10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 20:35:19 +01:00

Super fast density matrix

This commit is contained in:
Anthony Scemama 2017-03-13 12:26:16 +01:00
parent abf9073a69
commit 7cb17e0a48
2 changed files with 113 additions and 22 deletions

View File

@ -27,25 +27,33 @@ END_PROVIDER
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int,2)
integer :: exc(0:2,2,2),n_occ(2)
double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:)
integer :: krow, kcol, lrow, lcol
one_body_dm_mo_alpha = 0.d0
one_body_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, &
!$OMP tmp_a, tmp_b, n_occ)&
!$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num,&
!$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,&
!$OMP mo_tot_num)
!$OMP mo_tot_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns, &
!$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns, &
!$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values)
allocate(tmp_a(mo_tot_num_align,mo_tot_num,N_states), tmp_b(mo_tot_num_align,mo_tot_num,N_states) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
!$OMP DO SCHEDULE(guided)
do k=1,N_det
call bitstring_to_list_ab(psi_det(1,1,k), occ, n_occ, N_int)
krow = psi_bilinear_matrix_rows(k)
kcol = psi_bilinear_matrix_columns(k)
tmp_det(:,1) = psi_det(:,1, krow)
tmp_det(:,2) = psi_det(:,2, kcol)
call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int)
do m=1,N_states
ck = psi_coef(k,m)*psi_coef(k,m)
ck = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_values(k,m)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m) += ck
@ -55,24 +63,61 @@ END_PROVIDER
tmp_b(j,j,m) += ck
enddo
enddo
do l=1,k-1
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
l = k+1
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
do while ( lcol == kcol )
tmp_det2(:,1) = psi_det(:,1, lrow)
tmp_det2(:,2) = psi_det(:,2, lcol)
call get_excitation_degree(tmp_det,tmp_det2,degree,N_int)
if (degree == 1) then
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_values(l,m) * phase
if (s1==1) then
tmp_a(h1,p1,m) += ckl
tmp_a(p1,h1,m) += ckl
else
tmp_b(h1,p1,m) += ckl
tmp_b(p1,h1,m) += ckl
endif
enddo
endif
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef(k,m) * psi_coef(l,m) * phase
if (s1==1) then
tmp_a(h1,p1,m) += ckl
tmp_a(p1,h1,m) += ckl
else
tmp_b(h1,p1,m) += ckl
tmp_b(p1,h1,m) += ckl
endif
enddo
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_rows(l)
lcol = psi_bilinear_matrix_columns(l)
enddo
l = k+1
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
do while ( lrow == krow )
tmp_det2(:,1) = psi_det(:,1, lrow)
tmp_det2(:,2) = psi_det(:,2, lcol)
call get_excitation_degree(tmp_det,tmp_det2,degree,N_int)
if (degree == 1) then
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_transp_values(l,m) * phase
if (s1==1) then
tmp_a(h1,p1,m) += ckl
tmp_a(p1,h1,m) += ckl
else
tmp_b(h1,p1,m) += ckl
tmp_b(p1,h1,m) += ckl
endif
enddo
endif
l = l+1
if (l>N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l)
lcol = psi_bilinear_matrix_transp_columns(l)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL

View File

@ -393,6 +393,8 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
BEGIN_DOC
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
! D_a^t C D_b
!
! Rows are alpha determinants and columns are beta.
END_DOC
integer :: i,j,k, l
integer(bit_kind) :: tmp_det(N_int,2)
@ -421,10 +423,54 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
call isort(to_sort, iorder, N_det)
call iset_order(psi_bilinear_matrix_rows,iorder,N_det)
call iset_order(psi_bilinear_matrix_columns,iorder,N_det)
call dset_order(psi_bilinear_matrix_values,iorder,N_det)
do l=1,N_states
call dset_order(psi_bilinear_matrix_values(1,l),iorder,N_det)
enddo
deallocate(iorder,to_sort)
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_transp_values, (N_det,N_states) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_rows, (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_columns, (N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
! D_a^t C D_b
!
! Rows are Beta determinants and columns are alpha
END_DOC
integer :: i,j,k,l
PROVIDE psi_coef_sorted_bit
integer, allocatable :: iorder(:), to_sort(:)
allocate(iorder(N_det), to_sort(N_det))
do l=1,N_states
do k=1,N_det
psi_bilinear_matrix_transp_values (k,l) = psi_bilinear_matrix_values (k,l)
enddo
enddo
do k=1,N_det
psi_bilinear_matrix_transp_columns(k) = psi_bilinear_matrix_columns(k)
psi_bilinear_matrix_transp_rows (k) = psi_bilinear_matrix_rows (k)
i = psi_bilinear_matrix_transp_columns(k)
j = psi_bilinear_matrix_transp_rows (k)
to_sort(k) = N_det_beta_unique * (j-1) + i
iorder(k) = k
enddo
call isort(to_sort, iorder, N_det)
call iset_order(psi_bilinear_matrix_transp_rows,iorder,N_det)
call iset_order(psi_bilinear_matrix_transp_columns,iorder,N_det)
do l=1,N_states
call dset_order(psi_bilinear_matrix_values(1,l),iorder,N_det)
enddo
deallocate(iorder,to_sort)
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_bilinear_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ]
implicit none
BEGIN_DOC