mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 10:05:57 +01:00
working on davidson
This commit is contained in:
parent
6d30e194b8
commit
77f38a94a2
@ -632,9 +632,9 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
|
||||
PROVIDE ref_bitmask_energy
|
||||
|
||||
double precision :: hij, s2
|
||||
integer :: i,j
|
||||
integer :: i,j,k
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: degree, istate
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
@ -646,16 +646,20 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
|
||||
double precision :: ck(N_st), cl(N_st), cm(N_st)
|
||||
integer :: n_singles, n_doubles
|
||||
integer, allocatable :: singles(:), doubles(:)
|
||||
integer, allocatable :: singles_a(:,:), singles_b(:,:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
logical, allocatable :: is_single_a(:)
|
||||
logical, allocatable :: is_single_b(:)
|
||||
integer :: maxab, n_singles_max
|
||||
|
||||
allocate( buffer(N_int,N_det_alpha_unique), &
|
||||
singles(N_det_alpha_unique), doubles(N_det_alpha_unique), &
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)
|
||||
allocate( buffer(N_int,maxab), &
|
||||
singles(maxab), doubles(maxab), &
|
||||
is_single_a(N_det_alpha_unique), &
|
||||
idx(N_det_alpha_unique), idx0(N_det_alpha_unique) )
|
||||
is_single_b(N_det_beta_unique), &
|
||||
idx(maxab), idx0(maxab))
|
||||
|
||||
v_0 = 0.d0
|
||||
|
||||
do k_a=1,N_det
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
@ -690,12 +694,13 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
|
||||
i=1
|
||||
l_a = k_a+1
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
do while ( (lcol == kcol).and.(l_a <= N_det) )
|
||||
do while (lcol == kcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
buffer(1:N_int,i) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
idx(i) = lrow
|
||||
i=i+1
|
||||
l_a = l_a + 1
|
||||
i = i +1
|
||||
l_a = l_a+1
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
enddo
|
||||
i = i-1
|
||||
@ -747,12 +752,13 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
|
||||
i=1
|
||||
l_b = k_b+1
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
do while ( (lrow == krow).and.(l_b <= N_det) )
|
||||
do while (lrow == krow)
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
buffer(1:N_int,i) = psi_det_beta_unique(1:N_int, lcol)
|
||||
idx(i) = lcol
|
||||
i=i+1
|
||||
l_b = l_b + 1
|
||||
i = i +1
|
||||
l_b = l_b+1
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
enddo
|
||||
i = i-1
|
||||
@ -801,115 +807,190 @@ subroutine H_S2_u_0_nstates_new(v_0,s_0,N_st,sze_8)
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
do i=1,N_det_beta_unique
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
is_single_a(:) = .False.
|
||||
|
||||
k_a=1
|
||||
do i=1,N_det_beta_unique
|
||||
|
||||
! Select a beta determinant
|
||||
! -------------------------
|
||||
|
||||
spindet(1:N_int) = psi_det_beta_unique(1:N_int, i)
|
||||
tmp_det(1:N_int,2) = spindet(1:N_int)
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
n_singles_max = 0
|
||||
do i=1,N_det_alpha_unique
|
||||
spindet(1:N_int) = psi_det_alpha_unique(1:N_int, i)
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, spindet, N_int, N_det_beta_unique, &
|
||||
singles, n_singles )
|
||||
psi_det_alpha_unique, idx0, spindet, N_int, N_det_alpha_unique,&
|
||||
singles, n_singles)
|
||||
n_singles_max = max(n_singles_max, n_singles)
|
||||
enddo
|
||||
|
||||
do j=1,n_singles
|
||||
is_single_a( singles(j) ) = .True.
|
||||
enddo
|
||||
allocate (singles_a(0:n_singles_max, N_det_alpha_unique))
|
||||
do i=1,N_det_alpha_unique
|
||||
spindet(1:N_int) = psi_det_alpha_unique(1:N_int, i)
|
||||
call get_all_spin_singles( &
|
||||
psi_det_alpha_unique, idx0, spindet, N_int, N_det_alpha_unique,&
|
||||
singles_a(1,i), singles_a(0,i))
|
||||
enddo
|
||||
|
||||
! For all alpha.beta pairs with the selected beta
|
||||
! -----------------------------------------------
|
||||
do k_a=1,N_det
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
do while (kcol < i)
|
||||
k_a = k_a+1
|
||||
if (k_a > N_det) exit
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow)
|
||||
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol)
|
||||
|
||||
is_single_a = .False.
|
||||
do k=1,singles_a(0,krow)
|
||||
is_single_a( singles_a(k,krow) ) = .True.
|
||||
enddo
|
||||
|
||||
do while (kcol == i)
|
||||
if (k_a > 1) then
|
||||
if (kcol /= psi_bilinear_matrix_columns(k_a-1)) then
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, tmp_det(1,2), N_int, N_det_beta_unique,&
|
||||
singles, n_singles)
|
||||
endif
|
||||
else
|
||||
call get_all_spin_singles( &
|
||||
psi_det_beta_unique, idx0, tmp_det(1,2), N_int, N_det_beta_unique,&
|
||||
singles, n_singles)
|
||||
endif
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
! Loop over all alpha.beta pairs with a single exc alpha
|
||||
! ------------------------------------------------------
|
||||
do i=1,n_singles
|
||||
lcol = singles(i)
|
||||
! TODO cycle if lcol <= kcol
|
||||
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
|
||||
|
||||
l_a = k_a+1
|
||||
if (l_a > N_det) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
! TODO loop
|
||||
|
||||
do while (lrow == krow)
|
||||
|
||||
! Loop over all alpha.beta pairs with a single exc alpha
|
||||
! ------------------------------------------------------
|
||||
do while ( l_a < psi_bilinear_matrix_columns_loc(lcol+1) )
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
if (is_single_a(lrow)) then
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int,lrow)
|
||||
|
||||
! Build list of singly excited beta
|
||||
! ---------------------------------
|
||||
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
|
||||
v_0(k_a, 1:N_st) += hij * psi_bilinear_matrix_values(l_a,1:N_st)
|
||||
endif
|
||||
l_a += 1
|
||||
|
||||
m_b = psi_bilinear_matrix_order_reverse(l_a)
|
||||
m_b = m_b+1
|
||||
j=1
|
||||
do while ( (mrow == lrow) )
|
||||
mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
buffer(1:N_int,j) = psi_det_beta_unique(1:N_int,mcol)
|
||||
idx(j) = mcol
|
||||
j = j+1
|
||||
m_b = m_b+1
|
||||
if (m_b <= N_det) exit
|
||||
mrow = psi_bilinear_matrix_transp_rows(m_b)
|
||||
enddo
|
||||
j=j-1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call get_all_spin_singles( &
|
||||
buffer, idx, tmp_det(1,2), N_int, j, &
|
||||
doubles, n_doubles)
|
||||
enddo
|
||||
|
||||
! Compute Hij for all doubles
|
||||
! ---------------------------
|
||||
!----
|
||||
|
||||
m_b = psi_bilinear_matrix_order(l_a)+1
|
||||
mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
do j=1,n_doubles
|
||||
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, doubles(j) )
|
||||
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
|
||||
do while (mcol /= doubles(j))
|
||||
m_b = m_b+1
|
||||
if (m_b > N_det) exit
|
||||
mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
enddo
|
||||
m_a = psi_bilinear_matrix_order_reverse(m_b)
|
||||
! k_a=1
|
||||
! do i=1,N_det_beta_unique
|
||||
!
|
||||
! ! Select a beta determinant
|
||||
! ! -------------------------
|
||||
!
|
||||
! spindet(1:N_int) = psi_det_beta_unique(1:N_int, i)
|
||||
! tmp_det(1:N_int,2) = spindet(1:N_int)
|
||||
!
|
||||
! call get_all_spin_singles( &
|
||||
! psi_det_beta_unique, idx0, spindet, N_int, N_det_beta_unique, &
|
||||
! singles, n_singles )
|
||||
!
|
||||
! do j=1,n_singles
|
||||
! is_single_a( singles(j) ) = .True.
|
||||
! enddo
|
||||
!
|
||||
! ! For all alpha.beta pairs with the selected beta
|
||||
! ! -----------------------------------------------
|
||||
!
|
||||
! kcol = psi_bilinear_matrix_columns(k_a)
|
||||
! do while (kcol < i)
|
||||
! k_a = k_a+1
|
||||
! if (k_a > N_det) exit
|
||||
! kcol = psi_bilinear_matrix_columns(k_a)
|
||||
! enddo
|
||||
!
|
||||
! do while (kcol == i)
|
||||
!
|
||||
! krow = psi_bilinear_matrix_rows(k_a)
|
||||
! tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow)
|
||||
!
|
||||
! ! Loop over all alpha.beta pairs with a single exc alpha
|
||||
! ! ------------------------------------------------------
|
||||
!
|
||||
! l_a = k_a+1
|
||||
! if (l_a > N_det) exit
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! lcol = psi_bilinear_matrix_columns(l_a)
|
||||
!
|
||||
! do while (lrow == krow)
|
||||
!
|
||||
! ! Loop over all alpha.beta pairs with a single exc alpha
|
||||
! ! ------------------------------------------------------
|
||||
! if (is_single_a(lrow)) then
|
||||
!
|
||||
! tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int,lrow)
|
||||
!
|
||||
! ! Build list of singly excited beta
|
||||
! ! ---------------------------------
|
||||
!
|
||||
! m_b = psi_bilinear_matrix_order_reverse(l_a)
|
||||
! m_b = m_b+1
|
||||
! j=1
|
||||
! do while ( (mrow == lrow) )
|
||||
! mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
! buffer(1:N_int,j) = psi_det_beta_unique(1:N_int,mcol)
|
||||
! idx(j) = mcol
|
||||
! j = j+1
|
||||
! m_b = m_b+1
|
||||
! if (m_b <= N_det) exit
|
||||
! mrow = psi_bilinear_matrix_transp_rows(m_b)
|
||||
! enddo
|
||||
! j=j-1
|
||||
!
|
||||
! call get_all_spin_singles( &
|
||||
! buffer, idx, tmp_det(1,2), N_int, j, &
|
||||
! doubles, n_doubles)
|
||||
!
|
||||
! ! Compute Hij for all doubles
|
||||
! ! ---------------------------
|
||||
!
|
||||
! m_b = psi_bilinear_matrix_order(l_a)+1
|
||||
! mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
! do j=1,n_doubles
|
||||
! tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, doubles(j) )
|
||||
! call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij)
|
||||
! do while (mcol /= doubles(j))
|
||||
! m_b = m_b+1
|
||||
! if (m_b > N_det) exit
|
||||
! mcol = psi_bilinear_matrix_transp_columns(m_b)
|
||||
! enddo
|
||||
! m_a = psi_bilinear_matrix_order_reverse(m_b)
|
||||
! v_0(m_a, 1:N_st) += hij * psi_bilinear_matrix_values(k_a,1:N_st)
|
||||
! v_0(k_a, 1:N_st) += hij * psi_bilinear_matrix_values(m_a,1:N_st)
|
||||
enddo
|
||||
|
||||
endif
|
||||
l_a = l_a+1
|
||||
if (l_a > N_det) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
enddo
|
||||
|
||||
k_b = k_b+1
|
||||
if (k_b > N_det) exit
|
||||
kcol = psi_bilinear_matrix_transp_columns(k_b)
|
||||
enddo
|
||||
|
||||
do j=1,n_singles
|
||||
is_single_a( singles(j) ) = .False.
|
||||
enddo
|
||||
|
||||
enddo
|
||||
! enddo
|
||||
!
|
||||
! endif
|
||||
! l_a = l_a+1
|
||||
! if (l_a > N_det) exit
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! lcol = psi_bilinear_matrix_columns(l_a)
|
||||
! enddo
|
||||
!
|
||||
! k_b = k_b+1
|
||||
! if (k_b > N_det) exit
|
||||
! kcol = psi_bilinear_matrix_transp_columns(k_b)
|
||||
! enddo
|
||||
!
|
||||
! do j=1,n_singles
|
||||
! is_single_a( singles(j) ) = .False.
|
||||
! enddo
|
||||
!
|
||||
! enddo
|
||||
|
||||
|
||||
end
|
||||
@ -946,7 +1027,7 @@ subroutine H_S2_u_0_nstates_test(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,N_st,sze
|
||||
integer :: degree
|
||||
integer :: exc(0:2,2,2)
|
||||
call get_excitation(keys_tmp(1,1,j),keys_tmp(1,1,i),exc,degree,phase,Nint)
|
||||
if ((degree == 2).and.(exc(0,1,1)==1)) cycle
|
||||
! if ((degree == 2).and.(exc(0,1,1)==1)) cycle
|
||||
! if ((degree > 1)) cycle
|
||||
! if (exc(0,1,2) /= 0) cycle
|
||||
call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij)
|
||||
|
@ -2566,13 +2566,14 @@ subroutine i_H_j_double_alpha_beta(key_i,key_j,Nint,hij)
|
||||
double precision, intent(out) :: hij
|
||||
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
double precision :: phase, phase2
|
||||
double precision, external :: get_mo_bielec_integral
|
||||
|
||||
PROVIDE big_array_exchange_integrals mo_bielec_integrals_in_map
|
||||
|
||||
call get_mono_excitation_spin(key_i(1,1),key_j(1,1),exc(0,1,1),phase,Nint)
|
||||
call get_mono_excitation_spin(key_i(1,2),key_j(1,2),exc(0,1,2),phase,Nint)
|
||||
call get_mono_excitation_spin(key_i(1,2),key_j(1,2),exc(0,1,2),phase2,Nint)
|
||||
phase = phase*phase2
|
||||
if (exc(1,1,1) == exc(1,2,2)) then
|
||||
hij = phase * big_array_exchange_integrals(exc(1,1,1),exc(1,1,2),exc(1,2,1))
|
||||
else if (exc(1,2,1) == exc(1,1,2)) then
|
||||
|
@ -389,6 +389,7 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
|
||||
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_rows , (N_det) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns, (N_det) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order , (N_det) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns_loc, (N_det_beta_unique+1) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -428,6 +429,17 @@ BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states)
|
||||
do l=1,N_states
|
||||
call dset_order(psi_bilinear_matrix_values(1,l),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
psi_bilinear_matrix_columns_loc(1:N_det_beta_unique) = -1
|
||||
psi_bilinear_matrix_columns_loc(1) = 1
|
||||
do k=2,N_det
|
||||
if (psi_bilinear_matrix_columns(k) == psi_bilinear_matrix_columns(k-1)) then
|
||||
cycle
|
||||
else
|
||||
l = psi_bilinear_matrix_columns(k)
|
||||
psi_bilinear_matrix_columns_loc(l) = k
|
||||
endif
|
||||
enddo
|
||||
psi_bilinear_matrix_columns_loc(N_det_beta_unique+1) = N_det+1
|
||||
deallocate(to_sort)
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user