :: elec_num_tab_local(2)
double precision :: core_act_exchange(2)
core_act_exchange = 0.d0
diag_H_mat_elem_no_elec_check_no_exchange = 0.d0
call bitstring_to_list(det_in(1,1), occ(1,1), elec_num_tab_local(1), N_int)
call bitstring_to_list(det_in(1,2), occ(1,2), elec_num_tab_local(2), N_int)
! alpha - alpha
do i = 1, elec_num_tab_local(1)
iorb = occ(i,1)
diag_H_mat_elem_no_elec_check_no_exchange += mo_mono_elec_integral(iorb,iorb)
do j = i+1, elec_num_tab_local(1)
jorb = occ(j,1)
diag_H_mat_elem_no_elec_check_no_exchange += mo_bielec_integral_jj(jorb,iorb)
enddo
enddo
! beta - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
diag_H_mat_elem_no_elec_check_no_exchange += mo_mono_elec_integral(iorb,iorb)
do j = i+1, elec_num_tab_local(2)
jorb = occ(j,2)
diag_H_mat_elem_no_elec_check_no_exchange += mo_bielec_integral_jj(jorb,iorb)
enddo
enddo
! alpha - beta
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
do j = 1, elec_num_tab_local(1)
jorb = occ(j,1)
diag_H_mat_elem_no_elec_check_no_exchange += mo_bielec_integral_jj(jorb,iorb)
enddo
enddo
! alpha - core-act
do i = 1, elec_num_tab_local(1)
iorb = occ(i,1)
do j = 1, n_core_inact_orb
jorb = list_core_inact(j)
diag_H_mat_elem_no_elec_check_no_exchange += 2.d0 * mo_bielec_integral_jj(jorb,iorb)
core_act_exchange(1) += - mo_bielec_integral_jj_exchange(jorb,iorb)
enddo
enddo
! beta - core-act
do i = 1, elec_num_tab_local(2)
iorb = occ(i,2)
do j = 1, n_core_inact_orb
jorb = list_core_inact(j)
diag_H_mat_elem_no_elec_check_no_exchange += 2.d0 * mo_bielec_integral_jj(jorb,iorb)
core_act_exchange(2) += - mo_bielec_integral_jj_exchange(jorb,iorb)
enddo
enddo
end
subroutine u0_H_dyall_u0_no_exchange(energies,psi_in,psi_in_coef,ndet,dim_psi_in,dim_psi_coef,N_states_in,state_target)
use bitmasks
implicit none
integer, intent(in) :: N_states_in,ndet,dim_psi_in,dim_psi_coef,state_target
integer(bit_kind), intent(in) :: psi_in(N_int,2,dim_psi_in)
double precision, intent(in) :: psi_in_coef(dim_psi_coef,N_states_in)
double precision, intent(out) :: energies(N_states_in)
integer :: i,j
double precision :: hij,accu
energies = 0.d0
accu = 0.d0
double precision, allocatable :: psi_coef_tmp(:)
allocate(psi_coef_tmp(ndet))
do i = 1, ndet
psi_coef_tmp(i) = psi_in_coef(i,state_target)
enddo
double precision :: hij_bis
do i = 1, ndet
if(psi_coef_tmp(i)==0.d0)cycle
do j = 1, ndet
if(psi_coef_tmp(j)==0.d0)cycle
call i_H_j_dyall_no_exchange(psi_in(1,1,i),psi_in(1,1,j),N_int,hij)
accu += psi_coef_tmp(i) * psi_coef_tmp(j) * hij
enddo
enddo
energies(state_target) = accu
deallocate(psi_coef_tmp)
end

View File

@ -79,8 +79,12 @@ subroutine mrpt_dress(delta_ij_, Ndet,i_generator,n_selected,det_buffer,Nint,ip
phase_array =0.d0
do i = 1,idx_alpha(0)
index_i = idx_alpha(i)
call get_delta_e_dyall(psi_det(1,1,index_i),tq(1,1,i_alpha),delta_e)
call i_h_j(tq(1,1,i_alpha),psi_det(1,1,index_i),Nint,hialpha)
double precision :: coef_array(N_states)
do i_state = 1, N_states
coef_array(i_state) = psi_coef(index_i,i_state)
enddo
call get_delta_e_dyall(psi_det(1,1,index_i),tq(1,1,i_alpha),coef_array,hialpha,delta_e)
hij_array(index_i) = hialpha
call get_excitation(psi_det(1,1,index_i),tq(1,1,i_alpha),exc,degree,phase,N_int)
! phase_array(index_i) = phase

View File

@ -57,6 +57,9 @@
! 1h1p
delta_ij_tmp = 0.d0
call H_apply_mrpt_1h1p(delta_ij_tmp,N_det)
double precision :: e_corr_from_1h1p_singles(N_states)
!call give_singles_and_partial_doubles_1h1p_contrib(delta_ij_tmp,e_corr_from_1h1p_singles)
!call give_1h1p_only_doubles_spin_cross(delta_ij_tmp)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
@ -69,6 +72,23 @@
enddo
print*, '1h1p = ',accu
! 1h1p third order
delta_ij_tmp = 0.d0
call give_1h1p_sec_order_singles_contrib(delta_ij_tmp)
!call give_singles_and_partial_doubles_1h1p_contrib(delta_ij_tmp,e_corr_from_1h1p_singles)
!call give_1h1p_only_doubles_spin_cross(delta_ij_tmp)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_tmp(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij(j,i,i_state) += delta_ij_tmp(j,i,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
print*, '1h1p(3)',accu
! 2h
delta_ij_tmp = 0.d0
call H_apply_mrpt_2h(delta_ij_tmp,N_det)
@ -101,6 +121,7 @@
! 1h2p
delta_ij_tmp = 0.d0
!call give_1h2p_contrib(delta_ij_tmp)
call H_apply_mrpt_1h2p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
@ -116,6 +137,7 @@
! 2h1p
delta_ij_tmp = 0.d0
!call give_2h1p_contrib(delta_ij_tmp)
call H_apply_mrpt_2h1p(delta_ij_tmp,N_det)
accu = 0.d0
do i_state = 1, N_states
@ -159,7 +181,7 @@
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
write(*,'(1000(F16.10,x))')delta_ij(i,:,:)
! write(*,'(1000(F16.10,x))')delta_ij(i,:,:)
do j = i_state, N_det
accu(i_state) += delta_ij(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
enddo

View File

@ -391,3 +391,568 @@ subroutine give_1h2p_contrib(matrix_1h2p)
end
subroutine give_1h1p_contrib(matrix_1h1p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
integer :: i,j,r,a,b
integer :: iorb, jorb, rorb, aorb, borb
integer :: ispin,jspin
integer :: idet,jdet
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral_schwartz
double precision :: active_int(n_act_orb,2)
double precision :: hij,phase
integer :: degree(N_det)
integer :: idx(0:N_det)
integer :: istate
double precision :: hja,delta_e_inact_virt(N_states)
integer :: kspin,degree_scalar
!matrix_1h1p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do j = 1, N_states
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
- fock_virt_total_spin_trace(rorb,j)
enddo
do idet = 1, N_det
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
do jdet = 1, idx(0)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation inactive -- > virtual
double precision :: himono,delta_e(N_states),coef_mono(N_states)
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
do state_target = 1, N_states
! delta_e(state_target) = one_anhil_one_creat_inact_virt(i,r,state_target) + delta_e_inact_virt(state_target)
delta_e(state_target) = one_anhil_one_creat_inact_virt_bis(i,r,idet,state_target)
coef_mono(state_target) = himono / delta_e(state_target)
enddo
if(idx(jdet).ne.idet)then
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
aorb = (exc(1,2,1)) !!! a^{\dagger}_a
borb = (exc(1,1,1)) !!! a_{b}
jspin = 1
else
! Mono beta
aorb = (exc(1,2,2)) !!! a^{\dagger}_a
borb = (exc(1,1,2)) !!! a_{b}
jspin = 2
endif
call get_excitation_degree(psi_det(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
if(degree_scalar .ne. 2)then
print*, 'pb !!!'
print*, degree_scalar
call debug_det(psi_det(1,1,idx(jdet)),N_int)
call debug_det(det_tmp,N_int)
stop
endif
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
if(ispin == jspin )then
hij = -get_mo_bielec_integral_schwartz(iorb,aorb,rorb,borb,mo_integrals_map) &
+ get_mo_bielec_integral_schwartz(iorb,aorb,borb,rorb,mo_integrals_map)
else
hij = get_mo_bielec_integral_schwartz(iorb,borb,rorb,aorb,mo_integrals_map)
endif
hij = hij * phase
double precision :: hij_test
integer :: state_target
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
if(dabs(hij - hij_test).gt.1.d-10)then
print*, 'ahah pb !!'
print*, 'hij .ne. hij_test'
print*, hij,hij_test
call debug_det(psi_det(1,1,idx(jdet)),N_int)
call debug_det(det_tmp,N_int)
print*, ispin, jspin
print*,iorb,borb,rorb,aorb
print*, phase
call i_H_j_verbose(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
stop
endif
do state_target = 1, N_states
matrix_1h1p(idx(jdet),idet,state_target) += hij* coef_mono(state_target)
enddo
else
do state_target = 1, N_states
matrix_1h1p(idet,idet,state_target) += himono * coef_mono(state_target)
enddo
endif
enddo
enddo
enddo
enddo
enddo
end
subroutine give_1h1p_sec_order_singles_contrib(matrix_1h1p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
integer :: i,j,r,a,b
integer :: iorb, jorb, rorb, aorb, borb,s,sorb
integer :: ispin,jspin
integer :: idet,jdet
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2),det_tmp_bis(N_int,2)
integer(bit_kind) :: det_pert(N_int,2,n_inact_orb,n_virt_orb,2)
double precision :: coef_det_pert(n_inact_orb,n_virt_orb,2,N_states,2)
double precision :: delta_e_det_pert(n_inact_orb,n_virt_orb,2,N_states)
double precision :: hij_det_pert(n_inact_orb,n_virt_orb,2,N_states)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral_schwartz
double precision :: active_int(n_act_orb,2)
double precision :: hij,phase
integer :: degree(N_det)
integer :: idx(0:N_det)
integer :: istate
double precision :: hja,delta_e_inact_virt(N_states)
integer :: kspin,degree_scalar
!matrix_1h1p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
double precision :: himono,delta_e(N_states),coef_mono(N_states)
integer :: state_target
do idet = 1, N_det
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,1) = 0.d0
coef_det_pert(i,r,ispin,state_target,2) = 0.d0
enddo
do j = 1, N_states
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
- fock_virt_total_spin_trace(rorb,j)
enddo
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation inactive -- > virtual
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
do inint = 1, N_int
det_pert(inint,1,i,r,ispin) = det_tmp(inint,1)
det_pert(inint,2,i,r,ispin) = det_tmp(inint,2)
enddo
do state_target = 1, N_states
delta_e_det_pert(i,r,ispin,state_target) = one_anhil_one_creat_inact_virt(i,r,state_target) + delta_e_inact_virt(state_target)
coef_det_pert(i,r,ispin,state_target,1) = himono / delta_e_det_pert(i,r,ispin,state_target)
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
enddo ! ispin
enddo ! rorb
enddo ! iorb
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do inint = 1, N_int
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
enddo
do j = 1, n_inact_orb ! First inactive
jorb = list_inact(j)
do s = 1, n_virt_orb ! First virtual
sorb = list_virt(s)
do jspin = 1, 2 ! spin of the couple a-a^dagger (i,r)
if(i==j.and.r==s.and.ispin==jspin)cycle
do inint = 1, N_int
det_tmp_bis(inint,1) = det_pert(inint,1,j,s,jspin)
det_tmp_bis(inint,2) = det_pert(inint,2,j,s,jspin)
enddo
call i_H_j(det_tmp_bis,det_tmp,N_int,himono)
do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,2) += &
coef_det_pert(j,s,jspin,state_target,1) * himono / delta_e_det_pert(i,r,ispin,state_target)
enddo
enddo
enddo
enddo
enddo ! ispin
enddo ! rorb
enddo ! iorb
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2)
enddo
do inint = 1, N_int
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
enddo
do jdet = 1, idx(0)
!
if(idx(jdet).ne.idet)then
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
aorb = (exc(1,2,1)) !!! a^{\dagger}_a
borb = (exc(1,1,1)) !!! a_{b}
jspin = 1
else
aorb = (exc(1,2,2)) !!! a^{\dagger}_a
borb = (exc(1,1,2)) !!! a_{b}
jspin = 2
endif
call get_excitation_degree(psi_det(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
if(degree_scalar .ne. 2)then
print*, 'pb !!!'
print*, degree_scalar
call debug_det(psi_det(1,1,idx(jdet)),N_int)
call debug_det(det_tmp,N_int)
stop
endif
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
double precision :: hij_test
hij_test = 0.d0
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
do state_target = 1, N_states
matrix_1h1p(idx(jdet),idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2)
enddo
else
hij_test = 0.d0
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij_test)
do state_target = 1, N_states
matrix_1h1p(idet,idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2)
enddo
endif
enddo
enddo
enddo
enddo
enddo ! idet
end
subroutine give_1p_sec_order_singles_contrib(matrix_1p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_1p(N_det,N_det,*)
integer :: i,j,r,a,b
integer :: iorb, jorb, rorb, aorb, borb,s,sorb
integer :: ispin,jspin
integer :: idet,jdet
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2),det_tmp_bis(N_int,2)
integer(bit_kind) :: det_pert(N_int,2,n_act_orb,n_virt_orb,2)
double precision :: coef_det_pert(n_act_orb,n_virt_orb,2,N_states,2)
double precision :: delta_e_det_pert(n_act_orb,n_virt_orb,2,N_states)
double precision :: hij_det_pert(n_act_orb,n_virt_orb,2)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral_schwartz
double precision :: hij,phase
integer :: degree(N_det)
integer :: idx(0:N_det)
integer :: istate
double precision :: hja,delta_e_act_virt(N_states)
integer :: kspin,degree_scalar
!matrix_1p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
double precision :: himono,delta_e(N_states),coef_mono(N_states)
integer :: state_target
do idet = 1, N_det
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
do i = 1, n_act_orb ! First active
iorb = list_act(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,1) = 0.d0
coef_det_pert(i,r,ispin,state_target,2) = 0.d0
enddo
do j = 1, N_states
delta_e_act_virt(j) = - fock_virt_total_spin_trace(rorb,j)
enddo
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation active -- > virtual
call do_mono_excitation(det_tmp,iorb,rorb,ispin,i_ok)
integer :: i_ok
if(i_ok .ne.1)then
do state_target = 1, N_states
coef_det_pert(i,r,ispin,state_target,1) = -1.d+10
coef_det_pert(i,r,ispin,state_target,2) = -1.d+10
hij_det_pert(i,r,ispin) = 0.d0
enddo
do inint = 1, N_int
det_pert(inint,1,i,r,ispin) = 0_bit_kind
det_pert(inint,2,i,r,ispin) = 0_bit_kind
enddo
cycle
endif
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
do inint = 1, N_int
det_pert(inint,1,i,r,ispin) = det_tmp(inint,1)
det_pert(inint,2,i,r,ispin) = det_tmp(inint,2)
enddo
do state_target = 1, N_states
delta_e_det_pert(i,r,ispin,state_target) = one_creat_virt(i,r,state_target) + delta_e_act_virt(state_target)
coef_det_pert(i,r,ispin,state_target,1) = himono / delta_e_det_pert(i,r,ispin,state_target)
hij_det_pert(i,r,ispin) = himono
enddo
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
enddo ! ispin
enddo ! rorb
enddo ! iorb
! do i = 1, n_act_orb ! First active
! do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
! if(coef_det_pert(i,1,ispin,1,1) == -1.d+10)cycle
! iorb = list_act(i)
! do r = 1, n_virt_orb ! First virtual
! rorb = list_virt(r)
! do inint = 1, N_int
! det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
! det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
! enddo
! do j = 1, n_act_orb ! First active
! do jspin = 1, 2 ! spin of the couple a-a^dagger (i,r)
! if(coef_det_pert(j,1,jspin,1,1) == -1.d+10)cycle
! jorb = list_act(j)
! do s = 1, n_virt_orb ! First virtual
! sorb = list_virt(s)
! if(i==j.and.r==s.and.ispin==jspin)cycle
! do inint = 1, N_int
! det_tmp_bis(inint,1) = det_pert(inint,1,j,s,jspin)
! det_tmp_bis(inint,2) = det_pert(inint,2,j,s,jspin)
! enddo
! call i_H_j(det_tmp_bis,det_tmp,N_int,himono)
! do state_target = 1, N_states
! coef_det_pert(i,r,ispin,state_target,2) += &
! coef_det_pert(j,s,jspin,state_target,1) * himono / delta_e_det_pert(i,r,ispin,state_target)
! enddo
! enddo
! enddo
! enddo
! enddo ! ispin
! enddo ! rorb
! enddo ! iorb
do i = 1, n_act_orb ! First active
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
if(coef_det_pert(i,1,ispin,1,1) == -1.d+10)cycle
iorb = list_act(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
! do state_target = 1, N_states
! coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2)
! enddo
do inint = 1, N_int
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
enddo
do jdet = 1,N_det
double precision :: coef_array(N_states),hij_test
call i_H_j(det_tmp,psi_det(1,1,jdet),N_int,himono)
call get_delta_e_dyall(psi_det(1,1,jdet),det_tmp,coef_array,hij_test,delta_e)
do state_target = 1, N_states
! matrix_1p(idet,jdet,state_target) += himono * coef_det_pert(i,r,ispin,state_target,1)
matrix_1p(idet,jdet,state_target) += himono * hij_det_pert(i,r,ispin) / delta_e(state_target)
enddo
enddo
enddo
enddo
enddo
enddo ! idet
end
subroutine give_1h1p_only_doubles_spin_cross(matrix_1h1p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
integer :: i,j,r,a,b
integer :: iorb, jorb, rorb, aorb, borb
integer :: ispin,jspin
integer :: idet,jdet
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral_schwartz
double precision :: active_int(n_act_orb,2)
double precision :: hij,phase
integer :: degree(N_det)
integer :: idx(0:N_det)
integer :: istate
double precision :: hja,delta_e_inact_virt(N_states)
integer(bit_kind) :: pert_det(N_int,2,n_act_orb,n_act_orb,2)
double precision :: pert_det_coef(n_act_orb,n_act_orb,2,N_states)
integer :: kspin,degree_scalar
integer :: other_spin(2)
other_spin(1) = 2
other_spin(2) = 1
double precision :: hidouble,delta_e(N_states)
!matrix_1h1p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
do i = 1, n_inact_orb ! First inactive
iorb = list_inact(i)
do r = 1, n_virt_orb ! First virtual
rorb = list_virt(r)
do j = 1, N_states
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
- fock_virt_total_spin_trace(rorb,j)
enddo
do idet = 1, N_det
call get_excitation_degree_vector_double_alpha_beta(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
do ispin = 1, 2
jspin = other_spin(ispin)
do a = 1, n_act_orb
aorb = list_act(a)
do b = 1, n_act_orb
borb = list_act(b)
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation (i-->a)(ispin) + (b-->r)(other_spin(ispin))
integer :: i_ok,corb,dorb
call do_mono_excitation(det_tmp,iorb,aorb,ispin,i_ok)
if(i_ok .ne. 1)then
do state_target = 1, N_states
pert_det_coef(a,b,ispin,state_target) = -100000.d0
enddo
do inint = 1, N_int
pert_det(inint,1,a,b,ispin) = 0_bit_kind
pert_det(inint,2,a,b,ispin) = 0_bit_kind
enddo
cycle
endif
call do_mono_excitation(det_tmp,borb,rorb,jspin,i_ok)
if(i_ok .ne. 1)then
do state_target = 1, N_states
pert_det_coef(a,b,ispin,state_target) = -100000.d0
enddo
do inint = 1, N_int
pert_det(inint,1,a,b,ispin) = 0_bit_kind
pert_det(inint,2,a,b,ispin) = 0_bit_kind
enddo
cycle
endif
do inint = 1, N_int
pert_det(inint,1,a,b,ispin) = det_tmp(inint,1)
pert_det(inint,2,a,b,ispin) = det_tmp(inint,2)
enddo
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hidouble)
do state_target = 1, N_states
delta_e(state_target) = one_anhil_one_creat(a,b,ispin,jspin,state_target) + delta_e_inact_virt(state_target)
pert_det_coef(a,b,ispin,state_target) = hidouble / delta_e(state_target)
matrix_1h1p(idet,idet,state_target) += hidouble * pert_det_coef(a,b,ispin,state_target)
enddo
enddo
enddo
enddo
do jdet = 1, idx(0)
if(idx(jdet).ne.idet)then
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
integer :: c,d,state_target
integer(bit_kind) :: det_tmp_bis(N_int,2)
! excitation from I --> J
! (a->c) (alpha) + (b->d) (beta)
aorb = exc(1,1,1)
corb = exc(1,2,1)
c = list_act_reverse(corb)
borb = exc(1,1,2)
dorb = exc(1,2,2)
d = list_act_reverse(dorb)
ispin = 1
jspin = 2
do inint = 1, N_int
det_tmp(inint,1) = pert_det(inint,1,c,d,1)
det_tmp(inint,2) = pert_det(inint,2,c,d,1)
det_tmp_bis(inint,1) = pert_det(inint,1,c,d,2)
det_tmp_bis(inint,2) = pert_det(inint,2,c,d,2)
enddo
double precision :: hjdouble_1,hjdouble_2
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hjdouble_1)
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp_bis,N_int,hjdouble_2)
do state_target = 1, N_states
matrix_1h1p(idx(jdet),idet,state_target) += (pert_det_coef(c,d,1,state_target) * hjdouble_1 + pert_det_coef(c,d,2,state_target) * hjdouble_2 )
enddo
endif
enddo
enddo
enddo
enddo
end

View File

@ -14,8 +14,6 @@ BEGIN_PROVIDER [integer(bit_kind), psi_active, (N_int,2,psi_det_size)]
psi_active(j,1,i) = iand(psi_det(j,1,i),cas_bitmask(j,1,1))
psi_active(j,2,i) = iand(psi_det(j,2,i),cas_bitmask(j,1,1))
enddo
! call debug_det(psi_active(1,1,i),N_int)
enddo
END_PROVIDER
@ -154,7 +152,7 @@ subroutine give_particles_in_virt_space(det_1,n_particles_spin,n_particles,parti
end
subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
subroutine get_delta_e_dyall(det_1,det_2,coef_array,hij,delta_e_final)
BEGIN_DOC
! routine that returns the delta_e with the Moller Plesset and Dyall operators
!
@ -172,6 +170,7 @@ subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
use bitmasks
double precision, intent(out) :: delta_e_final(N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: coef_array(N_states),hij
integer :: i,j,k,l
integer :: i_state
@ -292,23 +291,52 @@ subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
! delta_e_act += one_creat_spin_trace(i_particle_act )
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act,ispin,i_state)
enddo
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_act_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_inact(i_hole,i_part,i_state)
enddo
else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act,ispin,i_state)
enddo
endif
else if (n_holes_act == 1 .and. n_particles_act == 0) then
! i_hole_act = holes_active_list_spin_traced(1)
! delta_e_act += one_anhil_spin_trace(i_hole_act )
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_act_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
if(isnan(one_creat_virt(i_hole,i_part,i_state)))then
print*, i_hole,i_part,i_state
call debug_det(det_1,N_int)
call debug_det(det_2,N_int)
stop
endif
delta_e_act(i_state) += one_creat_virt(i_hole,i_part,i_state)
enddo
else if (degree == 2)then
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
endif
else if (n_holes_act == 1 .and. n_particles_act == 1) then
! i_hole_act = holes_active_list_spin_traced(1)
! i_particle_act = particles_active_list_spin_traced(1)
! delta_e_act += one_anhil_one_creat_spin_trace(i_hole_act,i_particle_act)
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
@ -422,6 +450,34 @@ subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
do i_state = 1, N_states
delta_e_act(i_state) += three_creat(i_particle_act,j_particle_act,k_particle_act,ispin,jspin,kspin,i_state)
enddo
else if (n_holes_act .eq. 0 .and. n_particles_act .eq.0)then
integer :: degree
integer(bit_kind) :: det_1_active(N_int,2)
integer :: h1,h2,p1,p2,s1,s2
integer :: exc(0:2,2,2)
integer :: i_hole, i_part
double precision :: phase
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
! call debug_det(det_1,N_int)
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
! if(one_anhil_one_creat_inact_virt_norm(i_hole,i_part,i_state,s1).gt.1.d-10)then
! print*, hij, one_anhil_one_creat_inact_virt_norm(i_hole,i_part,i_state,s1)
! delta_e_act(i_state) += one_anhil_one_creat_inact_virt(i_hole,i_part,i_state) &
! * coef_array(i_state)* hij*coef_array(i_state)* hij *one_anhil_one_creat_inact_virt_norm(i_hole,i_part,i_state,s1)
! print*, coef_array(i_state)* hij*coef_array(i_state)* hij,one_anhil_one_creat_inact_virt_norm(i_hole,i_part,i_state,s1), &
! coef_array(i_state)* hij*coef_array(i_state)* hij *one_anhil_one_creat_inact_virt_norm(i_hole,i_part,i_state,s1)
! else
delta_e_act(i_state) += one_anhil_one_creat_inact_virt(i_hole,i_part,i_state)
! endif
enddo
endif
else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then
@ -438,3 +494,4 @@ subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
enddo
end

View File

@ -192,6 +192,11 @@ subroutine pt2_moller_plesset ($arguments)
endif
do i =1,N_st
H_pert_diag(i) = h
! if(dabs(i_H_psi_array(i)).gt.1.d-8)then
! print*, i_H_psi_array(i)
! call debug_det(det_pert,N_int)
! print*, h1,p1,h2,p2,s1,s2
! endif
c_pert(i) = i_H_psi_array(i) *delta_e
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo

View File

@ -102,6 +102,11 @@ END_PROVIDER
conversion_factor_gauss_hcc(3) = 619.9027742370165d0
conversion_factor_cm_1_hcc(3) = 579.4924475562677d0
! boron
conversion_factor_mhz_hcc(5) = 1434.3655101868d0
conversion_factor_gauss_hcc(5) = 511.817264334d0
conversion_factor_cm_1_hcc(5) = 478.4528336953d0
! carbon
conversion_factor_mhz_hcc(6) = 1124.18303629792945d0
conversion_factor_gauss_hcc(6) = 401.136570647523058d0

View File

@ -98,7 +98,14 @@ subroutine zmq_get_psi(zmq_to_qp_run_socket, worker_id)
if (N_det_selectors_read > 0) then
N_det_selectors = N_det_selectors_read
endif
SOFT_TOUCH psi_det psi_coef N_det_selectors N_det_generators
SOFT_TOUCH psi_det psi_coef N_det_selectors N_det_generators psi_coef_generators psi_det_generators
! n_det_generators
! n_det_selectors
! psi_coef
! psi_coef_generators
! psi_det
! psi_det_generators
end

View File

@ -541,3 +541,24 @@ use bitmasks
end
logical function is_i_in_virtual(i)
use bitmasks
implicit none
integer,intent(in) :: i
integer(bit_kind) :: key(N_int)
integer :: k,j
integer :: accu
is_i_in_virtual = .False.
key= 0_bit_kind
k = ishft(i-1,-bit_kind_shift)+1
j = i-ishft(k-1,bit_kind_shift)-1
key(k) = ibset(key(k),j)
accu = 0
do k = 1, N_int
accu += popcnt(iand(key(k),virt_bitmask(k,1)))
enddo
if(accu .ne. 0)then
is_i_in_virtual = .True.
endif
end

View File

@ -37,7 +37,7 @@ BEGIN_PROVIDER [ integer(bit_kind), full_ijkl_bitmask_4, (N_int,4) ]
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), core_inact_act_bitmask_4, (N_int,4) ]
BEGIN_PROVIDER [ integer(bit_kind), core_inact_act_bitmask_4, (N_int,4) ]
implicit none
integer :: i
do i=1,N_int
@ -473,17 +473,33 @@ END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), reunion_of_core_inact_act_bitmask, (N_int,2)]
&BEGIN_PROVIDER [ integer, n_core_inact_act_orb ]
implicit none
BEGIN_DOC
! Reunion of the core, inactive and active bitmasks
END_DOC
integer :: i,j
n_core_inact_act_orb = 0
do i = 1, N_int
reunion_of_core_inact_act_bitmask(i,1) = ior(reunion_of_core_inact_bitmask(i,1),cas_bitmask(i,1,1))
reunion_of_core_inact_act_bitmask(i,2) = ior(reunion_of_core_inact_bitmask(i,2),cas_bitmask(i,1,1))
n_core_inact_act_orb +=popcnt(reunion_of_core_inact_act_bitmask(i,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, list_core_inact_act, (n_core_inact_act_orb)]
&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (mo_tot_num)]
implicit none
integer :: occ_inact(N_int*bit_kind_size)
integer :: itest,i
occ_inact = 0
call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), occ_inact(1), itest, N_int)
list_inact_reverse = 0
do i = 1, n_core_inact_act_orb
list_core_inact_act(i) = occ_inact(i)
list_core_inact_act_reverse(occ_inact(i)) = i
enddo
END_PROVIDER
@ -543,8 +559,8 @@ END_PROVIDER
integer :: i,j
n_core_orb = 0
do i = 1, N_int
core_bitmask(i,1) = xor(closed_shell_ref_bitmask(i,1),reunion_of_cas_inact_bitmask(i,1))
core_bitmask(i,2) = xor(closed_shell_ref_bitmask(i,2),reunion_of_cas_inact_bitmask(i,2))
core_bitmask(i,1) = xor(full_ijkl_bitmask(i),ior(reunion_of_cas_inact_bitmask(i,1),virt_bitmask(i,1)))
core_bitmask(i,2) = xor(full_ijkl_bitmask(i),ior(reunion_of_cas_inact_bitmask(i,2),virt_bitmask(i,1)))
n_core_orb += popcnt(core_bitmask(i,1))
enddo
print*,'n_core_orb = ',n_core_orb

View File

@ -37,6 +37,72 @@ subroutine do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
endif
end
subroutine do_spin_flip(key_in,i_flip,ispin,i_ok)
implicit none
BEGIN_DOC
! flip the spin ispin in the orbital i_flip
! on key_in
! ispin = 1 == alpha
! ispin = 2 == beta
! i_ok = 1 == the flip is possible
! i_ok = -1 == the flip is not possible
END_DOC
integer, intent(in) :: i_flip,ispin
integer(bit_kind), intent(inout) :: key_in(N_int,2)
integer, intent(out) :: i_ok
integer :: k,j,i
integer(bit_kind) :: key_tmp(N_int,2)
i_ok = -1
key_tmp = 0_bit_kind
k = ishft(i_flip-1,-bit_kind_shift)+1
j = i_flip-ishft(k-1,bit_kind_shift)-1
key_tmp(k,1) = ibset(key_tmp(k,1),j)
integer :: other_spin(2)
other_spin(1) = 2
other_spin(2) = 1
if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then
! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip"
key_in(k,ispin) = ibclr(key_in(k,ispin),j) ! destroy the electron ispin in the orbital i_flip
key_in(k,other_spin(ispin)) = ibset(key_in(k,other_spin(ispin)),j) ! create an electron of spin other_spin in the same orbital
i_ok = 1
else
return
endif
end
logical function is_spin_flip_possible(key_in,i_flip,ispin)
implicit none
BEGIN_DOC
! returns .True. if the spin-flip of spin ispin in the orbital i_flip is possible
! on key_in
END_DOC
integer, intent(in) :: i_flip,ispin
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: k,j,i
integer(bit_kind) :: key_tmp(N_int,2)
is_spin_flip_possible = .False.
key_tmp = 0_bit_kind
k = ishft(i_flip-1,-bit_kind_shift)+1
j = i_flip-ishft(k-1,bit_kind_shift)-1
key_tmp(k,1) = ibset(key_tmp(k,1),j)
integer :: other_spin(2)
other_spin(1) = 2
other_spin(2) = 1
if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then
! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip"
is_spin_flip_possible = .True.
return
else
return
endif
end
subroutine set_bit_to_integer(i_physical,key,Nint)
use bitmasks
implicit none

View File

@ -334,7 +334,7 @@ subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nma
accu_precision_of_diag = 0.d0
do i = 1, nstates
do j = i+1, nstates
if( ( dabs(s2(i,i) - s2(j,j)) .le.1.d-10 ) .and. (dabs(s2(i,j) + dabs(s2(i,j)))) .le.1.d-10) then
if( ( dabs(s2(i,i) - s2(j,j)) .le.0.5d0 ) ) then
s2(i,j) = 0.d0
s2(j,i) = 0.d0
endif

View File

@ -1389,6 +1389,55 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
l = l+1
endif
enddo
else
print*, 'get_excitation_degree_vector_mono_or_exchange not yet implemented for N_int > 1 ...'
stop
endif
idx(0) = l-1
end
subroutine get_excitation_degree_vector_double_alpha_beta(key1,key2,degree,Nint,sze,idx)
use bitmasks
implicit none
BEGIN_DOC
! Applies get_excitation_degree to an array of determinants and return only the mono excitations
! and the connections through exchange integrals
END_DOC
integer, intent(in) :: Nint, sze
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: degree(sze)
integer, intent(out) :: idx(0:sze)
integer(bit_kind) :: key_tmp(Nint,2)
integer :: i,l,d,m
integer :: degree_alpha, degree_beta
ASSERT (Nint > 0)
ASSERT (sze > 0)
l=1
if (Nint==1) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
d = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2)))
if (d .ne.4)cycle
key_tmp(1,1) = xor(key1(1,1,i),key2(1,1))
key_tmp(1,2) = xor(key1(1,2,i),key2(1,2))
degree_alpha = popcnt(key_tmp(1,1))
degree_beta = popcnt(key_tmp(1,2))
if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
enddo
else if (Nint==2) then
!DIR$ LOOP COUNT (1000)
@ -1397,29 +1446,17 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2)))
exchange_1 = popcnt(xor(ior(key1(1,1,i),key1(1,2,i)),ior(key2(1,2),key2(1,2)))) + &
popcnt(xor(ior(key1(2,1,i),key1(2,2,i)),ior(key2(2,2),key2(2,2))))
exchange_2 = popcnt(ior(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) + &
popcnt(ior(xor(key1(2,1,i),key2(2,1)),xor(key1(2,2,i),key2(2,2))))
if (d > 4)cycle
if (d ==4)then
if(exchange_1 .eq. 0 ) then
if (d .ne.4)cycle
key_tmp(1,1) = xor(key1(1,1,i),key2(1,1))
key_tmp(1,2) = xor(key1(1,2,i),key2(1,2))
key_tmp(2,1) = xor(key1(2,1,i),key2(2,1))
key_tmp(2,2) = xor(key1(2,2,i),key2(2,2))
degree_alpha = popcnt(key_tmp(1,1)) + popcnt(key_tmp(2,1))
degree_beta = popcnt(key_tmp(1,2)) + popcnt(key_tmp(2,2))
if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else
cycle
endif
! pause
else
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
endif
enddo
else if (Nint==3) then
@ -1432,31 +1469,19 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
popcnt(xor( key1(2,2,i), key2(2,2))) + &
popcnt(xor( key1(3,1,i), key2(3,1))) + &
popcnt(xor( key1(3,2,i), key2(3,2)))
exchange_1 = popcnt(xor(ior(key1(1,1,i),key1(1,2,i)),ior(key2(1,1),key2(1,2)))) + &
popcnt(xor(ior(key1(2,1,i),key1(2,2,i)),ior(key2(2,1),key2(2,2)))) + &
popcnt(xor(ior(key1(3,1,i),key1(3,2,i)),ior(key2(3,1),key2(3,2))))
exchange_2 = popcnt(ior(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) + &
popcnt(ior(xor(key1(2,1,i),key2(2,1)),xor(key1(2,2,i),key2(2,2)))) + &
popcnt(ior(xor(key1(3,1,i),key2(3,1)),xor(key1(3,2,i),key2(3,2))))
if (d > 4)cycle
if (d ==4)then
if(exchange_1 .eq. 0 ) then
if (d .ne.4)cycle
key_tmp(1,1) = xor(key1(1,1,i),key2(1,1))
key_tmp(1,2) = xor(key1(1,2,i),key2(1,2))
key_tmp(2,1) = xor(key1(2,1,i),key2(2,1))
key_tmp(2,2) = xor(key1(2,2,i),key2(2,2))
key_tmp(3,1) = xor(key1(3,1,i),key2(3,1))
key_tmp(3,2) = xor(key1(3,2,i),key2(3,2))
degree_alpha = popcnt(key_tmp(1,1)) + popcnt(key_tmp(2,1)) + popcnt(key_tmp(3,1))
degree_beta = popcnt(key_tmp(1,2)) + popcnt(key_tmp(2,2)) + popcnt(key_tmp(3,2))
if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else
cycle
endif
! pause
else
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
endif
enddo
else
@ -1464,39 +1489,26 @@ subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,s
!DIR$ LOOP COUNT (1000)
do i=1,sze
d = 0
exchange_1 = 0
!DIR$ LOOP COUNT MIN(4)
do m=1,Nint
d = d + popcnt(xor( key1(m,1,i), key2(m,1))) &
+ popcnt(xor( key1(m,2,i), key2(m,2)))
exchange_1 = popcnt(xor(ior(key1(m,1,i),key1(m,2,i)),ior(key2(m,1),key2(m,2))))
exchange_2 = popcnt(ior(xor(key1(m,1,i),key2(m,1)),xor(key1(m,2,i),key2(m,2))))
key_tmp(m,1) = xor(key1(m,1,i),key2(m,1))
key_tmp(m,2) = xor(key1(m,2,i),key2(m,2))
degree_alpha = popcnt(key_tmp(m,1))
degree_beta = popcnt(key_tmp(m,2))
enddo
if (d > 4)cycle
if (d ==4)then
if(exchange_1 .eq. 0 ) then
if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
else
cycle
endif
! pause
else
degree(l) = ishft(d,-1)
idx(l) = i
l = l+1
endif
enddo
endif
idx(0) = l-1
end
subroutine get_excitation_degree_vector_mono_or_exchange_verbose(key1,key2,degree,Nint,sze,idx)
use bitmasks
implicit none

View File

@ -10,7 +10,7 @@ type: logical
doc: If True, do not compute the bielectronic integrals when 4 indices are virtual
interface: ezfio,provider,ocaml
default: False
ezfio_name: None
ezfio_name: no_vvvv_integrals
[disk_access_mo_integrals]
type: Disk_access

File diff suppressed because it is too large Load Diff

View File

@ -484,6 +484,7 @@ subroutine map_get(map, key, value)
integer(map_size_kind) :: idx_cache
integer(cache_map_size_kind) :: idx
! index in tha pointers array
idx_cache = ishft(key,map_shift)
!DIR$ FORCEINLINE
call cache_map_get_interval(map%map(idx_cache), key, value, 1, map%map(idx_cache)%n_elements,idx)
@ -853,3 +854,25 @@ subroutine get_cache_map(map,map_idx,keys,values,n_elements)
enddo
end
subroutine get_cache_map_verbose(map,map_idx)
use map_module
implicit none
type (map_type), intent(in) :: map
integer(map_size_kind), intent(in) :: map_idx
integer(cache_map_size_kind) :: n_elements
integer(key_kind) :: keys(2**16)
double precision :: values(2**16)
integer(cache_map_size_kind) :: i
integer(key_kind) :: shift
shift = ishft(map_idx,-map_shift)
n_elements = map%map(map_idx)%n_elements
do i=1,n_elements
keys(i) = map%map(map_idx)%key(i) + shift
values(i) = map%map(map_idx)%value(i)
print*, ',key,values',keys(i),values(i)
enddo
end