10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-08 20:33:26 +01:00

Added the diagonalize_s2 option

This commit is contained in:
Emmanuel Giner 2016-02-16 17:43:26 +01:00
parent 2127503405
commit 6bbc24c1ec
7 changed files with 394 additions and 21 deletions

View File

@ -24,7 +24,7 @@ python:
script:
- ./configure --production ./config/gfortran.cfg
- source ./quantum_package.rc ; qp_module.py install Full_CI Hartree_Fock CAS_SD MRCC_CASSD
- source ./quantum_package.rc ; qp_module.py install Full_CI Hartree_Fock CAS_SD MRCC_CASSD All_singles
- source ./quantum_package.rc ; ninja
- source ./quantum_package.rc ; cd ocaml ; make ; cd -
- source ./quantum_package.rc ; cd tests ; bats bats/qp.bats

View File

@ -18,7 +18,7 @@ IRPF90_FLAGS : --ninja --align=32
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 1 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags

View File

@ -62,11 +62,27 @@ program full_ci
endif
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k = 1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2
print *, 'E = ', CI_energy
print *, 'E(before)+PT2 = ', E_CI_before+pt2
enddo
print *, '-----'
E_CI_before = CI_energy
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before = CI_energy
call ezfio_set_full_ci_energy(CI_energy)
if (abort_all) then
exit

View File

@ -40,6 +40,12 @@ doc: Force the wave function to be an eigenfunction of S^2
interface: ezfio,provider,ocaml
default: False
[diagonalize_s2]
type: logical
doc: Diagonalize the S^2 operator within the n_states_diag states required. Notice : the vectors are sorted by increasing S^2 values.
interface: ezfio,provider,ocaml
default: True
[threshold_davidson]
type: Threshold
doc: Thresholds of Davidson's algorithm

View File

@ -36,17 +36,36 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
integer :: i,j
implicit none
double precision :: ovrlp,u_dot_v
integer :: i_good_state
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
integer :: i_state
double precision :: s2,e_0
integer :: i,j,k
double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
do j=1,N_states_diag
! Guess values for the "N_states_diag" states of the CI_eigenvectors
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do j=N_det+1,N_states_diag
do i=1,N_det
CI_eigenvectors(i,j) = 0.d0
enddo
enddo
if (diag_algorithm == "Davidson") then
@ -59,36 +78,77 @@ END_PROVIDER
else if (diag_algorithm == "Lapack") then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0
do i=1,N_det
CI_eigenvectors(i,1) = eigenvectors(i,1)
enddo
integer :: i_state
double precision :: s2
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
print*,'s2 = ',s2
s2_eigvalues(j) = s2
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2-expected_s2).le.0.3d0)then
i_state += 1
do i=1,N_det
CI_eigenvectors(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state) = s2
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if (i_state.ge.N_states_diag) then
exit
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2
enddo
deallocate(index_good_state_array,good_state_array)
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(s2_eigvalues)
else
do j=1,N_states_diag
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
@ -99,7 +159,100 @@ END_PROVIDER
endif
deallocate(eigenvectors,eigenvalues)
endif
if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
do j = 1, N_states_diag
do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors(i,j)
enddo
enddo
if(s2_eig)then
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
i_state = 0
do j = 1, N_states_diag
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
good_state_array(j) = .True.
i_state +=1
index_good_state_array(i_state) = j
endif
enddo
! Sorting the i_state good states by energy
allocate(e_array(i_state),iorder(i_state))
do j = 1, i_state
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
CI_electronic_energy(j) = e_0
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,i_state)
do j = 1, i_state
CI_electronic_energy(j) = e_array(j)
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
enddo
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
! print*,'e = ',CI_electronic_energy(j)
! print*,'<e> = ',e_0
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
! print*,'s^2 = ',CI_eigenvectors_s2(j)
! print*,'<s^2>= ',s2
enddo
deallocate(e_array,iorder)
! Then setting the other states without any specific energy order
i_other_state = 0
do j = 1, N_states_diag
if(good_state_array(j))cycle
i_other_state +=1
do i = 1, N_det
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
enddo
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
CI_electronic_energy(i_state + i_other_state) = e_0
enddo
deallocate(index_good_state_array,good_state_array)
else
! Sorting the N_states_diag by energy, whatever the S^2 value is
allocate(e_array(n_states_diag),iorder(n_states_diag))
do j = 1, N_states_diag
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,n_states_diag)
do j = 1, N_states_diag
CI_electronic_energy(j) = e_array(j)
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
enddo
deallocate(e_array,iorder)
endif
deallocate(s2_eigvalues)
endif
END_PROVIDER
subroutine diagonalize_CI

View File

@ -214,4 +214,175 @@ subroutine get_s2_u0(psi_keys_tmp,psi_coefs_tmp,n,nmax,s2)
deallocate (shortcut, sort_idx, sorted, version)
end
subroutine get_uJ_s2_uI(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nstates)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax_keys)
integer, intent(in) :: n,nmax_coefs,nmax_keys,nstates
double precision, intent(in) :: psi_coefs_tmp(nmax_coefs,nstates)
double precision, intent(out) :: s2(nstates,nstates)
double precision :: s2_tmp,accu
integer :: i,j,l,jj,ll,kk
integer, allocatable :: idx(:)
double precision, allocatable :: tmp(:,:)
BEGIN_DOC
! returns the matrix elements of S^2 "s2(i,j)" between the "nstates" states
! psi_coefs_tmp(:,i) and psi_coefs_tmp(:,j)
END_DOC
s2 = 0.d0
do ll = 1, nstates
do jj = 1, nstates
accu = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i,j,kk,idx,tmp,s2_tmp) &
!$OMP SHARED (ll,jj,psi_keys_tmp,psi_coefs_tmp,N_int,n,nstates) &
!$OMP REDUCTION(+:accu)
allocate(idx(0:n))
!$OMP DO SCHEDULE(dynamic)
do i = 1, n
call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),s2_tmp,N_int)
accu += psi_coefs_tmp(i,ll) * s2_tmp * psi_coefs_tmp(i,jj)
call filter_connected(psi_keys_tmp,psi_keys_tmp(1,1,i),N_int,i-1,idx)
do kk=1,idx(0)
j = idx(kk)
call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),s2_tmp,N_int)
accu += psi_coefs_tmp(i,ll) * s2_tmp * psi_coefs_tmp(j,jj) + psi_coefs_tmp(i,jj) * s2_tmp * psi_coefs_tmp(j,ll)
enddo
enddo
!$OMP END DO NOWAIT
deallocate(idx)
!$OMP BARRIER
!$OMP END PARALLEL
s2(ll,jj) += accu
enddo
enddo
do i = 1, nstates
do j =i+1,nstates
accu = 0.5d0 * (s2(i,j) + s2(j,i))
s2(i,j) = accu
s2(j,i) = accu
enddo
enddo
end
subroutine diagonalize_s2_betweenstates(keys_tmp,psi_coefs_inout,n,nmax_keys,nmax_coefs,nstates,s2_eigvalues)
BEGIN_DOC
! You enter with nstates vectors in psi_coefs_inout that may be coupled by S^2
! The subroutine diagonalize the S^2 operator in the basis of these states.
! The vectors that you obtain in output are no more coupled by S^2,
! which does not necessary mean that they are eigenfunction of S^2.
! n,nmax,nstates = number of determinants, physical dimension of the arrays and number of states
! keys_tmp = array of integer(bit_kind) that represents the determinants
! psi_coefs(i,j) = coeff of the ith determinant in the jth state
! VECTORS ARE SUPPOSED TO BE ORTHONORMAL IN INPUT
END_DOC
implicit none
use bitmasks
integer, intent(in) :: n,nmax_keys,nmax_coefs,nstates
integer(bit_kind), intent(in) :: keys_tmp(N_int,2,nmax_keys)
double precision, intent(inout) :: psi_coefs_inout(nmax_coefs,nstates)
!integer, intent(in) :: ndets_real,ndets_keys,ndets_coefs,nstates
!integer(bit_kind), intent(in) :: keys_tmp(N_int,2,ndets_keys)
!double precision, intent(inout) :: psi_coefs_inout(ndets_coefs,nstates)
double precision, intent(out) :: s2_eigvalues(nstates)
double precision,allocatable :: s2(:,:),overlap(:,:)
double precision, allocatable :: eigvalues(:),eigvectors(:,:)
integer :: i,j,k
double precision, allocatable :: psi_coefs_tmp(:,:)
double precision :: accu,coef_contract
double precision :: u_dot_u,u_dot_v
print*,''
print*,'*********************************************************************'
print*,'Cleaning the various vectors by diagonalization of the S^2 matrix ...'
print*,''
print*,'nstates = ',nstates
allocate(s2(nstates,nstates),overlap(nstates,nstates))
do i = 1, nstates
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
do j = i+1, nstates
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
enddo
enddo
print*,'Overlap matrix in the basis of the states considered'
do i = 1, nstates
write(*,'(10(F16.10,X))')overlap(i,:)
enddo
call ortho_lowdin(overlap,size(overlap,1),nstates,psi_coefs_inout,size(psi_coefs_inout,1),n)
print*,'passed ortho'
do i = 1, nstates
overlap(i,i) = u_dot_u(psi_coefs_inout(1,i),n)
do j = i+1, nstates
overlap(i,j) = u_dot_v(psi_coefs_inout(1,j),psi_coefs_inout(1,i),n)
overlap(j,i) = overlap(i,j)
enddo
enddo
print*,'Overlap matrix in the basis of the Lowdin orthonormalized states '
do i = 1, nstates
write(*,'(10(F16.10,X))')overlap(i,:)
enddo
call get_uJ_s2_uI(keys_tmp,psi_coefs_inout,n_det,size(psi_coefs_inout,1),size(keys_tmp,3),s2,nstates)
print*,'S^2 matrix in the basis of the states considered'
double precision :: accu_precision_diag,accu_precision_of_diag
accu_precision_diag = 0.d0
accu_precision_of_diag = 0.d0
do i = 1, nstates
do j = i+1, nstates
if( ( dabs(s2(i,i) - s2(j,j)) .le.1.d-10 ) .and. (dabs(s2(i,j) + dabs(s2(i,j)))) .le.1.d-10) then
s2(i,j) = 0.d0
s2(j,i) = 0.d0
endif
enddo
enddo
do i = 1, nstates
write(*,'(10(F10.6,X))')s2(i,:)
enddo
print*,'Diagonalizing the S^2 matrix'
allocate(eigvalues(nstates),eigvectors(nstates,nstates))
call lapack_diagd(eigvalues,eigvectors,s2,nstates,nstates)
print*,'Eigenvalues of s^2'
do i = 1, nstates
print*,'s2 = ',eigvalues(i)
s2_eigvalues(i) = eigvalues(i)
enddo
print*,'Building the eigenvectors of the S^2 matrix'
allocate(psi_coefs_tmp(nmax_coefs,nstates))
psi_coefs_tmp = 0.d0
do j = 1, nstates
do k = 1, nstates
coef_contract = eigvectors(k,j) ! <phi_k|Psi_j>
do i = 1, n_det
psi_coefs_tmp(i,j) += psi_coefs_inout(i,k) * coef_contract
enddo
enddo
enddo
do j = 1, nstates
accu = 0.d0
do i = 1, n_det
accu += psi_coefs_tmp(i,j) * psi_coefs_tmp(i,j)
enddo
print*,'Norm of vector = ',accu
accu = 1.d0/dsqrt(accu)
do i = 1, n_det
psi_coefs_inout(i,j) = psi_coefs_tmp(i,j) * accu
enddo
enddo
!call get_uJ_s2_uI(keys_tmp,psi_coefs_inout,n_det,size(psi_coefs_inout,1),size(keys_tmp,3),s2,nstates)
!print*,'S^2 matrix in the basis of the NEW states considered'
!do i = 1, nstates
! write(*,'(10(F16.10,X))')s2(i,:)
!enddo
deallocate(s2,eigvalues,eigvectors,psi_coefs_tmp,overlap)
end

View File

@ -1507,6 +1507,33 @@ subroutine get_occ_from_key(key,occ,Nint)
end
subroutine u0_H_u_0(e_0,u_0,n,keys_tmp,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Computes e_0 = <u_0|H|u_0>/<u_0|u_0>
!
! n : number of determinants
!
END_DOC
integer, intent(in) :: n,Nint
double precision, intent(out) :: e_0
double precision, intent(in) :: u_0(n)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
double precision :: H_jj(n)
double precision :: v_0(n)
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
integer :: i,j
do i = 1, n
H_jj(i) = diag_H_mat_elem(keys_tmp(1,1,i),Nint)
enddo
call H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint)
e_0 = u_dot_v(v_0,u_0,n)/u_dot_u(u_0,n)
end
subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint)
use bitmasks
implicit none