10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-22 20:35:19 +01:00

Tuned N_int

This commit is contained in:
Anthony Scemama 2017-04-19 12:49:11 +02:00
parent 48f51a71ce
commit 69a747fde0
3 changed files with 159 additions and 229 deletions

View File

@ -73,7 +73,6 @@ subroutine H_S2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze)
end end
subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep) subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks use bitmasks
implicit none implicit none
@ -89,6 +88,33 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
PROVIDE ref_bitmask_energy PROVIDE ref_bitmask_energy
select case (N_int)
case (1)
call H_S2_u_0_nstates_openmp_work_1(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call H_S2_u_0_nstates_openmp_work_2(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call H_S2_u_0_nstates_openmp_work_3(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call H_S2_u_0_nstates_openmp_work_4(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call H_S2_u_0_nstates_openmp_work_N_int(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
double precision :: hij, sij double precision :: hij, sij
integer :: i,j,k,l integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: k_a, k_b, l_a, l_b, m_a, m_b
@ -96,10 +122,10 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
integer :: krow, kcol, krow_b, kcol_b integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol integer :: lrow, lcol
integer :: mrow, mcol integer :: mrow, mcol
integer(bit_kind) :: spindet(N_int) integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det(N_int,2) integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2(N_int,2) integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3(N_int,2) integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:) integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles integer :: n_doubles
integer, allocatable :: doubles(:) integer, allocatable :: doubles(:)
@ -110,6 +136,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
integer*8 :: k8 integer*8 :: k8
double precision, allocatable :: v_t(:,:), s_t(:,:) double precision, allocatable :: v_t(:,:), s_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: v_t, s_t !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: v_t, s_t
PROVIDE N_int
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab)) allocate(idx0(maxab))
@ -144,7 +171,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
! Alpha/Beta double excitations ! Alpha/Beta double excitations
! ============================= ! =============================
allocate( buffer(N_int,maxab), & allocate( buffer($N_int,maxab), &
singles_a(maxab), & singles_a(maxab), &
singles_b(maxab), & singles_b(maxab), &
doubles(maxab), & doubles(maxab), &
@ -156,18 +183,19 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
s_t = 0.d0 s_t = 0.d0
!$OMP DO SCHEDULE(static,64) !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then if (kcol /= kcol_prev) then
call get_all_spin_singles( & call get_all_spin_singles_$N_int( &
psi_det_beta_unique(1,kcol+1), idx0(kcol+1), tmp_det(1,2), N_int, N_det_beta_unique-kcol,& psi_det_beta_unique(1,kcol+1), idx0(kcol+1), &
tmp_det(1,2), N_det_beta_unique-kcol, &
singles_b, n_singles_b) singles_b, n_singles_b)
endif endif
kcol_prev = kcol kcol_prev = kcol
@ -178,21 +206,21 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
do i=1,n_singles_b do i=1,n_singles_b
lcol = singles_b(i) lcol = singles_b(i)
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
nmax = psi_bilinear_matrix_columns_loc(lcol+1) - l_a nmax = psi_bilinear_matrix_columns_loc(lcol+1) - l_a
do j=1,nmax do j=1,nmax
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
buffer(1:N_int,j) = psi_det_alpha_unique(1:N_int, lrow) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
idx(j) = l_a idx(j) = l_a
l_a = l_a+1 l_a = l_a+1
enddo enddo
j = j-1 j = j-1
call get_all_spin_singles( & call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), N_int, j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
! Loop over alpha singles ! Loop over alpha singles
@ -201,15 +229,13 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
do k = 1,n_singles_a do k = 1,n_singles_a
l_a = singles_a(k) l_a = singles_a(k)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,N_int,hij) call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
call get_s2(tmp_det,tmp_det2,N_int,sij) call get_s2(tmp_det,tmp_det2,$N_int,sij)
do l=1,N_st do l=1,N_st
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a) s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,l_a)
!$OMP ATOMIC
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
!$OMP ATOMIC
s_t(l,l_a) = s_t(l,l_a) + sij * u_t(l,k_a) s_t(l,l_a) = s_t(l,l_a) + sij * u_t(l,k_a)
enddo enddo
enddo enddo
@ -219,7 +245,7 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP DO SCHEDULE(static,64) !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep do k_a=istart+ishift,iend,istep
@ -233,15 +259,15 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation ! Initial determinant is at k_b in beta-major representation
! ---------------------------------------------------------------------- ! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a) k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
spindet(1:N_int) = tmp_det(1:N_int,1) spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas ! Loop inside the beta column to gather all the connected alphas
l_a = k_a+1 l_a = k_a+1
@ -250,25 +276,25 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
lcol = psi_bilinear_matrix_columns(l_a) lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
buffer(1:N_int,i) = psi_det_alpha_unique(1:N_int, lrow) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a idx(i) = l_a
l_a = l_a+1 l_a = l_a+1
enddo enddo
i = i-1 i = i-1
call get_all_spin_singles_and_doubles( & call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, N_int, i, & buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles ) singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles ! Compute Hij for all alpha singles
! ---------------------------------- ! ----------------------------------
tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a do i=1,n_singles_a
l_a = singles_a(i) l_a = singles_a(i)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 1, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, $N_int, 1, hij)
do l=1,N_st do l=1,N_st
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
@ -283,9 +309,8 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
do i=1,n_doubles do i=1,n_doubles
l_a = doubles(i) l_a = doubles(i)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), N_int, hij) call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
do l=1,N_st do l=1,N_st
!$OMP ATOMIC
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
@ -304,10 +329,10 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:N_int) = tmp_det(1:N_int,2) spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation ! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------- ! -----------------------------------------------------------------------
@ -321,28 +346,27 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
lrow = psi_bilinear_matrix_transp_rows(l_b) lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
buffer(1:N_int,i) = psi_det_beta_unique(1:N_int, lcol) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b idx(i) = l_b
l_b = l_b+1 l_b = l_b+1
enddo enddo
i = i-1 i = i-1
call get_all_spin_singles_and_doubles( & call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, N_int, i, & buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles ) singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles ! Compute Hij for all beta singles
! ---------------------------------- ! ----------------------------------
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b do i=1,n_singles_b
l_b = singles_b(i) l_b = singles_b(i)
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
tmp_det2(1:N_int,2) = psi_det_beta_unique (1:N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
call i_H_j_mono_spin( tmp_det, tmp_det2, N_int, 2, hij) call i_H_j_mono_spin( tmp_det, tmp_det2, $N_int, 2, hij)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
do l=1,N_st do l=1,N_st
!$OMP ATOMIC
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! single => sij = 0 ! single => sij = 0
@ -355,10 +379,9 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
do i=1,n_doubles do i=1,n_doubles
l_b = doubles(i) l_b = doubles(i)
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), N_int, hij) call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
l_a = psi_bilinear_matrix_transp_order(l_b) l_a = psi_bilinear_matrix_transp_order(l_b)
do l=1,N_st do l=1,N_st
!$OMP ATOMIC
v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a) v_t(l,l_a) = v_t(l,l_a) + hij * u_t(l,k_a)
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! same spin => sij = 0 ! same spin => sij = 0
@ -376,15 +399,14 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int, krow) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int, kcol) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem double precision, external :: diag_H_mat_elem, diag_S_mat_elem
hij = diag_H_mat_elem(tmp_det,N_int) hij = diag_H_mat_elem(tmp_det,$N_int)
sij = diag_S_mat_elem(tmp_det,N_int) sij = diag_S_mat_elem(tmp_det,$N_int)
do l=1,N_st do l=1,N_st
!$OMP ATOMIC
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a) s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
enddo enddo
@ -408,6 +430,14 @@ subroutine H_S2_u_0_nstates_openmp_work(v_0,s_0,u_t,N_st,sze,istart,iend,ishift,
end end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -462,7 +462,7 @@ subroutine H_S2_u_0_nstates_test(v_0,s_0,u_0,H_jj,S2_jj,n,keys_tmp,Nint,N_st,sze
implicit none implicit none
integer, intent(in) :: N_st,n,Nint, sze integer, intent(in) :: N_st,n,Nint, sze
integer(bit_kind), intent(in) :: keys_tmp(Nint,2,n) integer(bit_kind), intent(in) :: keys_tmp(Nint,2,n)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st) double precision, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st)
double precision, intent(in) :: u_0(sze,N_st) double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(in) :: H_jj(n), S2_jj(n) double precision, intent(in) :: H_jj(n), S2_jj(n)

View File

@ -696,63 +696,19 @@ subroutine get_all_spin_singles_and_doubles(buffer, idx, spindet, Nint, size_buf
integer, intent(out) :: n_singles integer, intent(out) :: n_singles
integer, intent(out) :: n_doubles integer, intent(out) :: n_doubles
integer :: i,k
include 'Utils/constants.include.F'
integer(bit_kind) :: xorvec(N_int_max)
integer :: degree
integer, external :: align_double
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec, degree
select case (Nint) select case (Nint)
case (1) case (1)
call get_all_spin_singles_and_doubles_1(buffer, idx, spindet(1), size_buffer, singles, doubles, n_singles, n_doubles) call get_all_spin_singles_and_doubles_1(buffer, idx, spindet(1), size_buffer, singles, doubles, n_singles, n_doubles)
return case (2)
! case (2) call get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
! call get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles) case (3)
! return call get_all_spin_singles_and_doubles_3(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
! case (3) case (4)
! call get_all_spin_singles_and_doubles_3(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles) call get_all_spin_singles_and_doubles_4(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
! return case default
call get_all_spin_singles_and_doubles_N_int(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
end select end select
n_singles = 1
n_doubles = 1
!DIR$ VECTOR ALIGNED
do i=1,size_buffer
do k=1,Nint
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,Nint
!DIR$ VECTOR ALIGNED
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
end end
@ -771,54 +727,19 @@ subroutine get_all_spin_singles(buffer, idx, spindet, Nint, size_buffer, singles
integer, intent(out) :: singles(size_buffer) integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: n_singles integer, intent(out) :: n_singles
integer :: i,k select case (N_int)
include 'Utils/constants.include.F'
integer(bit_kind) :: xorvec(N_int_max)
integer :: degree
integer, external :: align_double
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec
select case (Nint)
case (1) case (1)
call get_all_spin_singles_1(buffer, idx, spindet(1), size_buffer, singles, n_singles) call get_all_spin_singles_1(buffer, idx, spindet(1), size_buffer, singles, n_singles)
return return
! case (2) case (2)
! call get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_singles) call get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_singles)
! return case (3)
! case (3) call get_all_spin_singles_3(buffer, idx, spindet, size_buffer, singles, n_singles)
! call get_all_spin_singles_3(buffer, idx, spindet, size_buffer, singles, n_singles) case (4)
! return call get_all_spin_singles_4(buffer, idx, spindet, size_buffer, singles, n_singles)
case default
call get_all_spin_singles_N_int(buffer, idx, spindet, size_buffer, singles, n_singles)
end select end select
n_singles = 1
!DIR$ VECTOR ALIGNED
do i=1,size_buffer
do k=1,Nint
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,Nint
if ( (degree <= 2).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
end end
@ -838,54 +759,19 @@ subroutine get_all_spin_doubles(buffer, idx, spindet, Nint, size_buffer, doubles
integer, intent(out) :: doubles(size_buffer) integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_doubles integer, intent(out) :: n_doubles
integer :: i,k, degree select case (N_int)
include 'Utils/constants.include.F'
integer(bit_kind) :: xorvec(N_int_max)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec
select case (Nint)
case (1) case (1)
call get_all_spin_doubles_1(buffer, idx, spindet(1), size_buffer, doubles, n_doubles) call get_all_spin_doubles_1(buffer, idx, spindet(1), size_buffer, doubles, n_doubles)
return
case (2) case (2)
call get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_doubles) call get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_doubles)
return case (3)
! case (3) call get_all_spin_doubles_3(buffer, idx, spindet, size_buffer, doubles, n_doubles)
! call get_all_spin_doubles_3(buffer, idx, spindet, size_buffer, doubles, n_doubles) case (4)
! return call get_all_spin_doubles_4(buffer, idx, spindet, size_buffer, doubles, n_doubles)
case default
call get_all_spin_doubles_N_int(buffer, idx, spindet, size_buffer, doubles, n_doubles)
end select end select
n_doubles = 1
!DIR$ VECTOR ALIGNED
do i=1,size_buffer
do k=1,Nint
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,Nint
!DIR$ VECTOR ALIGNED
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
endif
enddo
n_doubles = n_doubles-1
end end
@ -1093,8 +979,9 @@ end
BEGIN_TEMPLATE
subroutine get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles) subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -1106,30 +993,28 @@ subroutine get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer,
! !
END_DOC END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer) integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(2,size_buffer) integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet(2) integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: singles(size_buffer) integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: doubles(size_buffer) integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_singles integer, intent(out) :: n_singles
integer, intent(out) :: n_doubles integer, intent(out) :: n_doubles
integer :: i integer :: i,k
include 'Utils/constants.include.F' integer(bit_kind) :: xorvec($N_int)
integer(bit_kind) :: xorvec(2)
integer :: degree integer :: degree
integer, external :: align_double integer, external :: align_double
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec, degree !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec, degree
n_singles = 1 n_singles = 1
n_doubles = 1 n_doubles = 1
!DIR$ VECTOR ALIGNED !DIR$ VECTOR ALIGNED
do i=1,size_buffer do i=1,size_buffer
xorvec(1) = xor( spindet(1), buffer(1,i) ) do k=1,$N_int
xorvec(2) = xor( spindet(2), buffer(2,i) ) xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1)) degree = popcnt(xorvec(1))
@ -1137,10 +1022,12 @@ subroutine get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer,
degree = 0 degree = 0
endif endif
!DIR$ VECTOR ALIGNED do k=2,$N_int
if ( (degree <= 4).and.(xorvec(2) /= 0_8) ) then !DIR$ VECTOR ALIGNED
degree = degree + popcnt(xorvec(2)) if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
endif degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then if ( degree == 4 ) then
doubles(n_doubles) = idx(i) doubles(n_doubles) = idx(i)
@ -1157,7 +1044,7 @@ subroutine get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer,
end end
subroutine get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_singles) subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, singles, n_singles)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -1167,24 +1054,27 @@ subroutine get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_
! !
END_DOC END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer) integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(2,size_buffer) integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet(2) integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: singles(size_buffer) integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: n_singles integer, intent(out) :: n_singles
integer :: i integer :: i,k
include 'Utils/constants.include.F' include 'Utils/constants.include.F'
integer(bit_kind) :: xorvec(2) integer(bit_kind) :: xorvec($N_int)
integer :: degree integer :: degree
integer, external :: align_double
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec
n_singles = 1 n_singles = 1
!DIR$ VECTOR ALIGNED !DIR$ VECTOR ALIGNED
do i=1,size_buffer do i=1,size_buffer
xorvec(1) = xor( spindet(1), buffer(1,i) ) do k=1,$N_int
xorvec(2) = xor( spindet(2), buffer(2,i) ) xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1)) degree = popcnt(xorvec(1))
@ -1192,11 +1082,11 @@ subroutine get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_
degree = 0 degree = 0
endif endif
if (degree > 2) cycle do k=2,$N_int
if ( (degree <= 2).and.(xorvec(k) /= 0_8) ) then
if ( xorvec(2) /= 0_8 ) then degree = degree + popcnt(xorvec(k))
degree = degree + popcnt(xorvec(2)) endif
endif enddo
if ( degree == 2 ) then if ( degree == 2 ) then
singles(n_singles) = idx(i) singles(n_singles) = idx(i)
@ -1209,7 +1099,7 @@ subroutine get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_
end end
subroutine get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_doubles) subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, doubles, n_doubles)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -1219,34 +1109,35 @@ subroutine get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_
! !
END_DOC END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer) integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(2,size_buffer) integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet(2) integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: doubles(size_buffer) integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_doubles integer, intent(out) :: n_doubles
integer :: i, degree integer :: i,k, degree
include 'Utils/constants.include.F' include 'Utils/constants.include.F'
integer(bit_kind) :: xorvec(2) integer(bit_kind) :: xorvec($N_int)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xorvec
n_doubles = 1 n_doubles = 1
!DIR$ VECTOR ALIGNED !DIR$ VECTOR ALIGNED
do i=1,size_buffer do i=1,size_buffer
xorvec(1) = xor( spindet(1), buffer(1,i) ) do k=1,$N_int
xorvec(2) = xor( spindet(2), buffer(2,i) ) xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1)) degree = popcnt(xorvec(1))
else else
degree = 0 degree = 0
endif endif
!DIR$ VECTOR ALIGNED do k=2,$N_int
if ( (degree <= 4).and.(xorvec(2) /= 0_8) ) then !DIR$ VECTOR ALIGNED
degree = degree + popcnt(xorvec(2)) if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
endif degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then if ( degree == 4 ) then
doubles(n_doubles) = idx(i) doubles(n_doubles) = idx(i)
@ -1259,3 +1150,12 @@ subroutine get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_
end end
SUBST [ N_int ]
2;;
3;;
4;;
N_int;;
END_TEMPLATE