10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-10 04:58:25 +01:00

Put fast davidson in mrcc

This commit is contained in:
Anthony Scemama 2016-09-27 10:10:39 +02:00
parent 80805e7abc
commit 669e5cbd6f
3 changed files with 155 additions and 161 deletions

View File

@ -51,7 +51,6 @@ let () =
norm'+. c'*. c' ) norm'+. c'*. c' )
) wf (0.,0.,0.) ) wf (0.,0.,0.)
in in
Printf.printf "%f %f %f\n" result norm norm';
result /. (norm *. norm') result /. (norm *. norm')
in in
@ -63,5 +62,5 @@ let () =
let o = let o =
overlap wf wf' overlap wf wf'
in in
Printf.printf "Overlap : %f\n" o print_float (abs_float o)

View File

@ -21,8 +21,8 @@ subroutine davidson_diag_mrcc(dets_in,u_in,energies,dim_in,sze,N_st,N_st_diag,Ni
END_DOC END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit, istate, N_st_diag integer, intent(in) :: dim_in, sze, N_st, Nint, iunit, istate, N_st_diag
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st) double precision, intent(out) :: energies(N_st_diag)
double precision, allocatable :: H_jj(:) double precision, allocatable :: H_jj(:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
@ -73,40 +73,44 @@ subroutine davidson_diag_hjj_mrcc(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,N_s
! !
! N_st : Number of eigenstates ! N_st : Number of eigenstates
! !
! N_st_diag : Number of states in which H is diagonalized
!
! iunit : Unit for the I/O ! iunit : Unit for the I/O
! !
! Initial guess vectors are not necessarily orthonormal ! Initial guess vectors are not necessarily orthonormal
END_DOC END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint, istate, N_st_diag integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint, istate
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze) double precision, intent(in) :: H_jj(sze)
integer, intent(in) :: iunit integer, intent(in) :: iunit
double precision, intent(inout) :: u_in(dim_in,N_st) double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st) double precision, intent(out) :: energies(N_st_diag)
integer :: sze_8
integer :: iter integer :: iter
integer :: i,j,k,l,m integer :: i,j,k,l,m
logical :: converged logical :: converged
double precision :: overlap(N_st,N_st) double precision, allocatable :: overlap(:,:)
double precision :: u_dot_v, u_dot_u double precision :: u_dot_v, u_dot_u
integer, allocatable :: kl_pairs(:,:) integer, allocatable :: kl_pairs(:,:)
integer :: k_pairs, kl integer :: k_pairs, kl
integer :: iter2, sze_8 integer :: iter2
double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:) double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:)
double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:) double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:)
double precision, allocatable :: c(:), H_small(:,:)
double precision :: diag_h_mat_elem double precision :: diag_h_mat_elem
double precision :: residual_norm(N_st) double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer character*(16384) :: write_buffer
double precision :: to_print(2,N_st) double precision :: to_print(2,N_st)
double precision :: cpu, wall double precision :: cpu, wall
include 'constants.include.F'
!PROVIDE det_connections !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, R, y, h, lambda
if (N_st_diag /= N_st) then
stop 'N_st_diag /= N_st todo in davidson' PROVIDE nuclear_repulsion
endif
call write_time(iunit) call write_time(iunit)
call wall_time(wall) call wall_time(wall)
@ -116,6 +120,7 @@ endif
write(iunit,'(A)') '------------------------' write(iunit,'(A)') '------------------------'
write(iunit,'(A)') '' write(iunit,'(A)') ''
call write_int(iunit,N_st,'Number of states') call write_int(iunit,N_st,'Number of states')
call write_int(iunit,N_st_diag,'Number of states in diagonalization')
call write_int(iunit,sze,'Number of determinants') call write_int(iunit,sze,'Number of determinants')
call write_int(iunit,istate,'Using dressing for state ') call write_int(iunit,istate,'Using dressing for state ')
write(iunit,'(A)') '' write(iunit,'(A)') ''
@ -139,15 +144,20 @@ endif
sze_8 = align_double(sze) sze_8 = align_double(sze)
allocate( & allocate( &
kl_pairs(2,N_st*(N_st+1)/2), & kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st,davidson_sze_max), & W(sze_8,N_st_diag,davidson_sze_max), &
U(sze_8,N_st,davidson_sze_max), & U(sze_8,N_st_diag,davidson_sze_max), &
R(sze_8,N_st), & R(sze_8,N_st_diag), &
h(N_st,davidson_sze_max,N_st,davidson_sze_max), & h(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
y(N_st,davidson_sze_max,N_st,davidson_sze_max), & y(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
lambda(N_st*davidson_sze_max)) residual_norm(N_st_diag), &
overlap(N_st_diag,N_st_diag), &
c(N_st_diag*davidson_sze_max), &
H_small(N_st_diag,N_st_diag), &
lambda(N_st_diag*davidson_sze_max))
ASSERT (N_st > 0) ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0) ASSERT (sze > 0)
ASSERT (Nint > 0) ASSERT (Nint > 0)
ASSERT (Nint == N_int) ASSERT (Nint == N_int)
@ -156,132 +166,109 @@ endif
! ============== ! ==============
if (N_st > 1) then do k=1,N_st_diag
k_pairs=0 if (k > N_st) then
do l=1,N_st
do k=1,l
k_pairs+=1
kl_pairs(1,k_pairs) = k
kl_pairs(2,k_pairs) = l
enddo
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
!$OMP Nint,dets_in,u_in) &
!$OMP PRIVATE(k,l,kl,i)
! Orthonormalize initial guess
! ============================
!$OMP DO
do kl=1,k_pairs
k = kl_pairs(1,kl)
l = kl_pairs(2,kl)
if (k/=l) then
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
overlap(l,k) = overlap(k,l)
else
overlap(k,k) = u_dot_u(U_in(1,k),sze)
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
else
overlap(1,1) = u_dot_u(U_in(1,1),sze)
double precision :: f
f = 1.d0 / dsqrt(overlap(1,1))
do i=1,sze do i=1,sze
U_in(i,1) = U_in(i,1) * f double precision :: r1, r2
call random_number(r1)
call random_number(r2)
u_in(i,k) = dsqrt(-2.d0*dlog(r1))*dcos(dtwo_pi*r2)
enddo enddo
endif endif
! Davidson iterations ! Gram-Schmidt
! =================== ! ------------
call dgemv('T',sze,k-1,1.d0,u_in,size(u_in,1), &
u_in(1,k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,u_in,size(u_in,1), &
c,1,1.d0,u_in(1,k),1)
call normalize(u_in(1,k),sze)
enddo
integer :: iteration
converged = .False. converged = .False.
do while (.not.converged) do while (.not.converged)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st) do k=1,N_st_diag
do k=1,N_st
!$OMP DO
do i=1,sze do i=1,sze
U(i,k,1) = u_in(i,k) U(i,k,1) = u_in(i,k)
enddo enddo
!$OMP END DO
enddo enddo
!$OMP END PARALLEL
do iter=1,davidson_sze_max-1 do iter=1,davidson_sze_max-1
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------------
! Compute W_k = H |u_k> call H_u_0_mrcc_nstates(W(1,1,iter),U(1,1,iter),H_jj,sze,dets_in,Nint,istate,N_st_diag,sze_8)
! ----------------------
call H_u_0_mrcc_nstates(W(1,1,iter),U(1,1,iter),H_jj,sze,dets_in,Nint,istate,N_st,sze_8)
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l> ! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! ------------------------------------------- ! -------------------------------------------
do l=1,N_st
do k=1,N_st
do iter2=1,iter-1
h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
h(k,iter,l,iter2) = h(k,iter2,l,iter)
enddo
enddo
do k=1,l
h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
h(l,iter,k,iter) = h(k,iter,l,iter)
enddo
enddo
!DEBUG H MATRIX ! do l=1,N_st_diag
!do i=1,iter ! do k=1,N_st_diag
! print '(10(x,F16.10))', h(1,i,1,1:i) ! do iter2=1,iter-1
! h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
! h(k,iter,l,iter2) = h(k,iter2,l,iter)
! enddo ! enddo
!print *, '' ! enddo
!END ! do k=1,l
! h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
! h(l,iter,k,iter) = h(k,iter,l,iter)
! enddo
! enddo
call dgemm('T','N', N_st_diag*iter, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,1,iter), size(W,1), &
0.d0, h(1,1,1,iter), size(h,1)*size(h,2))
! Diagonalize h ! Diagonalize h
! ------------- ! -------------
call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter) call lapack_diag(lambda,y,h,N_st_diag*davidson_sze_max,N_st_diag*iter)
! Express eigenvectors of h in the determinant basis ! Express eigenvectors of h in the determinant basis
! -------------------------------------------------- ! --------------------------------------------------
do k=1,N_st do k=1,N_st_diag
do i=1,sze do i=1,sze
U(i,k,iter+1) = 0.d0 U(i,k,iter+1) = 0.d0
W(i,k,iter+1) = 0.d0 W(i,k,iter+1) = 0.d0
do l=1,N_st
do iter2=1,iter
U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
enddo
enddo
enddo enddo
enddo enddo
! do k=1,N_st_diag
! do iter2=1,iter
! do l=1,N_st_diag
! do i=1,sze
! U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
! W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
! enddo
! enddo
! enddo
! enddo
!
!
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, &
1.d0, U, size(U,1), y, size(y,1)*size(y,2), 0.d0, U(1,1,iter+1), size(U,1))
call dgemm('N','N',sze,N_st_diag,N_st_diag*iter, &
1.d0, W, size(W,1), y, size(y,1)*size(y,2), 0.d0, W(1,1,iter+1), size(W,1))
! Compute residual vector ! Compute residual vector
! ----------------------- ! -----------------------
do k=1,N_st do k=1,N_st_diag
do i=1,sze do i=1,sze
R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1) R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1)
enddo enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(R(1,k),sze) residual_norm(k) = u_dot_u(R(1,k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = residual_norm(k) to_print(2,k) = residual_norm(k)
endif
enddo enddo
write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))') iter, to_print(:,1:N_st) write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))') iter, to_print(:,1:N_st)
@ -290,11 +277,10 @@ endif
exit exit
endif endif
! Davidson step ! Davidson step
! ------------- ! -------------
do k=1,N_st do k=1,N_st_diag
do i=1,sze do i=1,sze
U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k) U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k)
enddo enddo
@ -303,38 +289,37 @@ endif
! Gram-Schmidt ! Gram-Schmidt
! ------------ ! ------------
double precision :: c do k=1,N_st_diag
do k=1,N_st
do iter2=1,iter ! do iter2=1,iter
do l=1,N_st ! do l=1,N_st_diag
c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze) ! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
do i=1,sze ! do i=1,sze
U(i,k,iter+1) -= c * U(i,l,iter2) ! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter2)
enddo ! enddo
enddo ! enddo
enddo ! enddo
do l=1,k-1 !
c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze) call dgemv('T',sze,N_st_diag*iter,1.d0,U,size(U,1), &
do i=1,sze U(1,k,iter+1),1,0.d0,c,1)
U(i,k,iter+1) -= c * U(i,l,iter+1) call dgemv('N',sze,N_st_diag*iter,-1.d0,U,size(U,1), &
enddo c,1,1.d0,U(1,k,iter+1),1)
enddo !
! do l=1,k-1
! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter+1)
! enddo
! enddo
!
call dgemv('T',sze,k-1,1.d0,U(1,1,iter+1),size(U,1), &
U(1,k,iter+1),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,U(1,1,iter+1),size(U,1), &
c,1,1.d0,U(1,k,iter+1),1)
call normalize( U(1,k,iter+1), sze ) call normalize( U(1,k,iter+1), sze )
enddo enddo
!DEBUG : CHECK OVERLAP
!print *, '==='
!do k=1,iter+1
! do l=1,k
! c = u_dot_v(U(1,1,k),U(1,1,l),sze)
! print *, k,l, c
! enddo
!enddo
!print *, '==='
!pause
!END DEBUG
enddo enddo
if (.not.converged) then if (.not.converged) then
@ -344,17 +329,25 @@ endif
! Re-contract to u_in ! Re-contract to u_in
! ----------- ! -----------
do k=1,N_st do k=1,N_st_diag
energies(k) = lambda(k) energies(k) = lambda(k)
do i=1,sze do i=1,sze
u_in(i,k) = 0.d0 u_in(i,k) = 0.d0
do iter2=1,iter
do l=1,N_st
u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
enddo
enddo
enddo enddo
enddo enddo
! do k=1,N_st_diag
! do i=1,sze
! do iter2=1,iter
! do l=1,N_st_diag
! u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
! enddo
! enddo
! enddo
! enddo
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, 1.d0, &
U, size(U,1), y, N_st_diag*davidson_sze_max, &
0.d0, u_in, size(u_in,1))
enddo enddo
@ -368,9 +361,9 @@ endif
deallocate ( & deallocate ( &
kl_pairs, & kl_pairs, &
W, & W, residual_norm, &
U, & U, overlap, &
R, & R, c, &
h, & h, &
y, & y, &
lambda & lambda &

View File

@ -140,7 +140,7 @@ END_PROVIDER
integer :: mrcc_state integer :: mrcc_state
mrcc_state = N_states mrcc_state = N_states
do j=1,N_states_diag do j=1,min(N_states,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j) CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo enddo
@ -241,12 +241,14 @@ END_PROVIDER
allocate(s2_eigvalues(N_states_diag), e_array(N_states_diag)) allocate(s2_eigvalues(N_states_diag), e_array(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues) call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors_dressed,n_det,size(psi_det,3),size(CI_eigenvectors_dressed,1),min(n_states_diag,n_det),s2_eigvalues)
double precision, allocatable :: psi_coef_tmp(:,:)
allocate(psi_coef_tmp(psi_det_size,N_states_diag))
do j = 1, N_states_diag do j = 1, N_states_diag
do i = 1, N_det do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j) psi_coef_tmp(i,j) = CI_eigenvectors_dressed(i,j)
enddo enddo
enddo enddo
call u_0_H_u_0_mrcc_nstates(e_array,psi_coef,n_det,psi_det,N_int,mrcc_state,N_states_diag,psi_det_size) call u_0_H_u_0_mrcc_nstates(e_array,psi_coef_tmp,n_det,psi_det,N_int,mrcc_state,N_states,psi_det_size)
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input ! closer to the "expected_s2" set as input
@ -265,7 +267,7 @@ END_PROVIDER
allocate(iorder(i_state)) allocate(iorder(i_state))
do j = 1, i_state do j = 1, i_state
do i = 1, N_det do i = 1, N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(j)) CI_eigenvectors_dressed(i,j) = psi_coef_tmp(i,index_good_state_array(j))
enddo enddo
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
CI_electronic_energy_dressed(j) = e_array(j) CI_electronic_energy_dressed(j) = e_array(j)
@ -276,7 +278,7 @@ END_PROVIDER
CI_electronic_energy_dressed(j) = e_array(j) CI_electronic_energy_dressed(j) = e_array(j)
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(iorder(j))) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det do i = 1, N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,index_good_state_array(iorder(j))) CI_eigenvectors_dressed(i,j) = psi_coef_tmp(i,index_good_state_array(iorder(j)))
enddo enddo
enddo enddo
@ -286,12 +288,12 @@ END_PROVIDER
if(good_state_array(j))cycle if(good_state_array(j))cycle
i_other_state +=1 i_other_state +=1
do i = 1, N_det do i = 1, N_det
CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef(i,j) CI_eigenvectors_dressed(i,i_state + i_other_state) = psi_coef_tmp(i,j)
enddo enddo
CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j) CI_eigenvectors_s2_dressed(i_state + i_other_state) = s2_eigvalues(j)
CI_electronic_energy_dressed(i_state + i_other_state) = e_array(i_state + i_other_state) CI_electronic_energy_dressed(i_state + i_other_state) = e_array(i_state + i_other_state)
enddo enddo
deallocate(iorder,e_array,index_good_state_array,good_state_array) deallocate(iorder,e_array,index_good_state_array,good_state_array,psi_coef_tmp)
deallocate(s2_eigvalues) deallocate(s2_eigvalues)
@ -325,7 +327,7 @@ subroutine diagonalize_CI_dressed(lambda)
END_DOC END_DOC
double precision, intent(in) :: lambda double precision, intent(in) :: lambda
integer :: i,j integer :: i,j
do j=1,N_states_diag do j=1,N_states
do i=1,N_det do i=1,N_det
psi_coef(i,j) = lambda * CI_eigenvectors_dressed(i,j) + (1.d0 - lambda) * psi_coef(i,j) psi_coef(i,j) = lambda * CI_eigenvectors_dressed(i,j) + (1.d0 - lambda) * psi_coef(i,j)
enddo enddo