diff --git a/src/Determinants/diagonalize_CI.irp.f b/src/Determinants/diagonalize_CI.irp.f index b533bed2..17943f43 100644 --- a/src/Determinants/diagonalize_CI.irp.f +++ b/src/Determinants/diagonalize_CI.irp.f @@ -36,225 +36,223 @@ END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] - BEGIN_DOC - ! Eigenvectors/values of the CI matrix - END_DOC - implicit none - double precision :: ovrlp,u_dot_v - integer :: i_good_state - integer, allocatable :: index_good_state_array(:) - logical, allocatable :: good_state_array(:) - double precision, allocatable :: s2_values_tmp(:) - integer :: i_other_state - double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) - integer :: i_state - double precision :: s2,e_0 - integer :: i,j,k - double precision, allocatable :: s2_eigvalues(:) - double precision, allocatable :: e_array(:) - integer, allocatable :: iorder(:) - - ! Guess values for the "N_states_diag" states of the CI_eigenvectors - do j=1,min(N_states_diag,N_det) - do i=1,N_det - CI_eigenvectors(i,j) = psi_coef(i,j) - enddo - enddo - - do j=N_det+1,N_states_diag - do i=1,N_det - CI_eigenvectors(i,j) = 0.d0 - enddo - enddo - - if (diag_algorithm == "Davidson") then - - call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & - size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) - do j=1,N_states_diag - call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j)) - enddo - - - else if (diag_algorithm == "Lapack") then - - allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) - allocate (eigenvalues(N_det)) - call lapack_diag(eigenvalues,eigenvectors, & - H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) - CI_electronic_energy(:) = 0.d0 - if (s2_eig) then - i_state = 0 - allocate (s2_eigvalues(N_det)) - allocate(index_good_state_array(N_det),good_state_array(N_det)) - good_state_array = .False. - do j=1,N_det - call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) - s2_eigvalues(j) = s2 - ! Select at least n_states states with S^2 values closed to "expected_s2" - if(dabs(s2-expected_s2).le.0.3d0)then - i_state +=1 - index_good_state_array(i_state) = j - good_state_array(j) = .True. - endif - if(i_state.eq.N_states) then - exit - endif - enddo - if(i_state .ne.0)then - ! Fill the first "i_state" states that have a correct S^2 value - do j = 1, i_state - do i=1,N_det - CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) - enddo - CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) - CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) + BEGIN_DOC + ! Eigenvectors/values of the CI matrix + END_DOC + implicit none + double precision :: ovrlp,u_dot_v + integer :: i_good_state + integer, allocatable :: index_good_state_array(:) + logical, allocatable :: good_state_array(:) + double precision, allocatable :: s2_values_tmp(:) + integer :: i_other_state + double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) + integer :: i_state + double precision :: s2,e_0 + integer :: i,j,k + double precision, allocatable :: s2_eigvalues(:) + double precision, allocatable :: e_array(:) + integer, allocatable :: iorder(:) + + ! Guess values for the "N_states_diag" states of the CI_eigenvectors + do j=1,min(N_states_diag,N_det) + do i=1,N_det + CI_eigenvectors(i,j) = psi_coef(i,j) + enddo + enddo + + do j=N_det+1,N_states_diag + do i=1,N_det + CI_eigenvectors(i,j) = 0.d0 + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy,& + size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) + do j=1,N_states_diag + call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j)) + enddo + + + else if (diag_algorithm == "Lapack") then + + allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) + allocate (eigenvalues(N_det)) + call lapack_diag(eigenvalues,eigenvectors, & + H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) + CI_electronic_energy(:) = 0.d0 + if (s2_eig) then + i_state = 0 + allocate (s2_eigvalues(N_det)) + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + do j=1,N_det + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) + s2_eigvalues(j) = s2 + ! Select at least n_states states with S^2 values closed to "expected_s2" + if(dabs(s2-expected_s2).le.0.3d0)then + i_state +=1 + index_good_state_array(i_state) = j + good_state_array(j) = .True. + endif + if(i_state.eq.N_states) then + exit + endif enddo - i_other_state = 0 - do j = 1, N_det - if(good_state_array(j))cycle - i_other_state +=1 - if(i_state+i_other_state.gt.n_states_diag)then - exit - endif - call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) - do i=1,N_det - CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) - enddo - CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) - CI_eigenvectors_s2(i_state+i_other_state) = s2 - enddo - + if(i_state .ne.0)then + ! Fill the first "i_state" states that have a correct S^2 value + do j = 1, i_state + do i=1,N_det + CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) + enddo + CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) + CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) + enddo + i_other_state = 0 + do j = 1, N_det + if(good_state_array(j))cycle + i_other_state +=1 + if(i_state+i_other_state.gt.n_states_diag)then + exit + endif + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) + do i=1,N_det + CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) + enddo + CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) + CI_eigenvectors_s2(i_state+i_other_state) = s2 + enddo + + else + print*,'' + print*,'!!!!!!!! WARNING !!!!!!!!!' + print*,' Within the ',N_det,'determinants selected' + print*,' and the ',N_states_diag,'states requested' + print*,' We did not find any state with S^2 values close to ',expected_s2 + print*,' We will then set the first N_states eigenvectors of the H matrix' + print*,' as the CI_eigenvectors' + print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space' + print*,'' + do j=1,min(N_states_diag,N_det) + do i=1,N_det + CI_eigenvectors(i,j) = eigenvectors(i,j) + enddo + CI_electronic_energy(j) = eigenvalues(j) + CI_eigenvectors_s2(j) = s2_eigvalues(j) + enddo + endif deallocate(index_good_state_array,good_state_array) - - else - print*,'' - print*,'!!!!!!!! WARNING !!!!!!!!!' - print*,' Within the ',N_det,'determinants selected' - print*,' and the ',N_states_diag,'states requested' - print*,' We did not find any state with S^2 values close to ',expected_s2 - print*,' We will then set the first N_states eigenvectors of the H matrix' - print*,' as the CI_eigenvectors' - print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space' - print*,'' - do j=1,min(N_states_diag,N_det) + deallocate(s2_eigvalues) + else + ! Select the "N_states_diag" states of lowest energy + do j=1,min(N_det,N_states_diag) + call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo - CI_electronic_energy(j) = eigenvalues(j) - CI_eigenvectors_s2(j) = s2_eigvalues(j) + CI_electronic_energy(j) = eigenvalues(j) + CI_eigenvectors_s2(j) = s2 enddo - endif - deallocate(s2_eigvalues) - else - ! Select the "N_states_diag" states of lowest energy - do j=1,min(N_det,N_states_diag) - call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) - do i=1,N_det - CI_eigenvectors(i,j) = eigenvectors(i,j) - enddo - CI_electronic_energy(j) = eigenvalues(j) - CI_eigenvectors_s2(j) = s2 - enddo - endif - deallocate(eigenvectors,eigenvalues) - endif - - if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then - ! Diagonalizing S^2 within the "n_states_diag" states found - allocate(s2_eigvalues(N_states_diag)) - call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues) - - do j = 1, N_states_diag - do i = 1, N_det - psi_coef(i,j) = CI_eigenvectors(i,j) - enddo - enddo - - if(s2_eig)then - - ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value - ! closer to the "expected_s2" set as input - - allocate(index_good_state_array(N_det),good_state_array(N_det)) - good_state_array = .False. - i_state = 0 - do j = 1, N_states_diag - if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then - good_state_array(j) = .True. - i_state +=1 - index_good_state_array(i_state) = j endif - enddo - ! Sorting the i_state good states by energy - allocate(e_array(i_state),iorder(i_state)) - do j = 1, i_state - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j)) - enddo - CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) - call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) - CI_electronic_energy(j) = e_0 - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,i_state) - do j = 1, i_state - CI_electronic_energy(j) = e_array(j) - CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j))) - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j))) - enddo -! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) -! print*,'e = ',CI_electronic_energy(j) -! print*,' = ',e_0 -! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2) -! print*,'s^2 = ',CI_eigenvectors_s2(j) -! print*,'= ',s2 - enddo - deallocate(e_array,iorder) - - ! Then setting the other states without any specific energy order - i_other_state = 0 - do j = 1, N_states_diag - if(good_state_array(j))cycle - i_other_state +=1 - do i = 1, N_det - CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j) - enddo - CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j) - call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int) - CI_electronic_energy(i_state + i_other_state) = e_0 - enddo - deallocate(index_good_state_array,good_state_array) - - - else - - ! Sorting the N_states_diag by energy, whatever the S^2 value is - - allocate(e_array(n_states_diag),iorder(n_states_diag)) - do j = 1, N_states_diag - call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) - e_array(j) = e_0 - iorder(j) = j - enddo - call dsort(e_array,iorder,n_states_diag) - do j = 1, N_states_diag - CI_electronic_energy(j) = e_array(j) - do i = 1, N_det - CI_eigenvectors(i,j) = psi_coef(i,iorder(j)) - enddo - CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j)) - enddo - deallocate(e_array,iorder) + deallocate(eigenvectors,eigenvalues) endif - deallocate(s2_eigvalues) - endif - - + + if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then + ! Diagonalizing S^2 within the "n_states_diag" states found + allocate(s2_eigvalues(N_states_diag)) + call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues) + + do j = 1, N_states_diag + do i = 1, N_det + psi_coef(i,j) = CI_eigenvectors(i,j) + enddo + enddo + + if(s2_eig)then + + ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value + ! closer to the "expected_s2" set as input + + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + i_state = 0 + do j = 1, N_states_diag + if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then + good_state_array(j) = .True. + i_state +=1 + index_good_state_array(i_state) = j + endif + enddo + ! Sorting the i_state good states by energy + allocate(e_array(i_state),iorder(i_state)) + do j = 1, i_state + do i = 1, N_det + CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j)) + enddo + CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) + call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) + CI_electronic_energy(j) = e_0 + e_array(j) = e_0 + iorder(j) = j + enddo + call dsort(e_array,iorder,i_state) + do j = 1, i_state + CI_electronic_energy(j) = e_array(j) + CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j))) + do i = 1, N_det + CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j))) + enddo + ! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) + ! print*,'e = ',CI_electronic_energy(j) + ! print*,' = ',e_0 + ! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2) + ! print*,'s^2 = ',CI_eigenvectors_s2(j) + ! print*,'= ',s2 + enddo + deallocate(e_array,iorder) + + ! Then setting the other states without any specific energy order + i_other_state = 0 + do j = 1, N_states_diag + if(good_state_array(j))cycle + i_other_state +=1 + do i = 1, N_det + CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j) + enddo + CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j) + call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int) + CI_electronic_energy(i_state + i_other_state) = e_0 + enddo + + else + + ! Sorting the N_states_diag by energy, whatever the S^2 value is + + allocate(e_array(n_states_diag),iorder(n_states_diag)) + do j = 1, N_states_diag + call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) + e_array(j) = e_0 + iorder(j) = j + enddo + call dsort(e_array,iorder,n_states_diag) + do j = 1, N_states_diag + CI_electronic_energy(j) = e_array(j) + do i = 1, N_det + CI_eigenvectors(i,j) = psi_coef(i,iorder(j)) + enddo + CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j)) + enddo + deallocate(e_array,iorder) + endif + deallocate(s2_eigvalues) + deallocate(index_good_state_array,good_state_array) + + endif + END_PROVIDER - + subroutine diagonalize_CI implicit none BEGIN_DOC