10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 20:33:26 +01:00

minor modifs

mend
This commit is contained in:
Emmanuel Giner 2017-03-27 15:28:20 +02:00
parent 7fb1132b86
commit 6e91ca9104
7 changed files with 107 additions and 32 deletions

View File

@ -46,19 +46,6 @@ end
subroutine routine_2 subroutine routine_2
implicit none implicit none
integer :: i provide electronic_psi_ref_average_value
do i = 1, n_core_inact_orb
print*,fock_core_inactive_total(i,1,1),fock_core_inactive(i)
enddo
double precision :: accu
accu = 0.d0
do i = 1, n_act_orb
integer :: j_act_orb
j_act_orb = list_act(i)
accu += one_body_dm_mo_alpha(j_act_orb,j_act_orb,1)
print*,one_body_dm_mo_alpha(j_act_orb,j_act_orb,1),one_body_dm_mo_beta(j_act_orb,j_act_orb,1)
enddo
print*,'accu = ',accu
end end

View File

@ -0,0 +1,46 @@
BEGIN_PROVIDER [double precision, MRMP2_density, (mo_tot_num_align, mo_tot_num)]
implicit none
integer :: i,j,k,l
double precision :: accu, mp2_dm(mo_tot_num)
MRMP2_density = one_body_dm_mo
call give_2h2p_density(mp2_dm)
accu = 0.d0
do i = 1, n_virt_orb
j = list_virt(i)
accu += mp2_dm(j)
MRMP2_density(j,j)+= mp2_dm(j)
enddo
END_PROVIDER
subroutine give_2h2p_density(mp2_density_diag_alpha_beta)
implicit none
double precision, intent(out) :: mp2_density_diag_alpha_beta(mo_tot_num)
integer :: i,j,k,l,m
integer :: iorb,jorb,korb,lorb
double precision :: get_mo_bielec_integral
double precision :: direct_int
double precision :: coef_double
mp2_density_diag_alpha_beta = 0.d0
do k = 1, n_virt_orb
korb = list_virt(k)
do i = 1, n_inact_orb
iorb = list_inact(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
do l = 1, n_virt_orb
lorb = list_virt(l)
direct_int = get_mo_bielec_integral(iorb,jorb,korb,lorb ,mo_integrals_map)
coef_double = direct_int/(fock_core_inactive_total_spin_trace(iorb,1) + fock_core_inactive_total_spin_trace(jorb,1) &
-fock_virt_total_spin_trace(korb,1) - fock_virt_total_spin_trace(lorb,1))
mp2_density_diag_alpha_beta(korb) += coef_double * coef_double
enddo
enddo
enddo
print*, mp2_density_diag_alpha_beta(korb)
enddo
end

View File

@ -121,7 +121,8 @@ subroutine mrpt_dress(delta_ij_, Ndet,i_generator,n_selected,det_buffer,Nint,ip
delta_e(i_state) = 1.d+20 delta_e(i_state) = 1.d+20
enddo enddo
else else
call get_delta_e_dyall(psi_ref(1,1,index_i),tq(1,1,i_alpha),coef_array,hialpha,delta_e) call get_delta_e_dyall(psi_ref(1,1,index_i),tq(1,1,i_alpha),delta_e)
! print*, 'delta_e',delta_e
!!!!!!!!!!!!! SHIFTED BK !!!!!!!!!!!!! SHIFTED BK
! double precision :: hjj ! double precision :: hjj
! call i_h_j(tq(1,1,i_alpha),tq(1,1,i_alpha),Nint,hjj) ! call i_h_j(tq(1,1,i_alpha),tq(1,1,i_alpha),Nint,hjj)
@ -129,6 +130,7 @@ subroutine mrpt_dress(delta_ij_, Ndet,i_generator,n_selected,det_buffer,Nint,ip
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
endif endif
hij_array(index_i) = hialpha hij_array(index_i) = hialpha
! print*, 'hialpha ',hialpha
do i_state = 1,N_states do i_state = 1,N_states
delta_e_inv_array(index_i,i_state) = 1.d0/delta_e(i_state) delta_e_inv_array(index_i,i_state) = 1.d0/delta_e(i_state)
enddo enddo

View File

@ -40,7 +40,6 @@
enddo enddo
print*, '1h = ',accu print*, '1h = ',accu
stop
! 1p ! 1p
delta_ij_tmp = 0.d0 delta_ij_tmp = 0.d0
call H_apply_mrpt_1p(delta_ij_tmp,N_det) call H_apply_mrpt_1p(delta_ij_tmp,N_det)
@ -235,7 +234,7 @@ END_PROVIDER
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states_diag) ] BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states_diag) ]
BEGIN_DOC BEGIN_DOC
@ -279,7 +278,7 @@ END_PROVIDER
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det)) allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) Hmatrix_dressed_pt2_new_symmetrized,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0
if (s2_eig) then if (s2_eig) then
i_state = 0 i_state = 0
@ -288,8 +287,11 @@ END_PROVIDER
good_state_array = .False. good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1)) N_det,size(eigenvectors,1))
! print*, s2_eigvalues(:)
print*,'N_det',N_det
do j=1,N_det do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2" ! Select at least n_states states with S^2 values closed to "expected_s2"
print*, s2_eigvalues(j),expected_s2
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1 i_state +=1
index_good_state_array(i_state) = j index_good_state_array(i_state) = j
@ -303,10 +305,10 @@ END_PROVIDER
! Fill the first "i_state" states that have a correct S^2 value ! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state do j = 1, i_state
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) CI_dressed_pt2_new_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo enddo
i_other_state = 0 i_other_state = 0
do j = 1, N_det do j = 1, N_det
@ -316,10 +318,10 @@ END_PROVIDER
exit exit
endif endif
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) CI_dressed_pt2_new_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) CI_dressed_pt2_new_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) CI_dressed_pt2_new_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo enddo
else else
@ -334,10 +336,10 @@ END_PROVIDER
print*,'' print*,''
do j=1,min(N_states_diag,N_det) do j=1,min(N_states_diag,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j) CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo enddo
CI_electronic_energy(j) = eigenvalues(j) CI_dressed_pt2_new_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j) CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(j)
enddo enddo
endif endif
deallocate(index_good_state_array,good_state_array) deallocate(index_good_state_array,good_state_array)
@ -348,9 +350,9 @@ END_PROVIDER
! Select the "N_states_diag" states of lowest energy ! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag) do j=1,min(N_det,N_states_diag)
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j) CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo enddo
CI_electronic_energy(j) = eigenvalues(j) CI_dressed_pt2_new_electronic_energy(j) = eigenvalues(j)
enddo enddo
endif endif
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
@ -370,7 +372,7 @@ BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states_diag) ]
character*(8) :: st character*(8) :: st
call write_time(output_determinants) call write_time(output_determinants)
do j=1,N_states_diag do j=1,N_states_diag
CI_dressed_pt2_new_energy(j) = CI_electronic_dressed_pt2_new_energy(j) + nuclear_repulsion CI_dressed_pt2_new_energy(j) = CI_dressed_pt2_new_electronic_energy(j) + nuclear_repulsion
write(st,'(I4)') j write(st,'(I4)') j
call write_double(output_determinants,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st))
call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st))

View File

@ -72,9 +72,19 @@ END_PROVIDER
&BEGIN_PROVIDER [double precision, psi_ref_average_value, (N_states)] &BEGIN_PROVIDER [double precision, psi_ref_average_value, (N_states)]
implicit none implicit none
integer :: i,j integer :: i,j
call u_0_H_u_0(electronic_psi_ref_average_value,psi_ref_coef,N_det_ref,psi_ref,N_int,N_states,psi_det_size) electronic_psi_ref_average_value = psi_energy
do i = 1, N_states do i = 1, N_states
psi_ref_average_value(i) = electronic_psi_ref_average_value(i) + nuclear_repulsion psi_ref_average_value(i) = psi_energy(i) + nuclear_repulsion
enddo enddo
double precision :: accu,hij
accu = 0.d0
do i = 1, N_det_ref
do j = 1, N_det_ref
call i_H_j(psi_ref(1,1,i),psi_ref(1,1,j),N_int,hij)
accu += psi_ref_coef(i,1) * psi_ref_coef(j,1) * hij
enddo
enddo
electronic_psi_ref_average_value(1) = accu
psi_ref_average_value(1) = electronic_psi_ref_average_value(1) + nuclear_repulsion
END_PROVIDER END_PROVIDER

View File

@ -0,0 +1,9 @@
program rotate_mos
implicit none
integer :: i,j
write(*,*)'Which couple of MOs would you like to mix ?'
read(5,*)i,j
call mix_mo_jk(i,j)
call save_mos
end

19
src/Utils/invert.irp.f Normal file
View File

@ -0,0 +1,19 @@
subroutine invert_matrix(A,LDA,na,A_inv,LDA_inv)
implicit none
double precision, intent(in) :: A (LDA,na)
integer, intent(in) :: LDA, LDA_inv
integer, intent(in) :: na
double precision, intent(out) :: A_inv (LDA_inv,na)
double precision :: work(LDA_inv*max(na,64))
!DIR$ ATTRIBUTES ALIGN: $IRP_ALIGN :: work
integer :: inf
integer :: ipiv(LDA_inv)
!DIR$ ATTRIBUTES ALIGN: $IRP_ALIGN :: ipiv
integer :: lwork
A_inv(1:na,1:na) = A(1:na,1:na)
call dgetrf(na, na, A_inv, LDA_inv, ipiv, inf )
lwork = SIZE(work)
call dgetri(na, A_inv, LDA_inv, ipiv, work, lwork, inf )
end