10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-10 21:18:29 +01:00

parameters.irp.f

This commit is contained in:
Manu 2014-07-09 22:44:42 +02:00
parent 17c157a1f3
commit 762fbd41cc
13 changed files with 381 additions and 298 deletions

View File

@ -307,7 +307,9 @@ end
&BEGIN_PROVIDER [ double precision, mo_bielec_integral_jj_anti, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Transform Bi-electronic integrals <ij|ij> and <ij|ji>
! mo_bielec_integral_jj(i,j) = J_ij
! mo_bielec_integral_jj_exchange(i,j) = J_ij
! mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij
END_DOC
integer :: i,j,p,q,r,s

View File

@ -1,4 +1,4 @@
program CIS_DT
program CIS_D
implicit none
integer :: i
print*,'MP2_dresssing=',mp2_dressing
@ -18,7 +18,7 @@ endif
print*,'i = ',i
print*,'CIS = ',eigenvalues_CIS(i)
print*,'CIS(DdT)= ',eigenvalues_CIS_dress_D(i)
print*,'s2(DdT) = ',s_2_CIS_dress_D_dt(i)
print*,'s2(DdT) = ',s_2_CIS_dress_D(i)
print*,'<x> = ',CIS_states_properties(1,i)
print*,'<y> = ',CIS_states_properties(2,i)
print*,'<z> = ',CIS_states_properties(3,i)
@ -27,39 +27,39 @@ endif
print*,'<zz> = ',CIS_states_properties(6,i)
print*,''
enddo
double precision :: delta_E_CIS,delta_E_CIS_DT,convert
double precision :: delta_E_CIS,delta_E_CIS_D,convert
convert = 1.d0
print*,'Excitation energies : CIS CIS_DT (Hartree)'
print*,'Excitation energies : CIS CIS_D (Hartree)'
do i = 2, n_state_CIS
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
delta_E_CIS_DT = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
delta_E_CIS_D = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_D*convert
enddo
convert = 27.2114d0
print*,'Excitation energies : CIS CIS_DT (eV)'
print*,'Excitation energies : CIS CIS_D (eV)'
do i = 2, n_state_CIS
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
delta_E_CIS_DT = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.6,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
delta_E_CIS_D = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.6,x))')i,delta_E_CIS*convert,delta_E_CIS_D*convert
enddo
convert = 219475d0
print*,'Excitation energies : CIS CIS_DT (cm-1)'
print*,'Excitation energies : CIS CIS_D (cm-1)'
do i = 2, n_state_CIS
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
delta_E_CIS_DT = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.1,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
delta_E_CIS_D = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.1,x))')i,delta_E_CIS*convert,delta_E_CIS_D*convert
enddo
convert = 627.51d0
print*,'Excitation energies : CIS CIS_DT (Kcal/mol)'
print*,'Excitation energies : CIS CIS_D (Kcal/mol)'
do i = 2, n_state_CIS
delta_E_CIS = eigenvalues_CIS(i) - eigenvalues_CIS(1)
delta_E_CIS_DT = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_DT*convert
delta_E_CIS_D = eigenvalues_CIS_dress_D(i) - eigenvalues_CIS_dress_D(1)
write(*,'(I3,xxxxxxxxxxxxxxxx,5(F16.5,x))')i,delta_E_CIS*convert,delta_E_CIS_D*convert
enddo
!if(save_all_dm_cis)then

View File

@ -212,7 +212,8 @@
allocate (delta_H_matrix_doub(size_psi_CIS,size_psi_CIS))
allocate(eigvalues(size_psi_CIS),eigvectors(size_psi_CIS,size_psi_CIS))
do i = 1,n_state_CIS
call dress_by_doubles(eigenvalues_CIS(i),coefs_CIS(1,i),delta_H_matrix_doub,size_psi_CIS) !dressing of the Doubles
! call dress_by_doubles(eigenvalues_CIS(i),coefs_CIS(1,i),delta_H_matrix_doub,size_psi_CIS) !dressing of the Doubles
delta_H_matrix_doub = 0.d0
do j = 1,size_psi_CIS
do k = 1,size_psi_CIS
@ -220,6 +221,14 @@
enddo
delta_H_matrix_doub(j,j) += dress_T_discon_array_CIS(j)
enddo
double precision :: accu
accu = 0.d0
do j = 1, size_psi_CIS
do k = 1, size_psi_CIS
accu += delta_H_matrix_doub(j,k) * coefs_CIS(j,i) * coefs_CIS(k,i)
enddo
enddo
call lapack_diag(eigvalues,eigvectors,delta_H_matrix_doub,size_psi_CIS,size_psi_CIS)
! state following
@ -235,7 +244,9 @@
endif
! <CIS(i)|state(k)>
enddo
! print*,'overlap = ',max_overlap
print*,i,i_overlap
print*,'overlap = ',max_overlap
i_overlap = i
overlap_Ddt=max_overlap
do k = 1,size_psi_CIS
eigenvectors_CIS_dress_D_dt(k,i) = eigvectors(k,i_overlap)
@ -248,6 +259,9 @@
call get_s2_u0(psi_CIS,eigenvectors_CIS_dress_D_dt(1,i),size_psi_CIS,size_psi_CIS,s2)
s_2_CIS_dress_D_dt(i) = s2
eigenvalues_CIS_dress_D_dt(i) = eigvalues(i_overlap)
print*,'eigenvalues_CIS_dress_D_dt(i)= ',eigenvalues_CIS_dress_D_dt(i)
print*,'accu = ',accu
print*,'eigenvalues_CIS = ',eigenvalues_CIS(i)
enddo
END_PROVIDER

252
src/CIS_dressed/EN2.irp.f Normal file
View File

@ -0,0 +1,252 @@
BEGIN_PROVIDER [double precision, EN2_corr_energy]
&BEGIN_PROVIDER [double precision, p_imp_EN,(elec_alpha_num+1:n_act_cis)]
&BEGIN_PROVIDER [double precision, h_imp_EN,(n_core_cis+1:elec_alpha_num)]
&BEGIN_PROVIDER [double precision, hp_imp_EN,(n_core_cis+1:elec_alpha_num,elec_alpha_num+1:n_act_cis)]
BEGIN_DOC
!Calculation of the EN2 correlation energy (EN2_corr_energy)
!and calculation of the contribution of the disconnected Triples on the
!Singles, via the impossible (p_imp_EN, h_imp_EN, hp_imp_EN)
END_DOC
implicit none
integer :: i,j,k,l !variables for going over the occupied (i,j) and virutal (k,l)
double precision :: direct,exchg,hij !calculating direct, exchange and total contribution
double precision :: get_mo_bielec_integral
double precision :: e_i,e_k,e_j,e_l !epsilons of i,j,k,l
double precision :: delta_e_ik,delta_e_ikj
double precision :: delta_e !delta epsilons
double precision :: delta_e_tmp,H_jj_total
integer :: ispin1,ispin2,i_ok
print*,'EN2_corr_energy'
EN2_corr_energy=0.d0
do i=n_core_cis+1,elec_alpha_num
h_imp_EN(i)=0.d0
do k =elec_beta_num + 1, n_act_cis
p_imp_EN(k)=0.d0
hp_imp_EN(i,k)=0.d0
enddo
enddo
print*,'HF_energy = ',HF_energy
print*,'1'
if(EN_2_2)then
do i=n_core_cis+1,elec_alpha_num
h_imp_EN(i)=0.d0
e_i=diagonal_Fock_matrix_mo(i)
do k=elec_alpha_num+1,n_act_cis
hp_imp_EN(i,k)=0.d0
e_k=diagonal_Fock_matrix_mo(k)
delta_e_ik=e_i-e_k
!same spin contribution for EN2_corr_energy
do j=i+1,elec_alpha_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
do l=k+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
!
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
EN2_corr_energy=EN2_corr_energy+2*hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
p_imp_EN(l)=p_imp_EN(l)+hij
h_imp_EN(j)=h_imp_EN(j)+hij
enddo
enddo
!same spin contribution for hp_imp_EN
do j=n_core_cis+1,elec_alpha_num
if(j==i)cycle
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_alpha_num+1,n_act_cis
if(l==k)cycle
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij = 0.5d0 * (-delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij))
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
!different spin contribution
do j=n_core_cis+1,elec_beta_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_beta_num+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
mo_bielec_integral_jj(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(j,l) + &
mo_bielec_integral_jj(i,l) + &
mo_bielec_integral_jj(j,k)
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
hij=direct*direct
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
EN2_corr_energy=EN2_corr_energy+hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
enddo
enddo
print*,'2'
else
do i=n_core_cis+1,elec_alpha_num
h_imp_EN(i)=0.d0
e_i=diagonal_Fock_matrix_mo(i)
do k=elec_alpha_num+1,n_act_cis
hp_imp_EN(i,k)=0.d0
e_k=diagonal_Fock_matrix_mo(k)
delta_e_ik=e_i-e_k
!same spin contribution for EN2_corr_energy
do j=i+1,elec_alpha_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
do l=k+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
!
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij = hij*hij/delta_e
EN2_corr_energy=EN2_corr_energy+2*hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
p_imp_EN(l)=p_imp_EN(l)+hij
h_imp_EN(j)=h_imp_EN(j)+hij
enddo
enddo
!same spin contribution for hp_imp_EN
do j=n_core_cis+1,elec_alpha_num
if(j==i)cycle
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_alpha_num+1,n_act_cis
if(l==k)cycle
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij = hij*hij/delta_e
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
!different spin contribution
do j=n_core_cis+1,elec_beta_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_beta_num+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
mo_bielec_integral_jj(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(j,l) + &
mo_bielec_integral_jj(i,l) + &
mo_bielec_integral_jj(j,k)
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
hij=direct*direct
hij = hij*hij/delta_e
EN2_corr_energy=EN2_corr_energy+hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
enddo
enddo
endif
print*,'EN correlation energy=',EN2_corr_energy
print*,'EN correlation energy=',EN2_corr_energy
END_PROVIDER

View File

@ -139,269 +139,6 @@
END_PROVIDER
BEGIN_PROVIDER [double precision, EN2_corr_energy]
&BEGIN_PROVIDER [double precision, p_imp_EN,(elec_alpha_num+1:n_act_cis)]
&BEGIN_PROVIDER [double precision, h_imp_EN,(n_core_cis+1:elec_alpha_num)]
&BEGIN_PROVIDER [double precision, hp_imp_EN,(n_core_cis+1:elec_alpha_num,elec_alpha_num+1:n_act_cis)]
BEGIN_DOC
!Calculation of the EN2 correlation energy (EN2_corr_energy)
!and calculation of the contribution of the disconnected Triples on the
!Singles, via the impossible (p_imp_EN, h_imp_EN, hp_imp_EN)
END_DOC
implicit none
integer :: i,j,k,l !variables for going over the occupied (i,j) and virutal (k,l)
double precision :: direct,exchg,hij !calculating direct, exchange and total contribution
double precision :: get_mo_bielec_integral
double precision :: e_i,e_k,e_j,e_l !epsilons of i,j,k,l
double precision :: delta_e_ik,delta_e_ikj
double precision :: delta_e !delta epsilons
double precision :: delta_e_tmp,H_jj_total
integer, allocatable :: key_in(:,:)
integer, allocatable :: key_out(:,:)
integer :: ispin1,ispin2,i_ok
allocate(key_in(N_int,2))
allocate(key_out(N_int,2))
print*,'EN2_corr_energy'
EN2_corr_energy=0.d0
do i=n_core_cis+1,elec_alpha_num
h_imp_EN(i)=0.d0
do k =elec_beta_num + 1, n_act_cis
p_imp_EN(k)=0.d0
hp_imp_EN(i,k)=0.d0
enddo
enddo
do i=n_core_cis+1,elec_alpha_num
! h_imp_EN(i)=0.d0
e_i=diagonal_Fock_matrix_mo(i)
do k=elec_alpha_num+1,n_act_cis
! hp_imp_EN(i,k)=0.d0
e_k=diagonal_Fock_matrix_mo(k)
delta_e_ik=e_i-e_k
!same spin contribution for EN2_corr_energy
do j=i+1,elec_alpha_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
!same spin contribution for EN2_corr_energy and a part of the contribution to p_imp_EN,h_imp_EN
do l=k+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
! ispin1 = 1
! ispin2 = 1
! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
! delta_e_tmp = HF_energy - H_jj_total(key_out)
! if(dabs(delta_e_tmp-delta_e).gt.1.d-10)then
! print*,'same spin first'
! print*,'delta_e_SSS = ',delta_e_tmp-delta_e
! stop
! endif
!
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
! ispin1 = 1
! ispin2 = 1
! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
! delta_e_tmp = HF_energy - H_jj_total(key_out)
EN2_corr_energy=EN2_corr_energy+2*hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
p_imp_EN(l)=p_imp_EN(l)+hij
h_imp_EN(j)=h_imp_EN(j)+hij
enddo
enddo
! !remaining same spin contribution for p_imp_EN
! do l=elec_alpha_num+1,k-1
! e_l=diagonal_Fock_matrix_mo(l)
! delta_e=delta_e_ikj-e_l
! delta_e=e_i + e_j - e_k -e_l
! delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
! mo_bielec_integral_jj_anti(k,l)
! delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
! mo_bielec_integral_jj_anti(i,l) + &
! mo_bielec_integral_jj_anti(j,k) + &
! mo_bielec_integral_jj_anti(j,l)
! e_l=diagonal_Fock_matrix_mo(l)
! delta_e=delta_e_ikj-e_l
! delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
! mo_bielec_integral_jj_anti(k,l)
! delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
! mo_bielec_integral_jj_anti(i,l) + &
! mo_bielec_integral_jj_anti(j,k) + &
! mo_bielec_integral_jj_anti(j,l)
!! ispin1 = 1
!! ispin2 = 1
!! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
!! delta_e_tmp = HF_energy - H_jj_total(key_out)
!! if(dabs(delta_e_tmp-delta_e).gt.1.d-10)then
!! call print_key(key_out)
!! call print_key(ref_bitmask)
!! print*,i,k,j,l
!! print*,'same spin middle'
!! print*,'delta_e_SSS = ',delta_e_tmp-delta_e
!! print*,'delta_e_SSS = ',delta_e_tmp,delta_e
!! stop
!! endif
! direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
! exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
! hij=(direct-exchg)*(direct-exchg)
! hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
! p_imp_EN(k)=p_imp_EN(k)+hij
! enddo
! enddo
! !remaining same spin contribution for h_imp_EN
! do j=n_core_cis+1,i-1
! e_j=diagonal_Fock_matrix_mo(j)
! delta_e_ikj=delta_e_ik+e_j
! do l=k+1,n_act_cis
! e_l=diagonal_Fock_matrix_mo(l)
! delta_e=delta_e_ikj-e_l
! delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
! mo_bielec_integral_jj_anti(k,l)
! delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
! mo_bielec_integral_jj_anti(i,l) + &
! mo_bielec_integral_jj_anti(j,k) + &
! mo_bielec_integral_jj_anti(j,l)
!! ispin2 = 1
!! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
!! delta_e_tmp = HF_energy - H_jj_total(key_out)
!! if(dabs(delta_e_tmp-delta_e).gt.1.d-10)then
!! print*,'same spin third '
!! print*,'delta_e_SSS = ',delta_e_tmp-delta_e
!! stop
!! endif
! direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
! exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
! hij=(direct-exchg)*(direct-exchg)
! hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
! h_imp_EN(i)=h_imp_EN(i)+hij
! enddo
! enddo
!same spin contribution for hp_imp_EN
do j=n_core_cis+1,elec_alpha_num
if(j==i)cycle
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_alpha_num+1,n_act_cis
if(l==k)cycle
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj_anti(i,j) - &
mo_bielec_integral_jj_anti(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(i,l) + &
mo_bielec_integral_jj_anti(j,k) + &
mo_bielec_integral_jj_anti(j,l)
!!! ispin1 = 1
!!! ispin2 = 1
!!! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
!!! delta_e_tmp = HF_energy - H_jj_total(key_out)
!!! if(dabs(delta_e_tmp-delta_e).gt.1.d-10)then
!!! print*,'same spin fourth'
!!! print*,'delta_e_SSS = ',delta_e_tmp-delta_e
!!! call print_key(key_out)
!!! call print_key(ref_bitmask)
!!! print*,i,k,j,l
!!! stop
!!! endif
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
exchg=get_mo_bielec_integral(i,j,l,k,mo_integrals_map)
hij=(direct-exchg)*(direct-exchg)
hij = 0.5d0 * (-delta_e - dsqrt(delta_e * delta_e + 4.d0 * hij))
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
!different spin contribution
do j=n_core_cis+1,elec_beta_num
e_j=diagonal_Fock_matrix_mo(j)
delta_e_ikj=delta_e_ik+e_j
do l=elec_beta_num+1,n_act_cis
e_l=diagonal_Fock_matrix_mo(l)
delta_e=delta_e_ikj-e_l
delta_e=delta_e-mo_bielec_integral_jj(i,j) - &
mo_bielec_integral_jj(k,l)
delta_e=delta_e+mo_bielec_integral_jj_anti(i,k) + &
mo_bielec_integral_jj_anti(j,l) + &
mo_bielec_integral_jj(i,l) + &
mo_bielec_integral_jj(j,k)
!! ispin1 = 2
!! ispin2 = 1
!! call diexcitation(i,j,k,l,ispin1,ispin2,ref_bitmask,key_out,i_ok,N_int)
!! delta_e_tmp = HF_energy - H_jj_total(key_out)
!! if(dabs(delta_e_tmp-delta_e).gt.1.d-10)then
!! print*,'different spin '
!! print*,'delta_e_SSS = ',delta_e_tmp-delta_e
!! stop
!! endif
direct=get_mo_bielec_integral(i,j,k,l,mo_integrals_map)
hij=direct*direct
hij=0.5d0*(-delta_e-dsqrt(delta_e*delta_e+4.d0*hij))
EN2_corr_energy=EN2_corr_energy+hij
p_imp_EN(k)=p_imp_EN(k)+hij
h_imp_EN(i)=h_imp_EN(i)+hij
hp_imp_EN(i,k)=hp_imp_EN(i,k)+hij
enddo
enddo
enddo
enddo
print*,'EN correlation energy=',EN2_corr_energy
print*,'EN correlation energy=',EN2_corr_energy
END_PROVIDER
BEGIN_PROVIDER [integer, size_psi_CIS]
@ -630,6 +367,7 @@ enddo
integer :: key !key for CIS-matrix
print*,'dress_T_discon'
print*,'mp2_dressing = ',mp2_dressing
if(mp2_dressing)then
dress_T_discon_array_CIS(1)=MP2_corr_energy
@ -647,24 +385,25 @@ enddo
enddo
else !EN Dressing
print*,'coucou !'
dress_T_discon_array_CIS(1)=EN2_corr_energy
print*,'coucou !'
do i=n_core_cis+1,elec_alpha_num
do k=elec_alpha_num+1,n_act_cis
key=psi_CIS_adress(i,k)
dress_T_discon(i,k)=EN2_corr_energy-p_imp_EN(k)-h_imp_EN(i)+hp_imp_EN(i,k)
! do i=n_core_cis+1,elec_alpha_num
! print*,'i',i,n_core_cis
! do k=elec_alpha_num+1,n_act_cis
! print*,'k',k,n_act_cis
! key=psi_CIS_adress(i,k)
!
! dress_T_discon(i,k)=EN2_corr_energy-p_imp_EN(k)-h_imp_EN(i)+hp_imp_EN(i,k)
!print*,'i,k,key',i,k,key
!print*,'EN2_corr_energy-p_imp_EN(k)-h_imp_EN(i)+hp_imp_EN(i,k)',EN2_corr_energy,p_imp_EN(k),h_imp_EN(i),hp_imp_EN(i,k)
!print*,'dress_T_discon',dress_T_discon(i,k)
! dress_T_discon_array_CIS(key) = dress_T_discon(i,k)
! dress_T_discon_array_CIS(key+1) = dress_T_discon(i,k)
dress_T_discon_array_CIS(key) = dress_T_discon(i,k)
dress_T_discon_array_CIS(key+1) = dress_T_discon(i,k)
enddo
enddo
! enddo
! enddo
end if
print*,'end'
END_PROVIDER

View File

@ -4,3 +4,4 @@ cis_dressed
n_act_cis integer
mp2_dressing logical
standard_doubles logical
en_2_2 logical

View File

@ -83,3 +83,21 @@ BEGIN_PROVIDER [ logical , standard_doubles]
END_PROVIDER
BEGIN_PROVIDER [ logical , en_2_2]
implicit none
BEGIN_DOC
! Number of states asked for the CIS vector
END_DOC
logical :: has
PROVIDE ezfio_filename
call ezfio_has_cis_dressed_en_2_2(has)
if (has) then
call ezfio_get_cis_dressed_en_2_2(en_2_2)
else
en_2_2 = .False.
endif
END_PROVIDER

View File

@ -385,7 +385,10 @@ subroutine $subroutine($params_main)
nmax = ( N_det_generators/nproc ) *nproc
call wall_time(wall_1)
!$ call omp_init_lock(lck)
IRP_IF I_LIKE_BUGS
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(i_generator,wall_2,ispin,k,mask)
allocate( mask(N_int,2,6) )
@ -447,6 +450,13 @@ subroutine $subroutine($params_main)
allocate( mask(N_int,2,6) )
do i_generator=nmax+1,N_det_generators
IRP_ELSE
allocate( mask(N_int,2,6) )
do i_generator=1,N_det_generators
IRP_ENDIF
if (abort_here) then
exit
endif

View File

@ -3,11 +3,11 @@ BEGIN_SHELL [ /usr/bin/env python ]
from generate_h_apply import *
s = H_apply("FCI")
s.set_selection_pt2("epstein_nesbet_2x2")
s.set_selection_pt2("epstein_nesbet")
print s
s = H_apply("FCI_PT2")
s.set_perturbation("epstein_nesbet_2x2")
s.set_perturbation("epstein_nesbet")
print s
END_SHELL

View File

@ -1,3 +1,4 @@
full_ci
n_det_max_fci integer
pt2_max double precision
do_pt2_end logical

View File

@ -12,7 +12,7 @@ program cisd
pt2 = 1.d0
diag_algorithm = "Lapack"
! do while (maxval(abs(pt2(1:N_st))) > 1.d-4)
do while (N_det < n_det_max_fci.and.maxval(abs(pt2(1:N_st))) > 1.d-4)
do while (N_det < n_det_max_fci.and.maxval(abs(pt2(1:N_st))) > pt2_max)
call H_apply_FCI(pt2, norm_pert, H_pert_diag, N_st)
call diagonalize_CI
call save_wavefunction
@ -29,7 +29,7 @@ program cisd
N_det = min(n_det_max_fci,N_det)
if(do_pt2_end)then
threshold_selectors = 1.d0
threshold_generators = 0.999d0
threshold_generators = 0.99d0
touch N_det psi_det psi_coef
call diagonalize_CI
call H_apply_FCI_PT2(pt2, norm_pert, H_pert_diag, N_st)

View File

@ -54,3 +54,28 @@
deallocate(work, iwork, F, S)
END_PROVIDER
BEGIN_PROVIDER [double precision, diagonal_Fock_matrix_mo_sum, (mo_tot_num)]
implicit none
BEGIN_DOC
! diagonal element of the fock matrix calculated as the sum over all the interactions
! with all the electrons in the RHF determinant
! diagonal_Fock_matrix_mo_sum(i) = sum_{j=1, N_elec} 2 J_ij -K_ij
END_DOC
integer :: i,j
double precision :: accu
do i = 1,elec_alpha_num
accu = 0.d0
do j = 1, elec_alpha_num
accu += 2.d0 * mo_bielec_integral_jj(i,j) - mo_bielec_integral_jj_exchange(i,j)
enddo
diagonal_Fock_matrix_mo_sum(i) = accu + mo_mono_elec_integral(i,i)
enddo
do i = elec_alpha_num+1,mo_tot_num
accu = 0.d0
do j = 1, elec_alpha_num
accu += 2.d0 * mo_bielec_integral_jj(i,j) - mo_bielec_integral_jj_exchange(i,j)
enddo
diagonal_Fock_matrix_mo_sum(i) = accu + mo_mono_elec_integral(i,i)
enddo
END_PROVIDER

View File

@ -296,6 +296,27 @@ subroutine normalize(u,sze)
endif
end
double precision function approx_dble(a,n)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: a
double precision :: f
integer :: i
if (a == 0.d0) then
approx_dble = 0.d0
return
endif
f = 1.d0
do i=1,-int(dlog10(dabs(a)))+n
f = f*.1d0
enddo
do i=1,int(dlog10(dabs(a)))-n
f = f*10.d0
enddo
approx_dble = dnint(a/f)*f
end