10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 10:05:57 +01:00

DFT begins to work with lda

This commit is contained in:
Emmanuel Giner 2017-04-14 12:50:27 +02:00
parent 226ca23af8
commit 5b8175e818
8 changed files with 7096 additions and 37 deletions

6951
plugins/DFT_Utils/angular.f Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,25 @@
double precision function ex_lda(rho)
include 'constants.include.F'
implicit none
double precision, intent(in) :: rho
ex_lda = cst_lda * rho**(c_4_3)
end
BEGIN_PROVIDER [double precision, lda_exchange, (N_states)]
implicit none
integer :: i,j,k,l
double precision :: ex_lda
do l = 1, N_states
lda_exchange(l) = 0.d0
do j = 1, nucl_num
do i = 1, n_points_radial_grid
do k = 1, n_points_integration_angular
lda_exchange(l) += final_weight_functions_at_grid_points(k,i,j) * &
(ex_lda(one_body_dm_mo_alpha_at_grid_points(k,i,j,l)) + ex_lda(one_body_dm_mo_beta_at_grid_points(k,i,j,l)))
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -1,7 +1,7 @@
!BEGIN_PROVIDER [integer, n_points_integration_angular_lebedev]
!implicit none
!n_points_integration_angular_lebedev = 50
!END_PROVIDER
BEGIN_PROVIDER [integer, n_points_integration_angular]
implicit none
n_points_integration_angular = 110
END_PROVIDER
BEGIN_PROVIDER [integer, n_points_radial_grid]
implicit none
@ -9,22 +9,33 @@ BEGIN_PROVIDER [integer, n_points_radial_grid]
END_PROVIDER
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular_lebedev,3) ]
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular_lebedev)]
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ]
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)]
implicit none
BEGIN_DOC
! weights and grid points for the integration on the angular variables on
! the unit sphere centered on (0,0,0)
! According to the LEBEDEV scheme
END_DOC
call cal_quad(n_points_integration_angular_lebedev, angular_quadrature_points,weights_angular_points)
angular_quadrature_points = 0.d0
weights_angular_points = 0.d0
!call cal_quad(n_points_integration_angular, angular_quadrature_points,weights_angular_points)
include 'constants.include.F'
integer :: i
integer :: i,n
double precision :: accu
double precision :: degre_rad
degre_rad = 180.d0/pi
degre_rad = pi/180.d0
accu = 0.d0
!do i = 1, n_points_integration_angular_lebedev
double precision :: x(n_points_integration_angular),y(n_points_integration_angular),z(n_points_integration_angular),w(n_points_integration_angular)
call LD0110(X,Y,Z,W,N)
do i = 1, n_points_integration_angular
angular_quadrature_points(i,1) = x(i)
angular_quadrature_points(i,2) = y(i)
angular_quadrature_points(i,3) = z(i)
weights_angular_points(i) = w(i) * 4.d0 * pi
accu += w(i)
enddo
!do i = 1, n_points_integration_angular
! accu += weights_angular_integration_lebedev(i)
! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 4.d0 * pi
! angular_quadrature_points(i,1) = dcos ( degre_rad * theta_angular_integration_lebedev(i)) &
@ -70,7 +81,7 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular_lebedev,n_points_radial_grid,nucl_num)]
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular,n_points_radial_grid,nucl_num)]
BEGIN_DOC
! points for integration over space
END_DOC
@ -86,7 +97,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
double precision :: x,r
x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1]
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration
do k = 1, n_points_integration_angular_lebedev ! explicit values of the grid points centered around each atom
do k = 1, n_points_integration_angular ! explicit values of the grid points centered around each atom
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
@ -95,7 +106,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_integration_angular_lebedev,n_points_radial_grid,nucl_num) ]
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
BEGIN_DOC
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
@ -109,7 +120,7 @@ BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_int
! run over all points in space
do j = 1, nucl_num ! that are referred to each atom
do k = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
do l = 1, n_points_integration_angular_lebedev ! for each angular point attached to the "jth" atom
do l = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
@ -129,18 +140,47 @@ BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_int
END_PROVIDER
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_integration_angular_lebedev,n_points_radial_grid,nucl_num) ]
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_integration_angular_lebedev,n_points_radial_grid,nucl_num) ]
BEGIN_PROVIDER [double precision, final_weight_functions_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
BEGIN_DOC
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
! and the points are labelled by the other dimensions
END_DOC
implicit none
integer :: i,j,k,l,m
double precision :: r(3)
double precision :: accu,cell_function_becke
double precision :: tmp_array(nucl_num)
double precision :: contrib_integration,x
double precision :: derivative_knowles_function,knowles_function
! run over all points in space
do j = 1, nucl_num ! that are referred to each atom
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
final_weight_functions_at_grid_points(k,i,j) = weights_angular_points(k) * weight_functions_at_grid_points(k,i,j) * contrib_integration * dr_radial_integral
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_integration_angular,n_points_radial_grid,nucl_num,N_states) ]
implicit none
integer :: i,j,k,l,m,i_state
double precision :: contrib
double precision :: r(3)
double precision :: aos_array(ao_num),mos_array(mo_tot_num)
do i_state = 1, N_states
do j = 1, nucl_num
do k = 1, n_points_radial_grid
do l = 1, n_points_integration_angular_lebedev
one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0
one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0
do l = 1, n_points_integration_angular
one_body_dm_mo_alpha_at_grid_points(l,k,j,i_state) = 0.d0
one_body_dm_mo_beta_at_grid_points(l,k,j,i_state) = 0.d0
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
@ -149,14 +189,15 @@ END_PROVIDER
do m = 1, mo_tot_num
do i = 1, mo_tot_num
contrib = mos_array(i) * mos_array(m)
one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha_average(i,m) * contrib
one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta_average(i,m) * contrib
one_body_dm_mo_alpha_at_grid_points(l,k,j,i_state) += one_body_dm_mo_alpha(i,m,i_state) * contrib
one_body_dm_mo_beta_at_grid_points(l,k,j,i_state) += one_body_dm_mo_beta(i,m,i_state) * contrib
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -5,11 +5,10 @@ double precision function step_function_becke(x)
integer :: i,n_max_becke
step_function_becke = f_function_becke(x)
do i = 1, 3
do i = 1,5
step_function_becke = f_function_becke(step_function_becke)
enddo
step_function_becke = 0.5d0*(1.d0 - step_function_becke)
! step_function_becke = (1.d0 - step_function_becke)
end
double precision function f_function_becke(x)

View File

@ -4,7 +4,7 @@
double precision :: accu
integer :: i,j,k,l
double precision :: x
double precision :: integrand(n_points_integration_angular_lebedev), weights(n_points_integration_angular_lebedev)
double precision :: integrand(n_points_integration_angular), weights(n_points_integration_angular)
double precision :: f_average_angular_alpha,f_average_angular_beta
double precision :: derivative_knowles_function,knowles_function
@ -12,7 +12,7 @@
! according ot equation (6) of the paper of Becke (JCP, (88), 1988)
! Here the m index is referred to the w_m(r) weight functions of equation (22)
! Run over all points of integrations : there are
! n_points_radial_grid (i) * n_points_integration_angular_lebedev (k)
! n_points_radial_grid (i) * n_points_integration_angular (k)
do j = 1, nucl_num
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
integral_density_beta_knowles_becke_per_atom(j) = 0.d0
@ -20,9 +20,9 @@
! Angular integration over the solid angle Omega for a FIXED angular coordinate "r"
f_average_angular_alpha = 0.d0
f_average_angular_beta = 0.d0
do k = 1, n_points_integration_angular_lebedev
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
do k = 1, n_points_integration_angular
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j,1) * weight_functions_at_grid_points(k,i,j)
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j,1) * weight_functions_at_grid_points(k,i,j)
enddo
!
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]

View File

@ -4,8 +4,47 @@ program pouet
touch read_wf
print*,'m_knowles = ',m_knowles
call routine
call routine3
end
subroutine routine3
implicit none
integer :: i,j,k,l
double precision :: accu
accu = 0.d0
do j = 1, nucl_num ! that are referred to each atom
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
accu += final_weight_functions_at_grid_points(k,i,j) * one_body_dm_mo_alpha_at_grid_points(k,i,j,1)
enddo
enddo
enddo
print*, accu
print*, 'lda_exchange',lda_exchange
end
subroutine routine2
implicit none
integer :: i,j,k,l
double precision :: x,y,z
double precision :: r
double precision :: accu
accu = 0.d0
r = 1.d0
do k = 1, n_points_integration_angular
x = angular_quadrature_points(k,1) * r
y = angular_quadrature_points(k,2) * r
z = angular_quadrature_points(k,3) * r
accu += weights_angular_points(k) * (x**2 + y**2 + z**2)
enddo
print*, accu
end
subroutine routine
implicit none
integer :: i

View File

@ -4,7 +4,7 @@ BEGIN_PROVIDER [integer, degree_max_integration_lebedev]
! needed for the angular integration according to LEBEDEV formulae
END_DOC
implicit none
degree_max_integration_lebedev= 7
degree_max_integration_lebedev= 13
END_PROVIDER
@ -644,14 +644,14 @@ END_PROVIDER
weights_angular_integration_lebedev(16) = 0.016604069565742d0
weights_angular_integration_lebedev(17) = 0.016604069565742d0
weights_angular_integration_lebedev(18) = 0.016604069565742d0
weights_angular_integration_lebedev(19) = -0.029586038961039d0
weights_angular_integration_lebedev(20) = -0.029586038961039d0
weights_angular_integration_lebedev(21) = -0.029586038961039d0
weights_angular_integration_lebedev(22) = -0.029586038961039d0
weights_angular_integration_lebedev(23) = -0.029586038961039d0
weights_angular_integration_lebedev(24) = -0.029586038961039d0
weights_angular_integration_lebedev(25) = -0.029586038961039d0
weights_angular_integration_lebedev(26) = -0.029586038961039d0
weights_angular_integration_lebedev(19) = 0.029586038961039d0
weights_angular_integration_lebedev(20) = 0.029586038961039d0
weights_angular_integration_lebedev(21) = 0.029586038961039d0
weights_angular_integration_lebedev(22) = 0.029586038961039d0
weights_angular_integration_lebedev(23) = 0.029586038961039d0
weights_angular_integration_lebedev(24) = 0.029586038961039d0
weights_angular_integration_lebedev(25) = 0.029586038961039d0
weights_angular_integration_lebedev(26) = 0.029586038961039d0
weights_angular_integration_lebedev(27) = 0.026576207082159d0
weights_angular_integration_lebedev(28) = 0.026576207082159d0
weights_angular_integration_lebedev(29) = 0.026576207082159d0

View File

@ -10,3 +10,7 @@ double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0)
double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0))
double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0))
double precision, parameter :: thresh = 1.d-15
double precision, parameter :: cx_lda = -0.73855876638202234d0
double precision, parameter :: c_2_4_3 = 2.5198420997897464d0
double precision, parameter :: cst_lda = -0.93052573634909996d0
double precision, parameter :: c_4_3 = 1.3333333333333333d0