10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-12 05:58:24 +01:00

Cleaning plugins

This commit is contained in:
Anthony Scemama 2018-10-19 11:32:58 +02:00
parent 030ce60c31
commit 5b6067ea2f
478 changed files with 2089 additions and 11321 deletions

837
LICENSE
View File

@ -1,281 +1,622 @@
GNU GENERAL PUBLIC LICENSE GNU GENERAL PUBLIC LICENSE
Version 2, June 1991 Version 3, 29 June 2007
Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/> Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed. of this license document, but changing it is not allowed.
Preamble Preamble
The licenses for most software are designed to take away your The GNU General Public License is a free, copyleft license for
freedom to share and change it. By contrast, the GNU General Public software and other kinds of works.
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This The licenses for most software and other practical works are designed
General Public License applies to most of the Free Software to take away your freedom to share and change the works. By contrast,
Foundation's software and to any other program whose authors commit to the GNU General Public License is intended to guarantee your freedom to
using it. (Some other Free Software Foundation software is covered by share and change all versions of a program--to make sure it remains free
the GNU Lesser General Public License instead.) You can apply it to software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too. your programs, too.
When we speak of free software, we are referring to freedom, not When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it them if you wish), that you receive source code or can get it if you
if you want it, that you can change the software or use pieces of it want it, that you can change the software or use pieces of it in new
in new free programs; and that you know you can do these things. free programs, and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid To protect your rights, we need to prevent others from denying you
anyone to deny you these rights or to ask you to surrender the rights. these rights or asking you to surrender the rights. Therefore, you have
These restrictions translate to certain responsibilities for you if you certain responsibilities if you distribute copies of the software, or if
distribute copies of the software, or if you modify it. you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that gratis or for a fee, you must pass on to the recipients the same
you have. You must make sure that they, too, receive or can get the freedoms that you received. You must make sure that they, too, receive
source code. And you must show them these terms so they know their or can get the source code. And you must show them these terms so they
rights. know their rights.
We protect your rights with two steps: (1) copyright the software, and Developers that use the GNU GPL protect your rights with two steps:
(2) offer you this license which gives you legal permission to copy, (1) assert copyright on the software, and (2) offer you this License
distribute and/or modify the software. giving you legal permission to copy, distribute and/or modify it.
Also, for each author's protection and ours, we want to make certain For the developers' and authors' protection, the GPL clearly explains
that everyone understands that there is no warranty for this free that there is no warranty for this free software. For both users' and
software. If the software is modified by someone else and passed on, we authors' sake, the GPL requires that modified versions be marked as
want its recipients to know that what they have is not the original, so changed, so that their problems will not be attributed erroneously to
that any problems introduced by others will not reflect on the original authors of previous versions.
authors' reputations.
Finally, any free program is threatened constantly by software Some devices are designed to deny users access to install or run
patents. We wish to avoid the danger that redistributors of a free modified versions of the software inside them, although the manufacturer
program will individually obtain patent licenses, in effect making the can do so. This is fundamentally incompatible with the aim of
program proprietary. To prevent this, we have made it clear that any protecting users' freedom to change the software. The systematic
patent must be licensed for everyone's free use or not licensed at all. pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and The precise terms and conditions for copying, distribution and
modification follow. modification follow.
GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains 0. Definitions.
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not "This License" refers to version 3 of the GNU General Public License.
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's "Copyright" also means copyright-like laws that apply to other kinds of
source code as you receive it, in any medium, provided that you works, such as semiconductor masks.
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and "The Program" refers to any copyrightable work licensed under this
you may at your option offer warranty protection in exchange for a fee. License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
2. You may modify your copy or copies of the Program or any portion To "modify" a work means to copy from or adapt all or part of the work
of it, thus forming a work based on the Program, and copy and in a fashion requiring copyright permission, other than the making of an
distribute such modifications or work under the terms of Section 1 exact copy. The resulting work is called a "modified version" of the
above, provided that you also meet all of these conditions: earlier work or a work "based on" the earlier work.
a) You must cause the modified files to carry prominent notices A "covered work" means either the unmodified Program or a work based
stating that you changed the files and the date of any change. on the Program.
b) You must cause any work that you distribute or publish, that in To "propagate" a work means to do anything with it that, without
whole or in part contains or is derived from the Program or any permission, would make you directly or secondarily liable for
part thereof, to be licensed as a whole at no charge to all third infringement under applicable copyright law, except executing it on a
parties under the terms of this License. computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
c) If the modified program normally reads commands interactively To "convey" a work means any kind of propagation that enables other
when run, you must cause it, when started running for such parties to make or receive copies. Mere interaction with a user through
interactive use in the most ordinary way, to print or display an a computer network, with no transfer of a copy, is not conveying.
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If An interactive user interface displays "Appropriate Legal Notices"
identifiable sections of that work are not derived from the Program, to the extent that it includes a convenient and prominently visible
and can be reasonably considered independent and separate works in feature that (1) displays an appropriate copyright notice, and (2)
themselves, then this License, and its terms, do not apply to those tells the user that there is no warranty for the work (except to the
sections when you distribute them as separate works. But when you extent that warranties are provided), that licensees may convey the
distribute the same sections as part of a whole which is a work based work under this License, and how to view a copy of this License. If
on the Program, the distribution of the whole must be on the terms of the interface presents a list of user commands or options, such as a
this License, whose permissions for other licensees extend to the menu, a prominent item in the list meets this criterion.
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest 1. Source Code.
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program The "source code" for a work means the preferred form of the work
with the Program (or with a work based on the Program) on a volume of for making modifications to it. "Object code" means any non-source
a storage or distribution medium does not bring the other work under form of a work.
the scope of this License.
3. You may copy and distribute the Program (or a work based on it, A "Standard Interface" means an interface that either is an official
under Section 2) in object code or executable form under the terms of standard defined by a recognized standards body, or, in the case of
Sections 1 and 2 above provided that you also do one of the following: interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
a) Accompany it with the complete corresponding machine-readable The "System Libraries" of an executable work include anything, other
source code, which must be distributed under the terms of Sections than the work as a whole, that (a) is included in the normal form of
1 and 2 above on a medium customarily used for software interchange; or, packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
b) Accompany it with a written offer, valid for at least three The "Corresponding Source" for a work in object code form means all
years, to give any third party, for a charge no more than your the source code needed to generate, install, and (for an executable
cost of physically performing source distribution, a complete work) run the object code and to modify the work, including scripts to
machine-readable copy of the corresponding source code, to be control those activities. However, it does not include the work's
distributed under the terms of Sections 1 and 2 above on a medium System Libraries, or general-purpose tools or generally available free
customarily used for software interchange; or, programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
c) Accompany it with the information you received as to the offer The Corresponding Source need not include anything that users
to distribute corresponding source code. (This alternative is can regenerate automatically from other parts of the Corresponding
allowed only for noncommercial distribution and only if you Source.
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for The Corresponding Source for a work in source code form is that
making modifications to it. For an executable work, complete source same work.
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering 2. Basic Permissions.
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program All rights granted under this License are granted for the term of
except as expressly provided under this License. Any attempt copyright on the Program, and are irrevocable provided the stated
otherwise to copy, modify, sublicense or distribute the Program is conditions are met. This License explicitly affirms your unlimited
void, and will automatically terminate your rights under this License. permission to run the unmodified Program. The output from running a
However, parties who have received copies, or rights, from you under covered work is covered by this License only if the output, given its
this License will not have their licenses terminated so long as such content, constitutes a covered work. This License acknowledges your
parties remain in full compliance. rights of fair use or other equivalent, as provided by copyright law.
5. You are not required to accept this License, since you have not You may make, run and propagate covered works that you do not
signed it. However, nothing else grants you permission to modify or convey, without conditions so long as your license otherwise remains
distribute the Program or its derivative works. These actions are in force. You may convey covered works to others for the sole purpose
prohibited by law if you do not accept this License. Therefore, by of having them make modifications exclusively for you, or provide you
modifying or distributing the Program (or any work based on the with facilities for running those works, provided that you comply with
Program), you indicate your acceptance of this License to do so, and the terms of this License in conveying all material for which you do
all its terms and conditions for copying, distributing or modifying not control copyright. Those thus making or running the covered works
the Program or works based on it. for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
6. Each time you redistribute the Program (or any work based on the Conveying under any other circumstances is permitted solely under
Program), the recipient automatically receives a license from the the conditions stated below. Sublicensing is not allowed; section 10
original licensor to copy, distribute or modify the Program subject to makes it unnecessary.
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
You are not responsible for enforcing compliance by third parties to
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License. this License.
7. If, as a consequence of a court judgment or allegation of patent Each contributor grants you a non-exclusive, worldwide, royalty-free
infringement or for any other reason (not limited to patent issues), patent license under the contributor's essential patent claims, to
conditions are imposed on you (whether by court order, agreement or make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot excuse you from the conditions of this License. If you cannot convey a
distribute so as to satisfy simultaneously your obligations under this covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you License and any other pertinent obligations, then as a consequence you may
may not distribute the Program at all. For example, if a patent not convey it at all. For example, if you agree to terms that obligate you
license would not permit royalty-free redistribution of the Program by to collect a royalty for further conveying from those to whom you convey
all those who receive copies directly or indirectly through you, then the Program, the only way you could satisfy both those terms and this
the only way you could satisfy both it and this License would be to License would be to refrain entirely from conveying the Program.
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under 13. Use with the GNU Affero General Public License.
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any Notwithstanding any other provision of this License, you have
patents or other property right claims or to contest validity of any permission to link or combine any covered work with a work licensed
such claims; this section has the sole purpose of protecting the under version 3 of the GNU Affero General Public License into a single
integrity of the free software distribution system, which is combined work, and to convey the resulting work. The terms of this
implemented by public license practices. Many people have made License will continue to apply to the part which is the covered work,
generous contributions to the wide range of software distributed but the special requirements of the GNU Affero General Public License,
through that system in reliance on consistent application of that section 13, concerning interaction through a network will apply to the
system; it is up to the author/donor to decide if he or she is willing combination as such.
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to 14. Revised Versions of this License.
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in The Free Software Foundation may publish revised and/or new versions of
certain countries either by patents or by copyrighted interfaces, the the GNU General Public License from time to time. Such new versions will
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. address new problems or concerns.
Each version is given a distinguishing version number. If the Program Each version is given a distinguishing version number. If the
specifies a version number of this License which applies to it and "any Program specifies that a certain numbered version of the GNU General
later version", you have the option of following the terms and conditions Public License "or any later version" applies to it, you have the
either of that version or of any later version published by the Free option of following the terms and conditions either of that numbered
Software Foundation. If the Program does not specify a version number of version or of any later version published by the Free Software
this License, you may choose any version ever published by the Free Software Foundation. If the Program does not specify a version number of the
Foundation. GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free If the Program specifies that a proxy can decide which future
programs whose distribution conditions are different, write to the author versions of the GNU General Public License can be used, that proxy's
to ask for permission. For software which is copyrighted by the Free public statement of acceptance of a version permanently authorizes you
Software Foundation, write to the Free Software Foundation; we sometimes to choose that version for the Program.
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY 15. Disclaimer of Warranty.
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
POSSIBILITY OF SUCH DAMAGES.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS END OF TERMS AND CONDITIONS
@ -287,15 +628,15 @@ free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found. the "copyright" line and a pointer to where the full notice is found.
{description} Quantum Package
Copyright (C) {year} {fullname} Copyright (C) 2018 Anthony Scemama, Emmanuel Giner
This program is free software; you can redistribute it and/or modify This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation, either version 3 of the License, or
(at your option) any later version. (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
@ -303,37 +644,31 @@ the "copyright" line and a pointer to where the full notice is found.
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License along You should have received a copy of the GNU General Public License
with this program; if not, write to the Free Software Foundation, Inc., along with this program. If not, see <http://www.gnu.org/licenses/>.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail. Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this If the program does terminal interaction, make it output a short
when it starts in an interactive mode: notice like this when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author Quantum Package Copyright (C) 2018 Anthony Scemam, Emmanuel Giner
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details. under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may parts of the General Public License. Of course, your program's commands
be called something other than `show w' and `show c'; they could even be might be different; for a GUI interface, you would use an "about box".
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your You should also get your employer (if you work as a programmer) or school,
school, if any, to sign a "copyright disclaimer" for the program, if if any, to sign a "copyright disclaimer" for the program, if necessary.
necessary. Here is a sample; alter the names: For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
Yoyodyne, Inc., hereby disclaims all copyright interest in the program The GNU General Public License does not permit incorporating your program
`Gnomovision' (which makes passes at compilers) written by James Hacker. into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
{signature of Ty Coon}, 1 April 1989 the library. If this is what you want to do, use the GNU Lesser General
Ty Coon, President of Vice Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

View File

@ -1,6 +0,0 @@
#!/bin/bash
QP_ROOT=$( cd $(dirname "${BASH_SOURCE}")/.. ; pwd -P )
source $HOME/.bashrc
source $QP_ROOT/quantum_package.rc
exec $QP_ROOT/ocaml/qp_run $@

63
config/ifort_debug.cfg Normal file
View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 1 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xAVX -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE4.2 -C -fpe0
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

8
configure vendored
View File

@ -66,7 +66,6 @@ d_dependency = {
"python": [], "python": [],
"ninja": ["g++", "python"], "ninja": ["g++", "python"],
"make": [], "make": [],
"p_graphviz": ["python"],
"bats": [], "bats": [],
"gmp" : ["make", "g++"] "gmp" : ["make", "g++"]
} }
@ -152,11 +151,6 @@ f77zmq = Info(
description=' F77-ZeroMQ', description=' F77-ZeroMQ',
default_path=join(QP_ROOT_LIB, "libf77zmq.a") ) default_path=join(QP_ROOT_LIB, "libf77zmq.a") )
p_graphviz = Info(
url='https://github.com/xflr6/graphviz/archive/master.tar.gz',
description=' Python library for graphviz',
default_path=join(QP_ROOT_INSTALL, "p_graphviz"))
bats = Info( bats = Info(
url='https://github.com/sstephenson/bats/archive/master.tar.gz', url='https://github.com/sstephenson/bats/archive/master.tar.gz',
description=' Bash Automated Testing System', description=' Bash Automated Testing System',
@ -165,7 +159,7 @@ bats = Info(
d_info = dict() d_info = dict()
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt", for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz", "resultsFile", "ninja", "emsl", "ezfio",
"zeromq", "f77zmq", "bats", "gmp"]: "zeromq", "f77zmq", "bats", "gmp"]:
exec ("d_info['{0}']={0}".format(m)) exec ("d_info['{0}']={0}".format(m))

2
docs/source/Makefile Normal file
View File

@ -0,0 +1,2 @@
default:
make -C ../ html

View File

@ -18,7 +18,7 @@ FCIDUMP
.. _Molden: http://cheminf.cmbi.ru.nl/molden/ .. _Molden: http://cheminf.cmbi.ru.nl/molden/
.. _GAMESS: https://www.msg.chem.iastate.edu/gamess/ .. _GAMESS: https://www.msg.chem.iastate.edu/gamess/
.. _QMC=Chem: https://github.com/scemama/qmcchem .. _QMC=Chem: https://gitlab.com/scemama/qmcchem
.. _CHAMP: https://www.utwente.nl/en/tnw/ccp/research/CHAMP.html .. _CHAMP: https://www.utwente.nl/en/tnw/ccp/research/CHAMP.html
.. _NECI: https://github.com/ghb24/NECI_STABLE .. _NECI: https://github.com/ghb24/NECI_STABLE
.. _Dice: https://sanshar.github.io/Dice/ .. _Dice: https://sanshar.github.io/Dice/

View File

@ -25,15 +25,16 @@ their own programs.
The |qp| has been designed specifically for sCI, so all the The |qp| has been designed specifically for sCI, so all the
algorithms which are programmed are not adapted to run SCF or DFT calculations algorithms which are programmed are not adapted to run SCF or DFT calculations
on thousands of atoms. on thousands of atoms. Currently, the systems targeted have less than 500
molecular orbitals.
The |qp| is *not* a massive production code. For conventional The |qp| is *not* a massive production code. For conventional
methods such as Hartree-Fock CISD or MP2, the users are recommended to use the methods such as Hartree-Fock, CISD or MP2, the users are recommended to use the
existing standard production codes which are designed to make these methods run existing standard production codes which are designed to make these methods run
fast. Again, the role of the |qp| is to make life simple for the fast. Again, the role of the |qp| is to make life simple for the
developer. Once a new method is developed and tested, the developer is encouraged developer. Once a new method is developed and tested, the developer is encouraged
to consider re-expressing it with an integral-driven formulation, and to to consider re-expressing it with an integral-driven formulation, and to
implement the new method is open-source production codes, such as `NWChem`_ implement the new method in open-source production codes, such as `NWChem`_
or `GAMESS`_. or `GAMESS`_.

View File

@ -1,2 +1,5 @@
Programming the Quantum Package Programming in the Quantum Package
=============================== ==================================
.. include:: work.rst

View File

@ -0,0 +1,38 @@
open Core
let test1 () =
let bar =
Progress_bar.init ~title:"Title" ~start_value:2. ~end_value:23. ~bar_length:30
in
let rec loop bar = function
| i when i = 24 -> ()
| i ->
let x =
Float.of_int i
in
let bar =
Progress_bar.update ~cur_value:x bar
|> Progress_bar.display
in
Unix.sleep 1 ;
loop bar (i+1)
in
loop bar 2
let test2 () =
let bar =
Progress_bar.init ~title:"Title" ~start_value:2. ~end_value:23. ~bar_length:30
in
let rec loop bar = function
| i when i = 24 -> ()
| i ->
let bar =
Progress_bar.increment bar
|> Progress_bar.display
in
Unix.sleep 1 ;
loop bar (i+1)
in
loop bar 2
let () = test2 ()

15
ocaml/tests/test_pub.py Executable file
View File

@ -0,0 +1,15 @@
#!/usr/bin/python
import zmq
import sys, os
def main():
context = zmq.Context()
socket = context.socket(zmq.SUB)
socket.connect("tcp://127.0.0.1:41280")
socket.setsockopt(zmq.SUBSCRIBE, "")
while True:
print socket.recv()
if __name__ == '__main__':
main()

View File

@ -1,23 +0,0 @@
[energy]
type: double precision
doc: Calculated energy
interface: ezfio
[thresh_dressed_ci]
type: Threshold
doc: Threshold on the convergence of the dressed CI energy
interface: ezfio,provider,ocaml
default: 1.e-5
[n_it_max_dressed_ci]
type: Strictly_positive_int
doc: Maximum number of dressed CI iterations
interface: ezfio,provider,ocaml
default: 10
[h0_type]
type: Perturbation
doc: Type of zeroth-order Hamiltonian [ EN | Barycentric ]
interface: ezfio,provider,ocaml
default: EN

View File

@ -1,2 +0,0 @@
Bitmask dress_zmq DavidsonDressed Generators_full Selectors_full

View File

@ -1,12 +0,0 @@
==
Bk
==
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -1,26 +0,0 @@
program bk
implicit none
BEGIN_DOC
! Shifted-Bk method
END_DOC
read_wf = .True.
state_following = .True.
TOUCH read_wf state_following
call run()
end
subroutine run
implicit none
call diagonalize_ci_dressed
integer :: istate
print *, 'Bk Energy'
print *, '---------'
print *, ''
do istate = 1,N_states
print *, istate, CI_energy_dressed(istate)
enddo
! call save_wavefunction
call ezfio_set_bk_energy(ci_energy_dressed(1))
end

View File

@ -1,66 +0,0 @@
BEGIN_PROVIDER [ double precision, fock_diag_tmp_, (2,mo_tot_num+1,Nproc) ]
&BEGIN_PROVIDER [ integer, current_generator_, (Nproc) ]
implicit none
BEGIN_DOC
! Temporary arrays for speedup
END_DOC
current_generator_(:) = 0
END_PROVIDER
subroutine dress_with_alpha_buffer(Nstates,Ndet,Nint,delta_ij_loc, i_gen, minilist, det_minilist, n_minilist, alpha, iproc)
use bitmasks
implicit none
BEGIN_DOC
!delta_ij_loc(:,:,1) : dressing column for H
!delta_ij_loc(:,:,2) : dressing column for S2
!minilist : indices of determinants connected to alpha ( in psi_det_sorted )
!n_minilist : size of minilist
!alpha : alpha determinant
END_DOC
integer, intent(in) :: Nint, Ndet, Nstates, n_minilist, iproc, i_gen
integer(bit_kind), intent(in) :: alpha(Nint,2), det_minilist(Nint, 2, n_minilist)
integer,intent(in) :: minilist(n_minilist)
double precision, intent(inout) :: delta_ij_loc(Nstates,Ndet,2)
integer :: j, j_mini, i_state
double precision :: c_alpha(N_states), h_alpha_alpha, hdress, sdress
double precision :: i_h_alpha, i_s_alpha, alpha_h_psi(N_states)
double precision, external :: diag_H_mat_elem_fock
if(current_generator_(iproc) /= i_gen) then
current_generator_(iproc) = i_gen
call build_fock_tmp(fock_diag_tmp_(1,1,iproc),psi_det_generators(1,1,i_gen),N_int)
end if
h_alpha_alpha = diag_H_mat_elem_fock(psi_det_generators(1,1,i_gen),alpha,fock_diag_tmp_(1,1,iproc),N_int)
call i_H_psi_minilist(alpha,det_minilist,minilist,n_minilist,psi_coef,N_int,n_minilist,size(psi_coef,1),N_states,alpha_h_psi)
do i_state=1,N_states
if (h_alpha_alpha - dress_e0_denominator(i_state) > 0.1d0 ) then
c_alpha(i_state) = alpha_h_psi(i_state) / &
(dress_e0_denominator(i_state) - h_alpha_alpha)
else
c_alpha(i_state) = 0.d0
endif
enddo
do j_mini=1,n_minilist
j = minilist(j_mini)
call i_H_j (det_minilist(1,1,j_mini),alpha,N_int,i_h_alpha)
call get_s2(det_minilist(1,1,j_mini),alpha,N_int,i_s_alpha)
do i_state=1,N_states
hdress = c_alpha(i_state) * i_h_alpha
sdress = c_alpha(i_state) * i_s_alpha
!$OMP ATOMIC
delta_ij_loc(i_state,j,1) = delta_ij_loc(i_state,j,1) + hdress
!$OMP ATOMIC
delta_ij_loc(i_state,j,2) = delta_ij_loc(i_state,j,2) + sdress
enddo
enddo
end subroutine

View File

@ -1,58 +0,0 @@
BEGIN_PROVIDER [ integer, N_dress_int_buffer ]
&BEGIN_PROVIDER [ integer, N_dress_double_buffer ]
&BEGIN_PROVIDER [ integer, N_dress_det_buffer ]
implicit none
N_dress_int_buffer = 1
N_dress_double_buffer = 1
N_dress_det_buffer = 1
END_PROVIDER
subroutine delta_ij_done()
BEGIN_DOC
! This subroutine is executed on the master when the dressing has been computed,
! before the diagonalization.
END_DOC
end
subroutine dress_pulled(ind, int_buf, double_buf, det_buf, N_buf)
use bitmasks
implicit none
BEGIN_DOC
! Dress the contributions pulled from the slave.
END_DOC
integer, intent(in) :: ind, N_buf(3)
integer, intent(in) :: int_buf(*)
double precision, intent(in) :: double_buf(*)
integer(bit_kind), intent(in) :: det_buf(N_int,2,*)
end
subroutine generator_start(i_gen, iproc)
implicit none
BEGIN_DOC
! This subroutine is executed on the slave before computing the contribution of a generator.
END_DOC
integer, intent(in) :: i_gen, iproc
integer :: i
end
subroutine generator_done(i_gen, int_buf, double_buf, det_buf, N_buf, iproc)
implicit none
BEGIN_DOC
! This subroutine is executed on the slave after computing the contribution of a generator.
END_DOC
integer, intent(in) :: i_gen, iproc
integer, intent(out) :: int_buf(N_dress_int_buffer), N_buf(3)
double precision, intent(out) :: double_buf(N_dress_double_buffer)
integer(bit_kind), intent(out) :: det_buf(N_int, 2, N_dress_det_buffer)
N_buf(:) = 1
int_buf(:) = 0
double_buf(:) = 0.d0
det_buf(:,:,:) = 0
end

View File

@ -1,15 +0,0 @@
[energy]
type: double precision
doc: Calculated CAS-SD energy
interface: ezfio
[energy_pt2]
type: double precision
doc: Calculated selected CAS-SD energy with PT2 correction
interface: ezfio
[do_ddci]
type: logical
doc: If true, remove purely inactive double excitations
interface: ezfio,provider,ocaml
default: False

View File

@ -1,2 +0,0 @@
Generators_CAS Perturbation Selectors_CASSD ZMQ DavidsonUndressed

View File

@ -1,14 +0,0 @@
==========
CAS_SD_ZMQ
==========
Selected CAS+SD module with Zero-MQ parallelization.
Needed Modules
==============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.

View File

@ -1,230 +0,0 @@
program cassd_zmq
implicit none
integer :: i,j,k
double precision, allocatable :: pt2(:)
integer :: degree
integer :: n_det_before, to_select
double precision :: threshold_davidson_in
double precision :: error(N_states)
allocate (pt2(N_states))
double precision :: hf_energy_ref
logical :: has
integer :: N_states_p
character*(512) :: fmt
character*(8) :: pt2_string
pt2 = -huge(1.d0)
error = 0.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
if (do_pt2) then
pt2_string = ' '
else
pt2_string = '(approx)'
endif
call diagonalize_CI
call save_wavefunction
call ezfio_has_hartree_fock_energy(has)
if (has) then
call ezfio_get_hartree_fock_energy(hf_energy_ref)
else
hf_energy_ref = ref_bitmask_energy
endif
if (N_det > N_det_max) then
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
N_det = N_det_max
soft_touch N_det psi_det psi_coef
call diagonalize_CI
call save_wavefunction
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E+PT2 = ', CI_energy(k) + pt2(k)
print *, '-----'
enddo
endif
double precision :: E_CI_before(N_states)
if (.True.) then ! Avoid pre-calculation of CI_energy
E_CI_before(1:N_states) = CI_energy(1:N_states)
endif
n_det_before = 0
double precision :: correlation_energy_ratio
correlation_energy_ratio = 0.d0
if (.True.) then ! Avoid pre-calculation of CI_energy
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'
correlation_energy_ratio = (CI_energy(1) - hf_energy_ref) / &
(E_CI_before(1) + pt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print*, 'correlation_ratio = ', correlation_energy_ratio
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print*,'Variational Energy difference'
do i = 2, N_states
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
enddo
endif
if(N_states.gt.1)then
print*,'Variational + perturbative Energy difference'
do i = 2, N_states
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
enddo
endif
E_CI_before(1:N_states) = CI_energy(1:N_states)
n_det_before = N_det
to_select = N_det
to_select = max(N_det, to_select)
to_select = min(to_select, N_det_max-n_det_before)
call ZMQ_selection(to_select, pt2)
N_states_p = min(N_det,N_states)
print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det
print '(A)', '-----------------------------------'
print *, ''
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
print *, ''
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
write(*,fmt) ('State',k, k=1,N_states_p)
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
write(*,fmt) '# E ', E_CI_before(1:N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', E_CI_before(1:N_states_p)-E_CI_before(1)
write(*,fmt) '# Excit. (eV)', (E_CI_before(1:N_states_p)-E_CI_before(1))*27.211396641308d0
endif
write(fmt,*) '(A12,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2'//pt2_string, (pt2(k), error(k), k=1,N_states_p)
write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (E_CI_before(k)+pt2(k),error(k), k=1,N_states_p)
if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (E_CI_before(k)+pt2(k)-E_CI_before(1)-pt2(1)), &
dsqrt(error(k)*error(k)+error(1)*error(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (E_CI_before(k)+pt2(k)-E_CI_before(1)-pt2(1))*27.211396641308d0, &
dsqrt(error(k)*error(k)+error(1)*error(1))*27.211396641308d0, k=1,N_states_p)
endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt)
print *, ''
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print*, 'correlation_ratio = ', correlation_energy_ratio
do k=1, N_states_p
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', E_CI_before(k)
print *, 'E+PT2'//pt2_string//' = ', E_CI_before(k)+pt2(k), ' +/- ', error(k)
enddo
print *, '-----'
if(N_states.gt.1)then
print *, 'Variational Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (E_CI_before(i) - E_CI_before(1)), &
(E_CI_before(i) - E_CI_before(1)) * 27.211396641308d0
enddo
print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p
print*,'Delta E = ', (E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))), &
(E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))) * 27.211396641308d0
enddo
endif
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
if (N_det >= N_det_max) then
threshold_davidson = threshold_davidson_in
end if
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
enddo
endif
if (N_det < N_det_max) then
threshold_davidson = threshold_davidson_in
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
endif
integer :: exc_max, degree_min
exc_max = 0
print *, 'CAS determinants : ', N_det_cas
do i=1,min(N_det_cas,20)
do k=i,N_det_cas
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
exc_max = max(exc_max,degree)
enddo
print *, psi_cas_coef(i,:)
call debug_det(psi_cas(1,1,i),N_int)
print *, ''
enddo
print *, 'Max excitation degree in the CAS :', exc_max
if(do_pt2)then
print*,'Last iteration only to compute the PT2'
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
TOUCH threshold_selectors threshold_generators
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ZMQ_selection(0, pt2)
print *, 'Final step'
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1,N_states
print *, 'State', k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', E_CI_before(k)
print *, 'E+PT2 = ', E_CI_before(k)+pt2(k)
print *, '-----'
enddo
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
endif
end

View File

@ -1,11 +0,0 @@
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
implicit none
BEGIN_DOC
! E0 in the denominator of the PT2
END_DOC
pt2_E0_denominator(1:N_states) = CI_electronic_energy(1:N_states)
! pt2_E0_denominator(1:N_states) = HF_energy - nuclear_repulsion
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
call write_double(6,pt2_E0_denominator(1)+nuclear_repulsion, 'PT2 Energy denominator')
END_PROVIDER

View File

@ -1,177 +0,0 @@
subroutine run_selection_slave(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision :: pt2(N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
ctask = 1
pt2 = 0d0
do
integer, external :: get_task_from_taskserver
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
exit
endif
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, N
read (task,*) i_generator, N
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*3, buf2)
else
if(N /= buf%N) stop "N changed... wtf man??"
end if
call select_connected(i_generator,energy,pt2,buf)
endif
integer, external :: task_done_to_taskserver
if(done .or. ctask == size(task_id)) then
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
do i=1, ctask
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
call sleep(1)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
done = .True.
ctask = 0
exit
endif
endif
end do
if(ctask > 0) then
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
do i=1,buf%cur
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
enddo
call sort_selection_buffer(buf2)
buf%mini = buf2%mini
pt2 = 0d0
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*)
integer :: rc
call sort_selection_buffer(b)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
if(rc /= 8*N_states) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "push"
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
IRP_ENDIF
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states)
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*)
integer :: rc, rn, i
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
if(rc /= 8*N_states) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "pull"
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
IRP_ENDIF
end subroutine

File diff suppressed because it is too large Load Diff

View File

@ -1,82 +0,0 @@
subroutine create_selection_buffer(N, siz, res)
use selection_types
implicit none
integer, intent(in) :: N, siz
type(selection_buffer), intent(out) :: res
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val = 0d0
res%det = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine delete_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
if (allocated(b%det)) then
deallocate(b%det)
endif
if (allocated(b%val)) then
deallocate(b%val)
endif
end
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(dabs(val) >= b%mini) then
b%cur += 1
b%det(:,:,b%cur) = det(:,:)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
double precision, allocatable :: vals(:), absval(:)
integer, allocatable :: iorder(:)
integer(bit_kind), allocatable :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
nmwen = min(b%N, b%cur)
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
absval = -dabs(b%val(:b%cur))
do i=1,b%cur
iorder(i) = i
end do
call dsort(absval, iorder, b%cur)
do i=1, nmwen
detmp(:,:,i) = b%det(:,:,iorder(i))
vals(i) = b%val(iorder(i))
end do
b%det(:,:,:nmwen) = detmp(:,:,:)
b%det(:,:,nmwen+1:) = 0_bit_kind
b%val(:nmwen) = vals(:)
b%val(nmwen+1:) = 0d0
b%mini = max(b%mini,dabs(b%val(b%N)))
b%cur = nmwen
end subroutine

View File

@ -1,94 +0,0 @@
program prog_selection_slave
implicit none
BEGIN_DOC
! Helper program to compute the PT2 in distributed mode.
END_DOC
read_wf = .False.
distributed_davidson = .False.
SOFT_TOUCH read_wf distributed_davidson
call provide_everything
call switch_qp_run_to_master
call run_wf
end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
PROVIDE pt2_e0_denominator mo_tot_num N_int
end
subroutine run_wf
use f77_zmq
implicit none
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states)
character*(64) :: states(4)
integer :: rc, i
integer, external :: zmq_get_psi
call provide_everything
zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection'
states(2) = 'davidson'
states(3) = 'pt2'
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
do
call wait_for_states(states,zmq_state,4)
if(trim(zmq_state) == 'Stopped') then
exit
else if (trim(zmq_state) == 'selection') then
! Selection
! ---------
print *, 'Selection'
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call run_selection_slave(0, i, energy)
!$OMP END PARALLEL
print *, 'Selection done'
else if (trim(zmq_state) == 'davidson') then
! Davidson
! --------
print *, 'Davidson'
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
call omp_set_nested(.True.)
call davidson_slave_tcp(0)
call omp_set_nested(.False.)
print *, 'Davidson done'
else if (trim(zmq_state) == 'pt2') then
! PT2
! ---
print *, 'PT2'
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call run_selection_slave(0, i, energy)
!$OMP END PARALLEL
print *, 'PT2 done'
endif
end do
end

View File

@ -1,9 +0,0 @@
module selection_types
type selection_buffer
integer :: N, cur
integer(8), allocatable :: det(:,:,:)
double precision, allocatable :: val(:)
double precision :: mini
endtype
end module

View File

@ -1,109 +0,0 @@
program fci_zmq
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: Nmin, Nmax
integer :: n_det_before, to_select
double precision :: threshold_davidson_in, ratio, E_ref
double precision, allocatable :: psi_coef_ref(:,:)
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
! Stopping criterion is the PT2max
double precision :: E_CI_before(N_states)
do while (dabs(pt2(1)) > pt2_max)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = N_det
to_select = max(64-to_select, to_select)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
enddo
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
threshold_davidson = threshold_davidson_in
TOUCH threshold_selectors threshold_generators threshold_davidson
call diagonalize_CI
call ZMQ_selection(0, pt2)
E_ref = CI_energy(1) + pt2(1)
print *, 'Est FCI = ', E_ref
Nmax = N_det
Nmin = 2
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
psi_coef_ref = psi_coef_sorted
psi_det_ref = psi_det_sorted
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
TOUCH psi_coef psi_det
do while (Nmax-Nmin > 1)
psi_coef = psi_coef_ref
psi_det = psi_det_ref
TOUCH psi_det psi_coef
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
if (ratio < var_pt2_ratio) then
Nmin = N_det
else
Nmax = N_det
psi_coef_ref = psi_coef
psi_det_ref = psi_det
TOUCH psi_det psi_coef
endif
N_det = Nmin + (Nmax-Nmin)/2
print *, '-----'
print *, 'Det min, Det max: ', Nmin, Nmax
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
print *, 'N_det = ', N_det
print *, 'E = ', CI_energy(1)
call save_wavefunction
enddo
call ZMQ_selection(0, pt2)
print *, '------'
print *, 'HF_energy = ', HF_energy
print *, 'Est FCI = ', E_ref
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
E_CI_before(1:N_states) = CI_energy(1:N_states)
call save_wavefunction
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 109 KiB

View File

@ -1,62 +0,0 @@
program cis
implicit none
integer :: i
call super_CI
end
subroutine super_CI
implicit none
double precision :: E, delta_E, delta_D, E_min
integer :: k
character :: save_char
call write_time(6)
write(6,'(A4,X,A16, X, A16, X, A16 )') &
'====','================','================','================'
write(6,'(A4,X,A16, X, A16, X, A16 )') &
' N ', 'Energy ', 'Energy diff ', 'Save '
write(6,'(A4,X,A16, X, A16, X, A16 )') &
'====','================','================','================'
E = HF_energy + 1.d0
delta_D = 0.d0
E_min = HF_energy
FREE psi_det psi_coef
call clear_mo_map
N_det = 1
SOFT_TOUCH N_det
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
do k=1,n_it_scf_max
delta_E = HF_energy - E
E = HF_energy
if (E < E_min) then
call save_mos
save_char = 'X'
else
save_char = ' '
endif
E_min = min(E,E_min)
write(6,'(I4,X,F16.10, X, F16.10, X, A8 )') &
k, E, delta_E, save_char
if ( (delta_E < 0.d0).and.(dabs(delta_E) < thresh_scf) ) then
exit
endif
call H_apply_cis
call diagonalize_CI
call set_natural_mos
FREE psi_det psi_coef
call clear_mo_map
N_det = 1
SOFT_TOUCH N_det
mo_coef = eigenvectors_fock_matrix_mo
TOUCH mo_coef
enddo
write(6,'(A4,X,A16, X, A16, X, A16 )') &
'====','================','================','================'
call write_time(6)
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

View File

@ -1 +0,0 @@
Determinants DavidsonUndressed

View File

@ -1,27 +0,0 @@
======
Casino
======
Documentation
=============
.. Do not edit this section. It was auto-generated from the
.. by the `update_README.py` script.
`prog_save_casino <http://github.com/LCPQ/quantum_package/tree/master/src/Casino/save_for_casino.irp.f#L266>`_
Undocumented
`save_casino <http://github.com/LCPQ/quantum_package/tree/master/src/Casino/save_for_casino.irp.f#L1>`_
Undocumented
Needed Modules
==============
.. Do not edit this section. It was auto-generated from the
.. by the `update_README.py` script.
.. image:: tree_dependency.png
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_

View File

@ -1,268 +0,0 @@
subroutine save_casino
use bitmasks
implicit none
character*(128) :: message
integer :: getUnitAndOpen, iunit
integer, allocatable :: itmp(:)
integer :: n_ao_new
double precision, allocatable :: rtmp(:)
PROVIDE ezfio_filename
iunit = getUnitAndOpen('gwfn.data','w')
print *, 'Title?'
read(*,*) message
write(iunit,'(A)') trim(message)
write(iunit,'(A)') ''
write(iunit,'(A)') 'BASIC_INFO'
write(iunit,'(A)') '----------'
write(iunit,'(A)') 'Generated by:'
write(iunit,'(A)') 'Quantum package'
write(iunit,'(A)') 'Method:'
print *, 'Method?'
read(*,*) message
write(iunit,'(A)') trim(message)
write(iunit,'(A)') 'DFT Functional:'
write(iunit,'(A)') 'none'
write(iunit,'(A)') 'Periodicity:'
write(iunit,'(A)') '0'
write(iunit,'(A)') 'Spin unrestricted:'
write(iunit,'(A)') '.false.'
write(iunit,'(A)') 'nuclear-nuclear repulsion energy (au/atom):'
write(iunit,*) nuclear_repulsion
write(iunit,'(A)') 'Number of electrons per primitive cell:'
write(iunit,*) elec_num
write(iunit,*) ''
write(iunit,*) 'GEOMETRY'
write(iunit,'(A)') '--------'
write(iunit,'(A)') 'Number of atoms:'
write(iunit,*) nucl_num
write(iunit,'(A)') 'Atomic positions (au):'
integer :: i
do i=1,nucl_num
write(iunit,'(3(1PE20.13))') nucl_coord(i,1:3)
enddo
write(iunit,'(A)') 'Atomic numbers for each atom:'
! Add 200 if pseudopotential
allocate(itmp(nucl_num))
do i=1,nucl_num
itmp(i) = int(nucl_charge(i))
enddo
write(iunit,'(8(I10))') itmp(1:nucl_num)
deallocate(itmp)
write(iunit,'(A)') 'Valence charges for each atom:'
write(iunit,'(4(1PE20.13))') nucl_charge(1:nucl_num)
write(iunit,'(A)') ''
write(iunit,'(A)') 'BASIS SET'
write(iunit,'(A)') '---------'
write(iunit,'(A)') 'Number of Gaussian centres'
write(iunit,*) nucl_num
write(iunit,'(A)') 'Number of shells per primitive cell'
integer :: icount
icount = 0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
icount += 1
endif
enddo
write(iunit,*) icount
write(iunit,'(A)') 'Number of basis functions (''AO'') per primitive cell'
icount = 0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
icount += 2*ao_l(i)+1
endif
enddo
n_ao_new = icount
write(iunit,*) n_ao_new
write(iunit,'(A)') 'Number of Gaussian primitives per primitive cell'
allocate(itmp(ao_num))
integer :: l
l=0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
l += 1
itmp(l) = ao_prim_num(i)
endif
enddo
write(iunit,'(8(I10))') sum(itmp(1:l))
write(iunit,'(A)') 'Highest shell angular momentum (s/p/d/f... 1/2/3/4...)'
write(iunit,*) maxval(ao_l(1:ao_num))+1
write(iunit,'(A)') 'Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)'
l=0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
l += 1
if (ao_l(i) > 0) then
itmp(l) = ao_l(i)+2
else
itmp(l) = ao_l(i)+1
endif
endif
enddo
write(iunit,'(8(I10))') itmp(1:l)
write(iunit,'(A)') 'Number of primitive Gaussians in each shell'
l=0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
l += 1
itmp(l) = ao_prim_num(i)
endif
enddo
write(iunit,'(8(I10))') itmp(1:l)
deallocate(itmp)
write(iunit,'(A)') 'Sequence number of first shell on each centre'
allocate(itmp(nucl_num))
l=0
icount = 1
itmp(icount) = 1
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
l = l+1
if (ao_nucl(i) == icount) then
continue
else if (ao_nucl(i) == icount+1) then
icount += 1
itmp(icount) = l
else
print *, 'Problem in order of centers of basis functions'
stop 1
endif
endif
enddo
! Check
if (icount /= nucl_num) then
print *, 'Error :'
print *, ' icount :', icount
print *, ' nucl_num:', nucl_num
stop 2
endif
write(iunit,'(8(I10))') itmp(1:nucl_num)
deallocate(itmp)
write(iunit,'(A)') 'Exponents of Gaussian primitives'
allocate(rtmp(ao_num))
l=0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
do j=1,ao_prim_num(i)
l+=1
rtmp(l) = ao_expo(i,ao_prim_num(i)-j+1)
enddo
endif
enddo
write(iunit,'(4(1PE20.13))') rtmp(1:l)
write(iunit,'(A)') 'Normalized contraction coefficients'
l=0
integer :: j
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
do j=1,ao_prim_num(i)
l+=1
rtmp(l) = ao_coef_normalized(i,ao_prim_num(i))
enddo
endif
enddo
write(iunit,'(4(1PE20.13))') rtmp(1:l)
deallocate(rtmp)
write(iunit,'(A)') 'Position of each shell (au)'
l=0
do i=1,ao_num
if (ao_l(i) == ao_power(i,1)) then
write(iunit,'(3(1PE20.13))') nucl_coord( ao_nucl(i), 1:3 )
endif
enddo
write(iunit,'(A)')
write(iunit,'(A)') 'MULTIDETERMINANT INFORMATION'
write(iunit,'(A)') '----------------------------'
write(iunit,'(A)') 'GS'
write(iunit,'(A)') 'ORBITAL COEFFICIENTS'
write(iunit,'(A)') '------------------------'
! Transformation cartesian -> spherical
double precision :: tf2(6,5), tf3(10,7), tf4(15,9)
integer :: check2(3,6), check3(3,10), check4(3,15)
check2(:,1) = (/ 2, 0, 0 /)
check2(:,2) = (/ 1, 1, 0 /)
check2(:,3) = (/ 1, 0, 1 /)
check2(:,4) = (/ 0, 2, 0 /)
check2(:,5) = (/ 0, 1, 1 /)
check2(:,6) = (/ 0, 0, 2 /)
check3(:,1) = (/ 3, 0, 0 /)
check3(:,2) = (/ 2, 1, 0 /)
check3(:,3) = (/ 2, 0, 1 /)
check3(:,4) = (/ 1, 2, 0 /)
check3(:,5) = (/ 1, 1, 1 /)
check3(:,6) = (/ 1, 0, 2 /)
check3(:,7) = (/ 0, 3, 0 /)
check3(:,8) = (/ 0, 2, 1 /)
check3(:,9) = (/ 0, 1, 2 /)
check3(:,10) = (/ 0, 0, 3 /)
check4(:,1) = (/ 4, 0, 0 /)
check4(:,2) = (/ 3, 1, 0 /)
check4(:,3) = (/ 3, 0, 1 /)
check4(:,4) = (/ 2, 2, 0 /)
check4(:,5) = (/ 2, 1, 1 /)
check4(:,6) = (/ 2, 0, 2 /)
check4(:,7) = (/ 1, 3, 0 /)
check4(:,8) = (/ 1, 2, 1 /)
check4(:,9) = (/ 1, 1, 2 /)
check4(:,10) = (/ 1, 0, 3 /)
check4(:,11) = (/ 0, 4, 0 /)
check4(:,12) = (/ 0, 3, 1 /)
check4(:,13) = (/ 0, 2, 2 /)
check4(:,14) = (/ 0, 1, 3 /)
check4(:,15) = (/ 0, 0, 4 /)
! tf2 = (/
! -0.5, 0, 0, -0.5, 0, 1.0, &
! 0, 0, 1.0, 0, 0, 0, &
! 0, 0, 0, 0, 1.0, 0, &
! 0.86602540378443864676, 0, 0, -0.86602540378443864676, 0, 0, &
! 0, 1.0, 0, 0, 0, 0, &
! /)
! tf3 = (/
! 0, 0, -0.67082039324993690892, 0, 0, 0, 0, -0.67082039324993690892, 0, 1.0, &
! -0.61237243569579452455, 0, 0, -0.27386127875258305673, 0, 1.0954451150103322269, 0, 0, 0, 0, &
! 0, -0.27386127875258305673, 0, 0, 0, 0, -0.61237243569579452455, 0, 1.0954451150103322269, 0, &
! 0, 0, 0.86602540378443864676, 0, 0, 0, 0, -0.86602540378443864676, 0, 0, &
! 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, &
! 0.790569415042094833, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, &
! 0, 1.0606601717798212866, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, &
! /)
! tf4 = (/
! 0.375, 0, 0, 0.21957751641341996535, 0, -0.87831006565367986142, 0, 0, 0, 0, 0.375, 0, -0.87831006565367986142, 0, 1.0, &
! 0, 0, -0.89642145700079522998, 0, 0, 0, 0, -0.40089186286863657703, 0, 1.19522860933439364, 0, 0, 0, 0, 0, &
! 0, 0, 0, 0, -0.40089186286863657703, 0, 0, 0, 0, 0, 0, -0.89642145700079522998, 0, 1.19522860933439364, 0, &
! -0.5590169943749474241, 0, 0, 0, 0, 0.9819805060619657157, 0, 0, 0, 0, 0.5590169943749474241, 0, -0.9819805060619657157, 0, 0, &
! 0, -0.42257712736425828875, 0, 0, 0, 0, -0.42257712736425828875, 0, 1.1338934190276816816, 0, 0, 0, 0, 0, 0, &
! 0, 0, 0.790569415042094833, 0, 0, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, 0, &
! 0, 0, 0, 0, 1.0606601717798212866, 0, 0, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, &
! 0.73950997288745200532, 0, 0, -1.2990381056766579701, 0, 0, 0, 0, 0, 0, 0.73950997288745200532, 0, 0, 0, 0, &
! 0, 1.1180339887498948482, 0, 0, 0, 0, -1.1180339887498948482, 0, 0, 0, 0, 0, 0, 0, 0, &
! /)
!
allocate(rtmp(ao_num*mo_tot_num))
l=0
do i=1,mo_tot_num
do j=1,ao_num
l += 1
rtmp(l) = mo_coef(j,i)
enddo
enddo
write(iunit,'(4(1PE20.13))') rtmp(1:l)
deallocate(rtmp)
close(iunit)
end
program prog_save_casino
call save_casino
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

View File

@ -1,58 +0,0 @@
====================
DensityMatrix Module
====================
Documentation
=============
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
`iunit_two_body_dm_aa <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L2>`_
Temporary files for 2-body dm calculation
`iunit_two_body_dm_ab <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L3>`_
Temporary files for 2-body dm calculation
`iunit_two_body_dm_bb <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L4>`_
Temporary files for 2-body dm calculation
`two_body_dm_diag_aa <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L170>`_
diagonal part of the two body density matrix
`two_body_dm_diag_ab <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L172>`_
diagonal part of the two body density matrix
`two_body_dm_diag_bb <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L171>`_
diagonal part of the two body density matrix
`det_coef_provider <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L8>`_
Undocumented
`det_num <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L3>`_
Undocumented
`det_provider <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L7>`_
Undocumented
Needed Modules
==============
.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.
* `AOs <http://github.com/LCPQ/quantum_package/tree/master/src/AOs>`_
* `BiInts <http://github.com/LCPQ/quantum_package/tree/master/src/BiInts>`_
* `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_
* `Dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets>`_
* `Electrons <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons>`_
* `Ezfio_files <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files>`_
* `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock>`_
* `MonoInts <http://github.com/LCPQ/quantum_package/tree/master/src/MonoInts>`_
* `MOs <http://github.com/LCPQ/quantum_package/tree/master/src/MOs>`_
* `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_
* `Output <http://github.com/LCPQ/quantum_package/tree/master/src/Output>`_
* `Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils>`_

View File

@ -1,116 +0,0 @@
use bitmasks
BEGIN_PROVIDER [ double precision, two_body_dm_aa, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, two_body_dm_bb, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, two_body_dm_ab, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
implicit none
use bitmasks
BEGIN_DOC
! Temporary files for 2-body dm calculation
END_DOC
integer :: getUnitAndOpen
! Compute two body DM in file
integer :: k,l,degree, idx,i,j
integer :: exc(0:2,2,2),n_occ_alpha
double precision :: phase, coef
integer :: h1,h2,p1,p2,s1,s2, e1, e2
double precision :: ck, cl
character*(128), parameter :: f = '(i8,4(x,i5),x,d16.8)'
integer :: istate
two_body_dm_aa = 0.d0
two_body_dm_ab = 0.d0
two_body_dm_bb = 0.d0
istate = 1
! OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,ck,ckl,i,j,e1,e2,cl,phase,h1,p1,h2,p2,s1,s2,occ)
! OMP DO SCHEDULE(dynamic,64)
do k=1,N_det
ck = psi_coef(k,istate)
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
ckl = psi_coef(k,istate) * psi_coef(k,istate)
do i = 1,elec_alpha_num
e1=occ(i,1)
do j = 1,elec_alpha_num
e2=occ(j,1)
! alpha-alpha
two_body_dm_aa(e1,e2,e1,e2) += 0.5d0*ckl
two_body_dm_aa(e1,e2,e2,e1) -= 0.5d0*ckl
enddo
do j = 1,elec_beta_num
e2=occ(j,2)
! alpha-beta
two_body_dm_ab(e1,e2,e1,e2) += ckl
enddo
enddo
do i = 1,elec_beta_num
e1=occ(i,2)
do j = 1,elec_beta_num
e2=occ(j,2)
! beta-beta
two_body_dm_bb(e1,e2,e1,e2) += 0.5d0*ckl
two_body_dm_bb(e1,e2,e2,e1) -= 0.5d0*ckl
enddo
enddo
do l=1,k-1
cl = 2.d0*psi_coef(l,istate)
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree == 2) then
call get_double_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
ckl = phase*ck*cl
select case (s1+s2)
case(2) ! alpha alpha
two_body_dm_aa(h1,h2,p1,p2) += ckl
two_body_dm_aa(h1,h2,p2,p1) -= ckl
case(3) ! alpha beta
two_body_dm_ab(h1,h2,p1,p2) += ckl
case(4) ! beta beta
two_body_dm_bb(h1,h2,p1,p2) += ckl
two_body_dm_bb(h1,h2,p2,p1) -= ckl
end select
else if (degree == 1) then
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
double precision :: ckl
ckl = phase*ck*cl
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
select case (s1)
case (1) ! Alpha single excitation
integer :: occ(N_int*bit_kind_size,2)
do i = 1, elec_alpha_num
p2=occ(i,1)
h2=p2
two_body_dm_aa(h1,h2,p1,p2) += ckl
two_body_dm_aa(h1,h2,p2,p1) -= ckl
enddo
do i = 1, elec_beta_num
p2=occ(i,2)
h2=p2
two_body_dm_ab(h1,h2,p1,p2) += ckl
enddo
case (2) ! Beta single excitation
do i = 1, elec_alpha_num
p2=occ(i,1)
h2=p2
two_body_dm_ab(h1,h2,p1,p2) += ckl
enddo
do i = 1, elec_beta_num
p2=occ(i,2)
h2=p2
two_body_dm_bb(h1,h2,p1,p2) += ckl
two_body_dm_bb(h1,h2,p2,p1) -= ckl
enddo
end select
endif
enddo
enddo
! OMP END DO
! OMP END PARALLEL
END_PROVIDER

View File

@ -1,67 +0,0 @@
program pouet
implicit none
integer :: i,j,k,l
double precision, external :: get_mo_bielec_integral
read_wf = .True.
TOUCH read_wf
double precision :: e(10)
e = 0.d0
print *, '1RDM ALPHA'
do i=1,mo_tot_num
do j=1,mo_tot_num
print *, i, j, one_body_dm_mo_alpha(i,j,1)
e(4) += one_body_dm_mo_alpha(i,j,1) * mo_mono_elec_integral(i,j)
enddo
enddo
print *, '1RDM BETA'
do i=1,mo_tot_num
do j=1,mo_tot_num
print *, i, j, one_body_dm_mo_beta(i,j,1)
e(4) += one_body_dm_mo_beta(i,j,1) * mo_mono_elec_integral(i,j)
enddo
enddo
print *, '2RDM ALPHA ALPHA'
do i=1,mo_tot_num
do j=1,mo_tot_num
do k=1,mo_tot_num
do l=1,mo_tot_num
print *, i, j, k, l, two_body_dm_aa(i,j,k,l)
e(1) += two_body_dm_aa(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
enddo
enddo
enddo
enddo
print *, '2RDM BETA BETA'
do i=1,mo_tot_num
do j=1,mo_tot_num
do k=1,mo_tot_num
do l=1,mo_tot_num
print *, i, j, k, l, two_body_dm_bb(i,j,k,l)
e(2) += two_body_dm_bb(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
enddo
enddo
enddo
enddo
print *, '2RDM ALPHA BETA'
do i=1,mo_tot_num
do j=1,mo_tot_num
do k=1,mo_tot_num
do l=1,mo_tot_num
print *, i, j, k, l, two_body_dm_ab(i,j,k,l)
e(3) += two_body_dm_ab(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
enddo
enddo
enddo
enddo
print *, ''
print *, 'Energy ', sum(e(1:4)) + nuclear_repulsion
end

View File

@ -1 +1 @@
Determinants DavidsonUndressed core_integrals Determinants DavidsonUndressed

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

View File

@ -1,180 +0,0 @@
subroutine four_index_transform(map_a,map_c,matrix_B,LDB, &
i_start, j_start, k_start, l_start, &
i_end , j_end , k_end , l_end , &
a_start, b_start, c_start, d_start, &
a_end , b_end , c_end , d_end )
implicit none
use map_module
use mmap_module
BEGIN_DOC
! Performs a four-index transformation of map_a(N^4) into map_c(M^4) using b(NxM)
! C_{abcd} = \sum_{ijkl} A_{ijkl}.B_{ia}.B_{jb}.B_{kc}.B_{ld}
! Loops run over *_start->*_end
END_DOC
type(map_type), intent(in) :: map_a
type(map_type), intent(inout) :: map_c
integer, intent(in) :: LDB
double precision, intent(in) :: matrix_B(LDB,*)
integer, intent(in) :: i_start, j_start, k_start, l_start
integer, intent(in) :: i_end , j_end , k_end , l_end
integer, intent(in) :: a_start, b_start, c_start, d_start
integer, intent(in) :: a_end , b_end , c_end , d_end
double precision, allocatable :: T(:,:,:), U(:,:,:), V(:,:,:)
integer :: i_max, j_max, k_max, l_max
integer :: i_min, j_min, k_min, l_min
integer :: i, j, k, l
integer :: a, b, c, d
double precision, external :: get_ao_bielec_integral
integer(key_kind) :: idx
real(integral_kind) :: tmp
integer(key_kind), allocatable :: key(:)
real(integral_kind), allocatable :: value(:)
ASSERT (k_start == i_start)
ASSERT (l_start == j_start)
ASSERT (a_start == c_start)
ASSERT (b_start == d_start)
i_min = min(i_start,a_start)
i_max = max(i_end ,a_end )
j_min = min(j_start,b_start)
j_max = max(j_end ,b_end )
k_min = min(k_start,c_start)
k_max = max(k_end ,c_end )
l_min = min(l_start,d_start)
l_max = max(l_end ,d_end )
ASSERT (0 < i_max)
ASSERT (0 < j_max)
ASSERT (0 < k_max)
ASSERT (0 < l_max)
ASSERT (LDB >= i_max)
ASSERT (LDB >= j_max)
ASSERT (LDB >= k_max)
ASSERT (LDB >= l_max)
! Create a temporary memory-mapped file
integer :: fd
type(c_ptr) :: c_pointer
integer*8, pointer :: a_array(:,:,:)
call mmap(trim(ezfio_filename)//'/work/four_idx', &
(/ 4_8,int(i_end-i_start+1,8),int(j_end-j_start+1,8),int(k_end-k_start+1,8), int(l_end-l_start+1,8) /), 8, fd, .False., c_pointer)
call c_f_pointer(c_pointer, a_array, (/ 4, (i_end-i_start+1)*(j_end-j_start+1)*(k_end-k_start+1), l_end-l_start+1 /))
!$OMP PARALLEL DEFAULT(NONE) SHARED(a_array,c_pointer,fd, &
!$OMP a_start,a_end,b_start,b_end,c_start,c_end,d_start,d_end,&
!$OMP i_start,i_end,j_start,j_end,k_start,k_end,l_start,l_end,&
!$OMP i_min,i_max,j_min,j_max,k_min,k_max,l_min,l_max, &
!$OMP map_a,map_c,matrix_B) &
!$OMP PRIVATE(key,value,T,U,V,i,j,k,l,idx, &
!$OMP a,b,c,d,tmp)
allocate( key(i_max*j_max*k_max), value(i_max*j_max*k_max) )
allocate( U(a_start:a_end, c_start:c_end, b_start:b_end) )
!$OMP DO SCHEDULE(dynamic,4)
do l=l_start,l_end
a = 1
do j=j_start,j_end
do k=k_start,k_end
do i=i_start,i_end
call bielec_integrals_index(i,j,k,l,idx)
call map_get(map_a,idx,tmp)
if (tmp /= 0.d0) then
a = a+1
a_array(1,a,l-l_start+1) = i
a_array(2,a,l-l_start+1) = j
a_array(3,a,l-l_start+1) = k
a_array(4,a,l-l_start+1) = transfer(dble(tmp), 1_8)
endif
enddo
enddo
enddo
a_array(1,1,l-l_start+1) = a
print *, l
enddo
!$OMP END DO
!$OMP DO SCHEDULE(dynamic)
do d=d_start,d_end
U = 0.d0
do l=l_start,l_end
if (dabs(matrix_B(l,d)) < 1.d-10) then
cycle
endif
print *, d, l
allocate( T(i_start:i_end, k_start:k_end, j_start:j_end), &
V(a_start:a_end, k_start:k_end, j_start:j_end) )
T = 0.d0
do a=2,a_array(1,1,l-l_start+1)
i = a_array(1,a,l-l_start+1)
j = a_array(2,a,l-l_start+1)
k = a_array(3,a,l-l_start+1)
T(i, k,j) = transfer(a_array(4,a,l-l_start+1), 1.d0)
enddo
call DGEMM('T','N', (a_end-a_start+1), &
(k_end-k_start+1)*(j_end-j_start+1), &
(i_end-i_start+1), 1.d0, &
matrix_B(i_start,a_start), size(matrix_B,1), &
T(i_start,k_start,j_start), size(T,1), 0.d0, &
V(a_start,k_start,j_start), size(V, 1) )
deallocate(T)
allocate( T(a_start:a_end, k_start:k_end, b_start:d) )
call DGEMM('N','N', (a_end-a_start+1)*(k_end-k_start+1), &
(b_end-b_start+1), &
(j_end-j_start+1), 1.d0, &
V(a_start,k_start,j_start), size(V,1)*size(V,2), &
matrix_B(j_start,b_start), size(matrix_B,1),0.d0, &
T(a_start,k_start,b_start), size(T,1)*size(T,2) )
deallocate(V)
do b=b_start,b_end
call DGEMM('N','N', (a_end-a_start+1), (c_end-c_start+1), &
(k_end-k_start+1), matrix_B(l, d), &
T(a_start,k_start,b), size(T,1), &
matrix_B(k_start,c_start), size(matrix_B,1), 1.d0, &
U(a_start,c_start,b), size(U,1) )
enddo
deallocate(T)
enddo
idx = 0_8
do b=b_start,b_end
do c=c_start,c_end
do a=a_start,a_end
if (dabs(U(a,c,b)) < 1.d-15) then
cycle
endif
idx = idx+1_8
call bielec_integrals_index(a,b,c,d,key(idx))
value(idx) = U(a,c,b)
enddo
enddo
enddo
!$OMP CRITICAL
call map_append(map_c, key, value, idx)
call map_sort(map_c)
!$OMP END CRITICAL
enddo
!$OMP END DO
deallocate(key,value)
!$OMP END PARALLEL
call munmap( &
(/ 4_8,int(i_end-i_start+1,8),int(j_end-j_start+1,8),int(k_end-k_start+1,8), int(l_end-l_start+1,8) /), 8, fd, c_pointer)
end

View File

@ -1,277 +0,0 @@
subroutine four_index_transform_sym(map_a,map_c,matrix_B,LDB, &
i_start, j_start, k_start, l_start, &
i_end , j_end , k_end , l_end , &
a_start, b_start, c_start, d_start, &
a_end , b_end , c_end , d_end )
implicit none
use map_module
use mmap_module
BEGIN_DOC
! Performs a four-index transformation of map_a(N^4) into map_c(M^4) using b(NxM)
! C_{abcd} = \sum_{ijkl} A_{ijkl}.B_{ia}.B_{jb}.B_{kc}.B_{ld}
! Loops run over *_start->*_end
END_DOC
type(map_type), intent(in) :: map_a
type(map_type), intent(inout) :: map_c
integer, intent(in) :: LDB
double precision, intent(in) :: matrix_B(LDB,*)
integer, intent(in) :: i_start, j_start, k_start, l_start
integer, intent(in) :: i_end , j_end , k_end , l_end
integer, intent(in) :: a_start, b_start, c_start, d_start
integer, intent(in) :: a_end , b_end , c_end , d_end
double precision, allocatable :: T(:,:), U(:,:,:), V(:,:)
double precision, allocatable :: T2d(:,:), V2d(:,:)
integer :: i_max, j_max, k_max, l_max
integer :: i_min, j_min, k_min, l_min
integer :: i, j, k, l, ik, ll
integer :: a, b, c, d
double precision, external :: get_ao_bielec_integral
integer*8 :: ii
integer(key_kind) :: idx
real(integral_kind) :: tmp
integer(key_kind), allocatable :: key(:)
real(integral_kind), allocatable :: value(:)
integer*8, allocatable :: l_pointer(:)
ASSERT (k_start == i_start)
ASSERT (l_start == j_start)
ASSERT (a_start == c_start)
ASSERT (b_start == d_start)
i_min = min(i_start,a_start)
i_max = max(i_end ,a_end )
j_min = min(j_start,b_start)
j_max = max(j_end ,b_end )
k_min = min(k_start,c_start)
k_max = max(k_end ,c_end )
l_min = min(l_start,d_start)
l_max = max(l_end ,d_end )
ASSERT (0 < i_max)
ASSERT (0 < j_max)
ASSERT (0 < k_max)
ASSERT (0 < l_max)
ASSERT (LDB >= i_max)
ASSERT (LDB >= j_max)
ASSERT (LDB >= k_max)
ASSERT (LDB >= l_max)
! Create a temporary memory-mapped file
integer :: fd
type(c_ptr) :: c_pointer
integer*8, pointer :: a_array(:)
call mmap(trim(ezfio_filename)//'/work/four_idx', &
(/ 12_8 * map_a % n_elements /), 8, fd, .False., c_pointer)
call c_f_pointer(c_pointer, a_array, (/ 12_8 * map_a % n_elements /))
allocate(l_pointer(l_start:l_end+1), value((i_max*k_max)) )
ii = 1_8
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l,ik,idx)
do l=l_start,l_end
!$OMP SINGLE
l_pointer(l) = ii
!$OMP END SINGLE
do j=j_start,j_end
!$OMP DO SCHEDULE(static,1)
do k=k_start,k_end
do i=i_start,k
ik = (i-i_start+1) + ishft( (k-k_start)*(k-k_start+1), -1 )
call bielec_integrals_index(i,j,k,l,idx)
call map_get(map_a,idx,value(ik))
enddo
enddo
!$OMP END DO
!$OMP SINGLE
ik=0
do k=k_start,k_end
do i=i_start,k
ik = ik+1
tmp=value(ik)
if (tmp /= 0.d0) then
a_array(ii) = ik
ii = ii+1_8
a_array(ii) = j
ii = ii+1_8
a_array(ii) = transfer(dble(tmp), 1_8)
ii = ii+1_8
endif
enddo
enddo
!$OMP END SINGLE
enddo
enddo
!$OMP SINGLE
l_pointer(l_end+1) = ii
!$OMP END SINGLE
!$OMP END PARALLEL
deallocate(value)
!INPUT DATA
!open(unit=10,file='INPUT',form='UNFORMATTED')
!write(10) i_start, j_start, i_end, j_end
!write(10) a_start, b_start, a_end, b_end
!write(10) LDB, mo_tot_num
!write(10) matrix_B(1:LDB,1:mo_tot_num)
!idx=size(a_array)
!write(10) idx
!write(10) a_array
!write(10) l_pointer
!close(10)
!open(unit=10,file='OUTPUT',form='FORMATTED')
! END INPUT DATA
!$OMP PARALLEL DEFAULT(NONE) SHARED(a_array,c_pointer,fd, &
!$OMP a_start,a_end,b_start,b_end,c_start,c_end,d_start,d_end,&
!$OMP i_start,i_end,j_start,j_end,k_start,k_end,l_start,l_end,&
!$OMP i_min,i_max,j_min,j_max,k_min,k_max,l_min,l_max, &
!$OMP map_c,matrix_B,l_pointer) &
!$OMP PRIVATE(key,value,T,U,V,i,j,k,l,idx,ik,ll, &
!$OMP a,b,c,d,tmp,T2d,V2d,ii)
allocate( key(i_max*j_max*k_max), value(i_max*j_max*k_max) )
allocate( U(a_start:a_end, c_start:c_end, b_start:b_end) )
allocate( T2d((i_end-i_start+1)*(k_end-k_start+2)/2, j_start:j_end), &
V2d((i_end-i_start+1)*(k_end-k_start+2)/2, b_start:b_end), &
V(i_start:i_end, k_start:k_end), &
T(k_start:k_end, a_start:a_end))
!$OMP DO SCHEDULE(dynamic)
do d=d_start,d_end
U = 0.d0
do l=l_start,l_end
if (dabs(matrix_B(l,d)) < 1.d-10) then
cycle
endif
ii=l_pointer(l)
do j=j_start,j_end
ik=0
do k=k_start,k_end
do i=i_start,k
ik = ik+1
if ( (ik /= a_array(ii)).or.(j /= a_array(ii+1_8)) &
.or.(ii >= l_pointer(l+1)) ) then
T2d(ik,j) = 0.d0
else
T2d(ik,j) = transfer(a_array(ii+2_8), 1.d0)
ii=ii+3_8
endif
enddo
enddo
enddo
call DGEMM('N','N', ishft( (i_end-i_start+1)*(i_end-i_start+2), -1),&
(d-b_start+1), &
(j_end-j_start+1), 1.d0, &
T2d(1,j_start), size(T2d,1), &
matrix_B(j_start,b_start), size(matrix_B,1),0.d0, &
V2d(1,b_start), size(V2d,1) )
do b=b_start,d
ik = 0
do k=k_start,k_end
do i=i_start,k
ik = ik+1
V(i,k) = V2d(ik,b)
enddo
enddo
! T = 0.d0
! do a=a_start,b
! do k=k_start,k_end
! do i=i_start,k
! T(k,a) = T(k,a) + V(i,k)*matrix_B(i,a)
! enddo
! do i=k+1,i_end
! T(k,a) = T(k,a) + V(k,i)*matrix_B(i,a)
! enddo
! enddo
! enddo
call DSYMM('L','U', (k_end-k_start+1), (b-a_start+1), &
1.d0, &
V(i_start,k_start), size(V,1), &
matrix_B(i_start,a_start), size(matrix_B,1),0.d0, &
T(k_start,a_start), size(T,1) )
! do c=c_start,b
! do a=a_start,c
! do k=k_start,k_end
! U(a,c,b) = U(a,c,b) + T(k,a)*matrix_B(k,c)*matrix_B(l,d)
! enddo
! enddo
! enddo
call DGEMM('T','N', (b-a_start+1), (b-c_start+1), &
(k_end-k_start+1), matrix_B(l, d), &
T(k_start,a_start), size(T,1), &
matrix_B(k_start,c_start), size(matrix_B,1), 1.d0, &
U(a_start,c_start,b), size(U,1) )
! do c=b+1,c_end
! do a=a_start,b
! do k=k_start,k_end
! U(a,c,b) = U(a,c,b) + T(k,a)*matrix_B(k,c)*matrix_B(l,d)
! enddo
! enddo
! enddo
if (b < b_end) then
call DGEMM('T','N', (b-a_start+1), (c_end-b), &
(k_end-k_start+1), matrix_B(l, d), &
T(k_start,a_start), size(T,1), &
matrix_B(k_start,b+1), size(matrix_B,1), 1.d0, &
U(a_start,b+1,b), size(U,1) )
endif
enddo
enddo
idx = 0_8
do b=b_start,d
do c=c_start,c_end
do a=a_start,min(b,c)
if (dabs(U(a,c,b)) < 1.d-15) then
cycle
endif
idx = idx+1_8
call bielec_integrals_index(a,b,c,d,key(idx))
value(idx) = U(a,c,b)
enddo
enddo
enddo
!$OMP CRITICAL
call map_append(map_c, key, value, idx)
!$OMP END CRITICAL
!WRITE OUTPUT
! OMP CRITICAL
!print *, d
!do b=b_start,d
! do c=c_start,c_end
! do a=a_start,min(b,c)
! if (dabs(U(a,c,b)) < 1.d-15) then
! cycle
! endif
! write(10,*) d,c,b,a,U(a,c,b)
! enddo
! enddo
!enddo
! OMP END CRITICAL
!END WRITE OUTPUT
enddo
!$OMP END DO
deallocate(key,value,V,T)
!$OMP END PARALLEL
call map_sort(map_c)
call munmap( &
(/ 12_8 * map_a % n_elements /), 8, fd, c_pointer)
deallocate(l_pointer)
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 110 KiB

View File

@ -1,109 +0,0 @@
program target_pt2_ratio
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: Nmin, Nmax
integer :: n_det_before, to_select
double precision :: threshold_davidson_in, ratio, E_ref
double precision, allocatable :: psi_coef_ref(:,:)
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
! Stopping criterion is the PT2max
double precision :: E_CI_before(N_states)
do while (dabs(pt2(1)) > pt2_max)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = N_det
to_select = max(64-to_select, to_select)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
threshold_davidson = threshold_davidson_in
TOUCH threshold_selectors threshold_generators threshold_davidson
call diagonalize_CI
call ZMQ_selection(0, pt2)
E_ref = CI_energy(1) + pt2(1)
print *, 'Est FCI = ', E_ref
Nmax = N_det
Nmin = 2
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
psi_coef_ref = psi_coef_sorted
psi_det_ref = psi_det_sorted
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
TOUCH psi_coef psi_det
do while (Nmax-Nmin > 1)
psi_coef = psi_coef_ref
psi_det = psi_det_ref
TOUCH psi_det psi_coef
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
if (ratio < var_pt2_ratio) then
Nmin = N_det
else
Nmax = N_det
psi_coef_ref = psi_coef
psi_det_ref = psi_det
TOUCH psi_det psi_coef
endif
N_det = Nmin + (Nmax-Nmin)/2
print *, '-----'
print *, 'Det min, Det max: ', Nmin, Nmax
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
print *, 'N_det = ', N_det
print *, 'E = ', CI_energy(1)
call save_wavefunction
enddo
call ZMQ_selection(0, pt2)
print *, '------'
print *, 'HF_energy = ', HF_energy
print *, 'Est FCI = ', E_ref
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
E_CI_before(1:N_states) = CI_energy(1:N_states)
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

View File

@ -1,95 +0,0 @@
program target_pt2
implicit none
integer :: i,j,k
logical, external :: detEq
double precision, allocatable :: pt2(:)
integer :: Nmin, Nmax
integer :: n_det_before, to_select
double precision :: threshold_davidson_in, ratio, E_ref, pt2_ratio
allocate (pt2(N_states))
pt2 = 1.d0
threshold_davidson_in = threshold_davidson
threshold_davidson = threshold_davidson_in * 100.d0
SOFT_TOUCH threshold_davidson
double precision :: E_CI_before(N_states)
do while (dabs(pt2(1)) > pt2_max)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
do k=1, N_states
print*,'State ',k
print *, 'PT2 = ', pt2(k)
print *, 'E = ', CI_energy(k)
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
enddo
print *, '-----'
E_CI_before(1:N_states) = CI_energy(1:N_states)
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
n_det_before = N_det
to_select = N_det
to_select = max(64-to_select, to_select)
call ZMQ_selection(to_select, pt2)
PROVIDE psi_coef
PROVIDE psi_det
PROVIDE psi_det_sorted
call diagonalize_CI
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
enddo
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
threshold_generators = max(threshold_generators,threshold_generators_pt2)
threshold_davidson = threshold_davidson_in
TOUCH threshold_selectors threshold_generators threshold_davidson
call diagonalize_CI
call ZMQ_selection(0, pt2)
E_ref = CI_energy(1) + pt2(1)
pt2_ratio = (E_ref + pt2_max - HF_energy) / (E_ref - HF_energy)
print *, 'Est FCI = ', E_ref
Nmax = N_det
Nmin = N_det/8
do while (Nmax-Nmin > 1)
call diagonalize_CI
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
TOUCH psi_coef psi_det
if (ratio < pt2_ratio) then
Nmin = N_det
to_select = (Nmax-Nmin)/2
call ZMQ_selection(to_select, pt2)
else
Nmax = N_det
N_det = Nmin + (Nmax-Nmin)/2
endif
print *, '-----'
print *, 'Det min, Det max: ', Nmin, Nmax
print *, 'Ratio : ', ratio, ' ~ ', pt2_ratio
print *, 'HF_energy = ', HF_energy
print *, 'Est FCI = ', E_ref
print *, 'N_det = ', N_det
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
enddo
call ZMQ_selection(0, pt2)
print *, '------'
print *, 'E = ', CI_energy(1)
print *, 'PT2 = ', pt2(1)
E_CI_before(1:N_states) = CI_energy(1:N_states)
call save_wavefunction
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

View File

@ -1,6 +0,0 @@
program guess
implicit none
character*(64) :: label
call huckel_guess
end

View File

@ -1,61 +0,0 @@
program scf
BEGIN_DOC
! Produce `Hartree_Fock` MO orbital
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
! output: hartree_fock.energy
! optional: mo_basis.mo_coef
END_DOC
call create_guess
call orthonormalize_mos
call run
end
subroutine create_guess
implicit none
BEGIN_DOC
! Create a MO guess if no MOs are present in the EZFIO directory
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_mo_basis_mo_coef(exists)
if (.not.exists) then
if (mo_guess_type == "HCore") then
mo_coef = ao_ortho_lowdin_coef
TOUCH mo_coef
mo_label = 'Guess'
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label)
SOFT_TOUCH mo_coef mo_label
else if (mo_guess_type == "Huckel") then
call huckel_guess
else
print *, 'Unrecognized MO guess type : '//mo_guess_type
stop 1
endif
endif
end
subroutine run
BEGIN_DOC
! Run SCF calculation
END_DOC
use bitmasks
implicit none
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
double precision :: EHF
integer :: i_it, i, j, k
EHF = HF_energy
mo_label = "Canonical"
! Choose SCF algorithm
call damping_SCF ! Deprecated routine
! call Roothaan_Hall_SCF
end

View File

@ -1,75 +0,0 @@
program localize_mos
implicit none
integer :: rank, i,j,k
double precision, allocatable :: W(:,:)
double precision :: f, f_incr
allocate (W(ao_num,ao_num))
W = 0.d0
do k=1,elec_beta_num
do j=1,ao_num
do i=1,ao_num
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
enddo
enddo
enddo
! call svd_mo(ao_num,elec_beta_num,W, size(W,1), &
! mo_coef(1,1),size(mo_coef,1))
call cholesky_mo(ao_num,elec_beta_num,W, size(W,1), &
mo_coef(1,1),size(mo_coef,1),1.d-6,rank)
print *, rank
if (elec_alpha_num>elec_beta_num) then
W = 0.d0
do k=elec_beta_num+1,elec_alpha_num
do j=1,ao_num
do i=1,ao_num
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
enddo
enddo
enddo
! call svd_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
! mo_coef(1,1),size(mo_coef,1))
call cholesky_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
mo_coef(1,elec_beta_num+1),size(mo_coef,1),1.d-6,rank)
print *, rank
endif
W = 0.d0
do k=elec_alpha_num+1,mo_tot_num
do j=1,ao_num
do i=1,ao_num
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
enddo
enddo
enddo
! call svd_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
! mo_coef(1,1),size(mo_coef,1))
call cholesky_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
mo_coef(1,elec_alpha_num+1),size(mo_coef,1),1.d-6,rank)
print *, rank
mo_label = "Localized"
TOUCH mo_coef
W(1:ao_num,1:mo_tot_num) = mo_coef(1:ao_num,1:mo_tot_num)
integer :: iorder(mo_tot_num)
double precision :: s(mo_tot_num), swap(ao_num)
do k=1,mo_tot_num
iorder(k) = k
s(k) = Fock_matrix_diag_mo(k)
enddo
call dsort(s(1),iorder(1),elec_beta_num)
call dsort(s(elec_beta_num+1),iorder(elec_beta_num+1),elec_alpha_num-elec_beta_num)
call dsort(s(elec_alpha_num+1),iorder(elec_alpha_num+1),mo_tot_num-elec_alpha_num)
do k=1,mo_tot_num
mo_coef(1:ao_num,k) = W(1:ao_num,iorder(k))
print *, k, s(k)
enddo
call save_mos
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

View File

@ -1,26 +0,0 @@
[slater_expo_ezfio]
type: double precision
doc: Exponents of the additional Slater functions
size: (nuclei.nucl_num)
interface: ezfio, provider
[slater_coef_ezfio]
type: double precision
doc: Exponents of the additional Slater functions
size: (nuclei.nucl_num,mo_basis.mo_tot_num)
interface: ezfio, provider
[projector]
type: double precision
doc: Orthogonal AO basis
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_orthoSlaOverlap]
type: double precision
doc: Orthogonal AO basis
size: (ao_basis.ao_num,nuclei.nucl_num)
interface: ezfio

View File

@ -1,63 +0,0 @@
BEGIN_PROVIDER [ double precision, cusp_A, (nucl_num, nucl_num) ]
implicit none
BEGIN_DOC
! Equations to solve : A.X = B
END_DOC
integer :: mu, A, B
cusp_A = 0.d0
do A=1,nucl_num
cusp_A(A,A) = slater_expo(A)/nucl_charge(A) * slater_value_at_nucl(A,A)
do B=1,nucl_num
cusp_A(A,B) -= slater_value_at_nucl(B,A)
! Projector
do mu=1,mo_tot_num
cusp_A(A,B) += AO_orthoSlaOverlap_matrix(mu,B) * ao_ortho_value_at_nucl(mu,A)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, cusp_B, (nucl_num, mo_tot_num) ]
implicit none
BEGIN_DOC
! Equations to solve : A.C = B
END_DOC
integer :: i, A, info
do i=1,mo_tot_num
do A=1,nucl_num
cusp_B(A,i) = mo_value_at_nucl(i,A)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, cusp_C, (nucl_num, mo_tot_num) ]
implicit none
BEGIN_DOC
! Equations to solve : A.C = B
END_DOC
integer :: info
integer :: ipiv(nucl_num)
double precision, allocatable :: AF(:,:)
allocate ( AF(nucl_num,nucl_num) )
cusp_C(1:nucl_num,1:mo_tot_num) = cusp_B(1:nucl_num,1:mo_tot_num)
AF(1:nucl_num,1:nucl_num) = cusp_A(1:nucl_num,1:nucl_num)
call dgetrf(nucl_num,nucl_num,AF,size(AF,1),ipiv,info)
if (info /= 0) then
print *, info
stop 'dgetrf failed'
endif
call dgetrs('N',nucl_num,mo_tot_num,AF,size(AF,1),ipiv,cusp_C,size(cusp_C,1),info)
if (info /= 0) then
print *, info
stop 'dgetrs failed'
endif
END_PROVIDER

View File

@ -1,105 +0,0 @@
program scf
BEGIN_DOC
! Produce `Hartree_Fock` MO orbital with Slater cusp dressing
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
! output: hartree_fock.energy
! optional: mo_basis.mo_coef
END_DOC
call check_mos
call debug
call run
end
subroutine check_mos
implicit none
BEGIN_DOC
! Create a MO guess if no MOs are present in the EZFIO directory
END_DOC
logical :: exists
PROVIDE ezfio_filename
call ezfio_has_mo_basis_mo_coef(exists)
if (.not.exists) then
print *, 'Please run SCF first'
stop
endif
end
subroutine debug
implicit none
integer :: i,j,k
print *, 'A'
do i=1,nucl_num
print *, i, cusp_A(1:nucl_num, i)
enddo
print *, 'B'
do i=1,mo_tot_num
print *, i, cusp_B(1:nucl_num, i)
enddo
print *, 'X'
do i=1,mo_tot_num
print *, i, cusp_C(1:nucl_num, i)
enddo
print *, '-----'
return
do k=-100,100
double precision :: x, y, z
x = 0.01d0 * k
y = 0.d0
do i=1,ao_num
z = 0.d0
do j=1,ao_prim_num(i)
z += ao_coef_normalized_ordered_transp(j,i) * dexp(-ao_expo_ordered_transp(j,i) * x**2)
enddo
y += mo_coef(i,1) * z
y += exp(-slater_expo(1)*dabs(x)) * slater_coef(1,1)
z = 0.d0
do j=1,ao_prim_num(i)
z += ao_coef_normalized_ordered_transp(j,i) * dexp(-ao_expo_ordered_transp(j,i) * x**2)
enddo
y -= z * GauSlaOverlap_matrix(i,1)* slater_coef(1,1)
enddo
print *, x, y
enddo
print *, '-----'
end
subroutine run
BEGIN_DOC
! Run SCF calculation
END_DOC
use bitmasks
implicit none
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
double precision :: EHF
integer :: i_it, i, j, k
mo_label = 'None'
! print *, HF_energy
do i=1,ao_num
print *, mo_coef(i,1), cusp_corrected_mos(i,1)
enddo
mo_coef(1:ao_num,1:mo_tot_num) = cusp_corrected_mos(1:ao_num,1:mo_tot_num)
SOFT_TOUCH mo_coef slater_coef
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(slater_coef)
call ezfio_set_Hartree_Fock_SlaterDressed_projector(ao_ortho_canonical_coef(1:ao_num,1:ao_num))
call ezfio_set_Hartree_Fock_SlaterDressed_ao_orthoSlaOverlap(AO_orthoSlaOverlap_matrix)
call save_mos
print *, 'ci'
print *, mo_coef(1:ao_num,1)
print *, 'cAi'
print *, slater_coef
! EHF = HF_energy
! print *, HF_energy
! call Roothaan_Hall_SCF
end

View File

@ -1,74 +0,0 @@
BEGIN_PROVIDER [ double precision , ao_value_at_nucl, (ao_num,nucl_num) ]
implicit none
BEGIN_DOC
! Values of the atomic orbitals at the nucleus
END_DOC
integer :: i,j,k
double precision :: x,y,z,expo,poly, r2
do k=1,nucl_num
do i=1,ao_num
ao_value_at_nucl(i,k) = 0.d0
x = nucl_coord(ao_nucl(i),1) - nucl_coord(k,1)
y = nucl_coord(ao_nucl(i),2) - nucl_coord(k,2)
z = nucl_coord(ao_nucl(i),3) - nucl_coord(k,3)
poly = x**(ao_power(i,1)) * y**(ao_power(i,2)) * z**(ao_power(i,3))
if (poly == 0.d0) cycle
r2 = (x*x) + (y*y) + (z*z)
do j=1,ao_prim_num(i)
expo = ao_expo_ordered_transp(j,i)*r2
if (expo > 40.d0) cycle
ao_value_at_nucl(i,k) = ao_value_at_nucl(i,k) + &
ao_coef_normalized_ordered_transp(j,i) * &
dexp(-expo)
enddo
ao_value_at_nucl(i,k) *= poly
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_ortho_value_at_nucl, (ao_num,nucl_num) ]
implicit none
BEGIN_DOC
! Values of the molecular orbitals at the nucleus
END_DOC
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
ao_value_at_nucl, size(ao_value_at_nucl,1), &
0.d0, ao_ortho_value_at_nucl,size(ao_ortho_value_at_nucl,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_value_at_nucl, (mo_tot_num,nucl_num) ]
implicit none
BEGIN_DOC
! Values of the molecular orbitals at the nucleus
END_DOC
call dgemm('T','N',mo_tot_num,nucl_num,ao_num,1.d0, &
mo_coef, size(mo_coef,1), &
ao_value_at_nucl, size(ao_value_at_nucl,1), &
0.d0, mo_value_at_nucl, size(mo_value_at_nucl,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision , slater_value_at_nucl, (nucl_num,nucl_num) ]
implicit none
BEGIN_DOC
! Values of the Slater orbitals (1) at the nucleus (2)
END_DOC
integer :: i,j,k
double precision :: x,y,z,expo,poly, r
do k=1,nucl_num
do i=1,nucl_num
x = nucl_coord(i,1) - nucl_coord(k,1)
y = nucl_coord(i,2) - nucl_coord(k,2)
z = nucl_coord(i,3) - nucl_coord(k,3)
expo = slater_expo(i) * dsqrt((x*x) + (y*y) + (z*z))
slater_value_at_nucl(i,k) = dexp(-expo) * slater_normalization(i)
enddo
enddo
END_PROVIDER

View File

@ -1,172 +0,0 @@
BEGIN_PROVIDER [ double precision, ao_ortho_mono_elec_integral_dressing, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Dressing of the core hamiltonian in the orthogonal AO basis set
END_DOC
integer :: i,j,k
integer :: mu, nu, lambda, A
double precision :: tmp
ao_ortho_mono_elec_integral_dressing = 0.d0
i = idx_dressing
do mu=1,ao_num
if (dabs(mo_coef_in_ao_ortho_basis(mu,i)) > 1.d-5) then
do A=1,nucl_num
tmp = 0.d0
do nu=1,ao_num
tmp += AO_orthoSlaOverlap_matrix(nu,A) * ao_ortho_mono_elec_integral(mu,nu)
enddo
ao_ortho_mono_elec_integral_dressing(mu,mu) += cusp_C(A,i) * (AO_orthoSlaH_matrix(mu,A) - tmp)
enddo
ao_ortho_mono_elec_integral_dressing(mu,mu) *= 1.d0/mo_coef_in_ao_ortho_basis(mu,i)
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_ortho_mono_elec_integral, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! h core in orthogonal AO basis
END_DOC
double precision, allocatable :: T(:,:)
allocate(T(ao_num,ao_num))
call dgemm('T','N',ao_num,ao_num,ao_num,1.d0, &
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
ao_mono_elec_integral, size(ao_mono_elec_integral,1), &
0.d0, T, size(T,1))
call dgemm('N','N',ao_num,ao_num,ao_num,1.d0, &
T, size(T,1), &
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
0.d0, ao_ortho_mono_elec_integral, size(ao_ortho_mono_elec_integral,1))
deallocate(T)
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_mono_elec_integral_dressing, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Dressing of the core hamiltonian in the AO basis set
END_DOC
call ao_ortho_cano_to_ao(ao_ortho_mono_elec_integral_dressing,size(ao_ortho_mono_elec_integral_dressing,1),&
ao_mono_elec_integral_dressing,size(ao_mono_elec_integral_dressing,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_mono_elec_integral_dressing, (mo_tot_num,mo_tot_num) ]
implicit none
BEGIN_DOC
! Dressing of the core hamiltonian in the MO basis set
END_DOC
call ao_to_mo(ao_mono_elec_integral_dressing,size(ao_mono_elec_integral_dressing,1),&
mo_mono_elec_integral_dressing,size(mo_mono_elec_integral_dressing,1))
END_PROVIDER
BEGIN_PROVIDER [ integer, idx_dressing ]
implicit none
BEGIN_DOC
! Index of the MO which is being dressed
END_DOC
idx_dressing = 1
END_PROVIDER
BEGIN_PROVIDER [ double precision, cusp_corrected_mos, (ao_num,mo_tot_num) ]
implicit none
BEGIN_DOC
! Dressing core hamiltonian in the AO basis set
END_DOC
integer :: i,j
double precision, allocatable :: F(:,:), M(:,:)
allocate(F(mo_tot_num,mo_tot_num),M(ao_num,mo_tot_num))
logical :: oneshot
! oneshot = .True.
oneshot = .False.
if (oneshot) then
cusp_corrected_mos(1:ao_num,1:mo_tot_num) = mo_coef(1:ao_num,1:mo_tot_num)
slater_coef(1:nucl_num,1:mo_tot_num) = cusp_C(1:nucl_num,1:mo_tot_num)
return
else
do idx_dressing=1,mo_tot_num
if (idx_dressing>1) then
TOUCH idx_dressing
endif
do j=1,mo_tot_num
do i=1,mo_tot_num
F(i,j) = Fock_matrix_mo(i,j)
enddo
enddo
do j=1,mo_tot_num
do i=1,ao_num
M(i,j) = mo_coef(i,j)
enddo
enddo
integer :: it
do it=1,128
! print *, 'X', ao_ortho_canonical_coef(1:ao_num,1:ao_num)
! print *, 'C', mo_coef(1:ao_num,1:mo_tot_num)
! print *, 'Cp', mo_coef_in_ao_ortho_basis(1:ao_num,1:mo_tot_num)
! print *, 'cAi', cusp_C(1:nucl_num,1:mo_tot_num)
! print *, 'FmuA', AO_orthoSlaH_matrix(1:ao_num,1:nucl_num)
! print *, 'Fock:', Fock_matrix_ao(1:ao_num,1:ao_num)
! print *, 'Diag Dressing:', ao_ortho_mono_elec_integral_dressing(1:ao_num,1:ao_num)
! print *, 'Dressing:', ao_mono_elec_integral_dressing(1:ao_num,1:ao_num)
! print *, 'Dressed Fock:', Fock_matrix_ao(1:ao_num,1:ao_num) + ao_mono_elec_integral_dressing(1:ao_num,1:ao_num)
! print *, 'AO_orthoSlaOverlap_matrix', AO_orthoSlaOverlap_matrix(1:ao_num,1:nucl_num)
! print *, 'AO_orthoSlaH_matrix', AO_orthoSlaH_matrix(1:ao_num,1:nucl_num)
! print *, 'ao_ortho_mono_elec_integral', ao_ortho_mono_elec_integral(1:ao_num,1:ao_num)
! print *, 'Fock MO:', Fock_matrix_mo(1:mo_tot_num,1:mo_tot_num)
do j=1,mo_tot_num
do i=1,mo_tot_num
Fock_matrix_mo(i,j) += mo_mono_elec_integral_dressing(i,j)
enddo
enddo
do i=1,mo_tot_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
! print *, 'Dressed Fock MO:', Fock_matrix_mo(1:mo_tot_num,1:mo_tot_num)
double precision :: conv
conv = 0.d0
do j=1,mo_tot_num
do i=1,mo_tot_num
if (i==j) cycle
conv = max(conv,Fock_matrix_mo(i,j))
enddo
enddo
TOUCH Fock_matrix_mo Fock_matrix_diag_mo
mo_coef(1:ao_num,1:mo_tot_num) = eigenvectors_fock_matrix_mo(1:ao_num,1:mo_tot_num)
TOUCH mo_coef
!print *, 'C', mo_coef(1:ao_num,1:mo_tot_num)
!print *, '-----'
print *, idx_dressing, it, real(mo_coef(1,idx_dressing)), real(conv)
if (conv < 1.d-5) exit
!stop
enddo
cusp_corrected_mos(1:ao_num,idx_dressing) = mo_coef(1:ao_num,idx_dressing)
slater_coef(1:nucl_num,idx_dressing) = cusp_C(1:nucl_num,idx_dressing)
enddo
idx_dressing = 1
mo_coef(1:ao_num,1:mo_tot_num) = M(1:ao_num,1:mo_tot_num)
soft_TOUCH mo_coef idx_dressing slater_coef
endif
END_PROVIDER

View File

@ -1,625 +0,0 @@
!*****************************************************************************
subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla,result)
implicit none
BEGIN_DOC
! Compute the overlap integral between a Gaussian function
! with arbitrary angular momemtum and a s-type Slater function
END_DOC
! Input variables
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
double precision,intent(out) :: result
! Final value of the integrals
double precision :: ss,ps,ds
double precision :: pxs,pys,pzs
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
pi = 4d0*atan(1d0)
! calculate the length AB between the two centers and other usful quantities
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
AB = dsqrt(AB)
AxBx = (cGau(1)-cSla(1))/2d0
AyBy = (cGau(2)-cSla(2))/2d0
AzBz = (cGau(3)-cSla(3))/2d0
ds = 0.d0
! intermediate variables
t = expSla*dsqrt(0.25d0/expGau)
u = dsqrt(expGau)*AB
double precision :: d, et2
if(AB > 0d0) then
! (s|s)
ss = 0.d0
d = derfc(t+u)
if (dabs(d) > 1.d-30) then
ss = (t+u)*d*dexp(2d0*t*(t+u))
endif
d = derfc(t-u)
if (dabs(d) > 1.d-30) then
ss -= (t-u)*d*dexp(2d0*t*(t-u))
endif
! (p|s)
ps = 0.d0
if (t*t-u*u > 300.d0) then
et2 = huge(1.0)
else
et2 = dexp(t*t-u*u)
endif
if (et2 /= 0.d0) then
d = derfc(t-u)
if (d /= 0.d0) then
ps += dexp((t-u)**2)*(1d0+2d0*t*(t-u))*d
endif
d = derfc(t+u)
if (d /= 0.d0) then
ps += dexp((t+u)**2)*(1d0+2d0*t*(t+u))*d
endif
ps *= dsqrt(pi)
ps -= 4d0*t
ps *= et2/dsqrt(pi)
endif
! (d|s)
! ds = 4d0*dexp(2d0*t*(t-u))*t*(-((1d0+t**2-t*u)*derfc(t-u))+dexp(4d0*t*u)*(1d0+t*(t+u))*derfc(t+u))
ds = 0.d0
d = derfc(t+u)
if (d /= 0.d0) then
ds = dexp(4d0*t*u)*(1d0+t*(t+u))*d
endif
d = derfc(t-u)
if (d /= 0.d0) then
ds -= (1d0+t*t-t*u)*d
endif
if ( dabs(ds) > 1.d-100) then
ds *= 4d0*dexp(2d0*t*(t-u))*t
endif
! backward scaling
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
ps = ps/u**2-ss/u**3d0
ss = ss/u
else
! concentric case
d = derfc(t)
if (d /= 0.d0) then
et2 = dexp(t*t)
ss = 2d0*et2*((-2d0*t)/dsqrt(pi)+et2*(1d0+2d0*t*t)*d)
ps = (8d0*et2*t*(-2d0*(1d0+t*t)+et2*dsqrt(pi)*t*(3d0+2d0*t*t)*d))/(3d0*dsqrt(pi))
else
ss = 0.d0
ps = 0.d0
endif
endif
k = t**3d0*dexp(-t*t)*4d0*pi/expSla**(3d0/2d0)
! (s|s)
ss = k*ss
! (p|s)
ps = k*ps
pxs = AxBx*ps
pys = AyBy*ps
pzs = AzBz*ps
! (d|s)
ds = k*ds
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2*ds
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2*ds
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2*ds
dxys = AxBx*AyBy*ds
dxzs = AxBx*AzBz*ds
dyzs = AyBy*AzBz*ds
select case (sum(aGau))
case (0)
result = ss
case (1)
if (aGau(1) == 1) then
result = pxs
else if (aGau(2) == 1) then
result = pys
else if (aGau(3) == 1) then
result = pzs
endif
case (2)
if (aGau(1) == 2) then
result = dxxs
else if (aGau(2) == 2) then
result = dyys
else if (aGau(3) == 2) then
result = dzzs
else if (aGau(1)+aGau(2) == 2) then
result = dxys
else if (aGau(1)+aGau(3) == 2) then
result = dxzs
else if (aGau(2)+aGau(3) == 2) then
result = dyzs
endif
case default
stop 'GauSlaOverlap not implemented'
end select
end
!*****************************************************************************
!*****************************************************************************
subroutine GauSlaKinetic(expGau,cGau,aGau,expSla,cSla,result)
implicit none
BEGIN_DOC
! Compute the kinetic energy integral between a Gaussian function
! with arbitrary angular momemtum and a s-type Slater function
END_DOC
! Input variables
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
double precision,intent(out) :: result
! Final value of the integrals
double precision :: ss,ps,ds
double precision :: pxs,pys,pzs
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
pi = 4d0*atan(1d0)
! calculate the length AB between the two centers
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
AB = dsqrt(AB)
AxBx = (cGau(1)-cSla(1))/2d0
AyBy = (cGau(2)-cSla(2))/2d0
AzBz = (cGau(3)-cSla(3))/2d0
! intermediate variables
t = expSla*dsqrt(0.25d0/expGau)
u = dsqrt(expGau)*AB
if(AB > 0d0) then
! (s|s)
ss = (1d0+t*(t-u))*derfc(t-u)*dexp(2d0*t*(t-u)) - (1d0+t*(t+u))*derfc(t+u)*dexp(2d0*t*(t+u))
! (p|s)
ps = (dexp(t**2-2d0*t*u-u**2)*(4d0*dexp(2d0*t*u)*(1d0+t**2) &
+ dsqrt(pi)*t*(-(dexp(t**2+u**2)*(3d0+2d0*t*(t-u))*derfc(t-u)) &
- dexp(2d0*t*u+(t+u)**2)*(3d0+2d0*t*(t+u))*derfc(t+u))))/dsqrt(pi)
! (d|s)
ds = (-8d0*dexp(t**2-u**2)*u+4d0*dexp(2d0*t*(t-u))*dsqrt(pi)*t**2*((2d0+t**2-t*u)*derfc(t-u) &
- dexp(4d0*t*u)*(2d0+t*(t+u))*derfc(t+u)))/dsqrt(pi)
! backward scaling
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
ps = ps/u**2-ss/u**3d0
ss = ss/u
else
! concentric case
ss = (4d0*dexp(t**2)*(1d0+t**2))/dsqrt(pi)-2d0*dexp(2d0*t**2)*t*(3d0+2d0*t**2)*derfc(t)
ps = (8d0*dexp(t**2)*(-1d0+4d0*t**2+2d0*t**4d0-dexp(t**2)*dsqrt(pi)*t**3d0*(5d0+2d0*t**2)*derfc(t)))/(3d0*dsqrt(pi))
endif
k = expSla*dsqrt(expGau)*t**3d0*dexp(-t*t)*4d0*pi/expSla**(3d0/2d0)
! (s|s)
ss = k*ss
! (p|s)
ps = k*ps
pxs = AxBx*ps
pys = AyBy*ps
pzs = AzBz*ps
! (d|s)
ds = k*ds
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2*ds
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2*ds
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2*ds
dxys = AxBx*AyBy*ds
dxzs = AxBx*AzBz*ds
dyzs = AyBy*AzBz*ds
select case (sum(aGau))
case (0)
result = ss
case (1)
if (aGau(1) == 1) then
result = pxs
else if (aGau(2) == 1) then
result = pys
else if (aGau(3) == 1) then
result = pzs
endif
case (2)
if (aGau(1) == 2) then
result = dxxs
else if (aGau(2) == 2) then
result = dyys
else if (aGau(3) == 2) then
result = dzzs
else if (aGau(1)+aGau(2) == 2) then
result = dxys
else if (aGau(1)+aGau(3) == 2) then
result = dxzs
else if (aGau(2)+aGau(3) == 2) then
result = dyzs
endif
case default
stop 'GauSlaOverlap not implemented'
end select
end
!*****************************************************************************
!*****************************************************************************
subroutine GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result)
implicit none
BEGIN_DOC
! Compute the nuclear attraction integral between a Gaussian function
! with arbitrary angular momemtum and a s-type Slater function
END_DOC
! Input variables
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
double precision,intent(in) :: cNuc(3)
double precision,intent(in) :: ZNuc
double precision,intent(out) :: result
! Final value of the overlap integral
double precision :: ss,ps,ds,fs
double precision :: pxs,pys,pzs
double precision :: pi,E,AB,x,y,k
pi = 4d0*atan(1d0)
E = exp(1d0)
! calculate the length AB between the two centers
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
AB = dsqrt(AB)
! intermediate variables
x = dsqrt(expSla**2/(4d0*expGau))
y = dsqrt(expGau)*AB
if(AB > 0d0) then
ss = (1d0+x*(x+y))*derfc(x+y)*dexp(2d0*x*(x+y)) - (1d0+x*(x-y))*derfc(x-y)*dexp(2d0*x*(x-y))
ss = ss/y
else
ss = (4d0*E**x**2*(1d0+x**2))/dsqrt(Pi)-2d0*E**(2d0*x**2)*x*(3d0+2d0*x**2)*dErfc(x)
endif
k = expSla*dsqrt(expGau)*x**3d0*dexp(-x*x)*4d0*pi/expSla**(3d0/2d0)
ss = k*ss
! Print result
! write(*,*) ss
result = 0.d0
end
!*****************************************************************************
double precision function BoysF0(t)
implicit none
double precision, intent(in) :: t
double precision :: pi
pi = 4d0*atan(1d0)
if(t > 0d0) then
BoysF0 = 0.5d0*dsqrt(pi/t)*derf(dsqrt(t))
else
BoysF0 = 1d0
endif
end
!*****************************************************************************
!TODO
subroutine GauSlaOverlap_write(expGau,cGau,aGau,expSla,cSla,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
integer,intent(in) :: iunit
double precision,intent(out) :: result
write(iunit, *) &
'SDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{', expSla,', {',cSla(1),',',cSla(2),',',cSla(3),'} } ],'
result = 0.d0
end
subroutine GauSlaOverlap_read(expGau,cGau,aGau,expSla,cSla,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
integer,intent(in) :: iunit
double precision,intent(out) :: result
read(iunit, *) result
end
subroutine GauSlaKinetic_write(expGau,cGau,aGau,expSla,cSla,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
integer,intent(in) :: iunit
double precision,intent(out) :: result
write(iunit, *) &
'TDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{', expSla,',{',cSla(1),',',cSla(2),',',cSla(3),'} } ],'
result = 0.d0
end
subroutine GauSlaKinetic_read(expGau,cGau,aGau,expSla,cSla,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
integer,intent(in) :: iunit
double precision,intent(out) :: result
read(iunit, *) result
end
subroutine GauSlaNuclear_write(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
double precision,intent(in) :: cNuc(3)
double precision,intent(in) :: ZNuc
integer,intent(in) :: iunit
double precision,intent(out) :: result
write(iunit, *) &
'VDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{ ', expSla,',{',cSla(1),',',cSla(2),',',cSla(3),'} }, {', ZNuc, ',{', cNuc(1),',', cNuc(2),',', cNuc(3), '} } ],'
result = 0.d0
end
subroutine GauSlaNuclear_read(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result,iunit)
implicit none
double precision,intent(in) :: expGau,expSla
double precision,intent(in) :: cGau(3),cSla(3)
integer,intent(in) :: aGau(3)
double precision,intent(in) :: cNuc(3)
double precision,intent(in) :: ZNuc
integer,intent(in) :: iunit
double precision,intent(out) :: result
read(iunit, *) result
end
!TODO
BEGIN_TEMPLATE
BEGIN_PROVIDER [ double precision, GauSla$X_matrix, (ao_num, nucl_num) ]
implicit none
BEGIN_DOC
! <Gaussian | Slater> overlap matrix
END_DOC
integer :: i,j,k
double precision :: cGau(3)
double precision :: cSla(3)
double precision :: expSla, res, expGau
integer :: aGau(3)
!TODO
! logical :: read
! integer :: iunit
! integer :: getunitandopen
!
! inquire(FILE=trim(ezfio_filename)//'/work/GauSla$X.dat',EXIST=read)
! if (read) then
! print *, 'READ $X'
! iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSla$X.dat','r')
! else
! print *, 'WRITE $X'
! iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSla$X.inp','w')
! write(iunit,*) '{'
! endif
!TODO
do k=1,nucl_num
cSla(1:3) = nucl_coord_transp(1:3,k)
expSla = slater_expo(k)
do i=1,ao_num
cGau(1:3) = nucl_coord_transp(1:3, ao_nucl(i))
aGau(1:3) = ao_power(i,1:3)
GauSla$X_matrix(i,k) = 0.d0
do j=1,ao_prim_num(i)
expGau = ao_expo_ordered_transp(j,i)
call GauSla$X(expGau,cGau,aGau,expSla,cSla,res)
! if (read) then
! call GauSla$X_read(expGau,cGau,aGau,expSla,cSla,res,iunit)
! else
! call GauSla$X_write(expGau,cGau,aGau,expSla,cSla,res,iunit)
! endif
GauSla$X_matrix(i,k) += ao_coef_normalized_ordered_transp(j,i) * res
enddo
enddo
enddo
! if (.not.read) then
! write(iunit,*) '0.}'
! endif
! close(iunit)
END_PROVIDER
BEGIN_PROVIDER [ double precision, MOSla$X_matrix, (mo_tot_num, nucl_num) ]
implicit none
BEGIN_DOC
! <MO | Slater>
END_DOC
call dgemm('T','N',mo_tot_num,nucl_num,ao_num,1.d0, &
mo_coef, size(mo_coef,1), &
GauSla$X_matrix, size(GauSla$X_matrix,1), &
0.d0, MOSla$X_matrix, size(MOSla$X_matrix,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, AO_orthoSla$X_matrix, (ao_num, nucl_num) ]
implicit none
BEGIN_DOC
! <AO_ortho | Slater>
END_DOC
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
GauSla$X_matrix, size(GauSla$X_matrix,1), &
0.d0, AO_orthoSla$X_matrix, size(AO_orthoSla$X_matrix,1))
END_PROVIDER
SUBST [ X ]
Overlap ;;
Kinetic ;;
END_TEMPLATE
BEGIN_PROVIDER [ double precision, GauSlaNuclear_matrix, (ao_num, nucl_num) ]
implicit none
BEGIN_DOC
! <Gaussian | Slater> overlap matrix
END_DOC
integer :: i,j,k,A
double precision :: cGau(3)
double precision :: cSla(3)
double precision :: expSla, res, expGau, Znuc, cNuc(3)
integer :: aGau(3)
!TODO
logical :: read
integer :: iunit
integer :: getunitandopen
inquire(FILE=trim(ezfio_filename)//'/work/GauSlaNuclear.dat',EXIST=read)
if (read) then
print *, 'READ Nuclear'
iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSlaNuclear.dat','r')
else
print *, 'WRITE Nuclear'
iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSlaNuclear.inp','w')
write(iunit,*)'{'
endif
!TODO
do k=1,nucl_num
cSla(1:3) = nucl_coord_transp(1:3,k)
expSla = slater_expo(k)
do i=1,ao_num
cGau(1:3) = nucl_coord_transp(1:3, ao_nucl(i))
aGau(1:3) = ao_power(i,1:3)
GauSlaNuclear_matrix(i,k) = 0.d0
do j=1,ao_prim_num(i)
expGau = ao_expo_ordered_transp(j,i)
do A=1,nucl_num
cNuc(1:3) = nucl_coord_transp(1:3,A)
Znuc = nucl_charge(A)
! call GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res)
if (read) then
call GauSlaNuclear_read(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res,iunit)
else
call GauSlaNuclear_write(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res,iunit)
endif
GauSlaNuclear_matrix(i,k) += ao_coef_normalized_ordered_transp(j,i) * res
enddo
enddo
enddo
enddo
if (.not.read) then
write(iunit,*) '0.}'
endif
close(iunit)
END_PROVIDER
BEGIN_PROVIDER [ double precision, GauSlaH_matrix, (ao_num, nucl_num) ]
implicit none
BEGIN_DOC
! Core hamiltonian in AO basis
END_DOC
GauSlaH_matrix(1:ao_num,1:nucl_num) = &
GauSlaKinetic_matrix(1:ao_num,1:nucl_num) + &
GauSlaNuclear_matrix(1:ao_num,1:nucl_num)
END_PROVIDER
BEGIN_PROVIDER [ double precision, MOSlaNuclear_matrix, (mo_tot_num, nucl_num) ]
implicit none
BEGIN_DOC
! <MO | Slater>
END_DOC
call dgemm('N','N',mo_tot_num,nucl_num,ao_num,1.d0, &
mo_coef_transp, size(mo_coef_transp,1), &
GauSlaNuclear_matrix, size(GauSlaNuclear_matrix,1), &
0.d0, MOSlaNuclear_matrix, size(MOSlaNuclear_matrix,1))
END_PROVIDER
BEGIN_PROVIDER [ double precision, AO_orthoSlaH_matrix, (ao_num, nucl_num) ]
implicit none
BEGIN_DOC
! <AO ortho | Slater>
END_DOC
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
GauSlaH_matrix, size(GauSlaH_matrix,1), &
0.d0, AO_orthoSlaH_matrix, size(AO_orthoSlaH_matrix,1))
END_PROVIDER

View File

@ -1,46 +0,0 @@
BEGIN_PROVIDER [ double precision, slater_expo, (nucl_num) ]
implicit none
BEGIN_DOC
! Exponents of the Slater functions
END_DOC
logical :: exists
call ezfio_has_Hartree_Fock_SlaterDressed_slater_expo_ezfio(exists)
if (exists) then
slater_expo(1:nucl_num) = slater_expo_ezfio(1:nucl_num)
else
integer :: i
do i=1,nucl_num
slater_expo(i) = nucl_charge(i)
enddo
call ezfio_set_Hartree_Fock_SlaterDressed_slater_expo_ezfio(slater_expo)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, slater_coef, (nucl_num,mo_tot_num) ]
implicit none
BEGIN_DOC
! Exponents of the Slater functions
END_DOC
logical :: exists
slater_coef = 0.d0
call ezfio_has_Hartree_Fock_SlaterDressed_slater_coef_ezfio(exists)
if (exists) then
slater_coef = slater_coef_ezfio
else
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(slater_coef)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, slater_normalization, (nucl_num) ]
implicit none
BEGIN_DOC
! Normalization of Slater functions : sqrt(expo^3/pi)
END_DOC
integer :: i
do i=1,nucl_num
slater_normalization(i) = dsqrt( slater_expo(i)**3/dacos(-1.d0) )
enddo
END_PROVIDER

View File

@ -1,5 +0,0 @@
[energy]
type: double precision
doc: MP2 energy
interface: ezfio

View File

@ -1,14 +0,0 @@
use bitmasks
BEGIN_SHELL [ /usr/bin/env python2 ]
from generate_h_apply import *
from perturbation import perturbations
s = H_apply("mp2")
s.set_perturbation("Moller_plesset")
print s
s = H_apply("mp2_selection")
s.set_selection_pt2("Moller_Plesset")
print s
END_SHELL

View File

@ -1 +0,0 @@
Perturbation Selectors_full SingleRefMethod ZMQ DavidsonUndressed

View File

@ -1,23 +0,0 @@
program mp2
no_vvvv_integrals = .True.
SOFT_TOUCH no_vvvv_integrals
call run
end
subroutine run
implicit none
double precision, allocatable :: pt2(:), norm_pert(:)
double precision :: H_pert_diag, E_old
integer :: N_st, iter
PROVIDE Fock_matrix_diag_mo H_apply_buffer_allocated
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st))
E_old = HF_energy
call H_apply_mp2(pt2, norm_pert, H_pert_diag, N_st)
print *, 'N_det = ', N_det
print *, 'N_states = ', N_states
print *, 'MP2 = ', pt2
print *, 'E = ', E_old
print *, 'E+MP2 = ', E_old+pt2
deallocate(pt2,norm_pert)
end

View File

@ -1,43 +0,0 @@
program mp2_wf
no_vvvv_integrals = .True.
SOFT_TOUCH no_vvvv_integrals
call run
end
subroutine run
implicit none
BEGIN_DOC
! Save the MP2 wave function
END_DOC
integer :: i,k
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
integer :: N_st, iter
N_st = N_states
allocate (pt2(N_st), norm_pert(N_st), H_pert_diag(N_st))
pt2 = 1.d0
selection_criterion_factor = 0.d0
TOUCH selection_criterion_min selection_criterion selection_criterion_factor
call H_apply_mp2_selection(pt2, norm_pert, H_pert_diag, N_st)
touch N_det psi_det psi_coef
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
touch N_det psi_det psi_coef
do i=N_det,1,-1
if (dabs(psi_coef(i,1)) <= 1.d-8) then
N_det -= 1
endif
enddo
print*,'N_det = ',N_det
print*,'-----'
print *, 'PT2 = ', pt2(1)
print *, 'E = ', HF_energy
print *, 'E_before +PT2 = ', HF_energy+pt2(1)
N_det = min(N_det,N_det_max)
touch N_det psi_det psi_coef
call save_wavefunction
call ezfio_set_mp2_energy(HF_energy+pt2(1))
deallocate(pt2,norm_pert,H_pert_diag)
end

Binary file not shown.

Before

Width:  |  Height:  |  Size: 106 KiB

View File

@ -1,4 +0,0 @@
[energy]
type: double precision
doc: Calculated MRCC energy
interface: ezfio

View File

@ -1,39 +0,0 @@
use bitmasks
BEGIN_SHELL [ /usr/bin/env python2 ]
from generate_h_apply import *
s = H_apply("mrcc")
s.data["parameters"] = ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
s.data["declarations"] += """
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
double precision, intent(in) :: delta_ij_(Nstates, Ndet_non_ref, Ndet_ref)
"""
s.data["keys_work"] = "call mrcc_dress(delta_ij_,Nstates,Ndet_non_ref,Ndet_ref,i_generator,key_idx,keys_out,N_int,iproc,key_mask)"
s.data["params_post"] += ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
s.data["params_main"] += "delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
s.data["decls_main"] += """
integer, intent(in) :: Ndet_ref, Ndet_non_ref, Nstates
double precision, intent(in) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
"""
s.data["finalization"] = ""
s.data["copy_buffer"] = ""
s.data["generate_psi_guess"] = ""
s.data["size_max"] = "3072"
print s
s = H_apply("mrcc_PT2")
s.energy = "ci_electronic_energy_dressed"
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()
print s
s = H_apply("mrcepa_PT2")
s.energy = "psi_energy"
s.set_perturbation("epstein_nesbet_2x2")
s.unset_openmp()
print s
END_SHELL

View File

@ -1 +0,0 @@
Perturbation Selectors_full Generators_full Psiref_Utils Psiref_CAS

File diff suppressed because it is too large Load Diff

View File

@ -1,270 +0,0 @@
BEGIN_PROVIDER [ integer, n_exc_active ]
&BEGIN_PROVIDER [ integer, active_pp_idx, (hh_nex) ]
&BEGIN_PROVIDER [ integer, active_hh_idx, (hh_nex) ]
&BEGIN_PROVIDER [ logical, is_active_exc, (hh_nex) ]
implicit none
BEGIN_DOC
! is_active_exc : True if the excitation involves at least one active MO
!
! n_exc_active : Number of active excitations : Number of excitations without the inactive ones.
!
! active_hh_idx :
!
! active_pp_idx :
END_DOC
integer :: hh, pp, II
integer :: ind
logical :: ok
integer(bit_kind) :: myDet(N_int, 2), myMask(N_int, 2)
integer, allocatable :: pathTo(:)
integer, external :: searchDet
allocate(pathTo(N_det_non_ref))
pathTo(:) = 0
is_active_exc(:) = .True.
n_exc_active = 0
! do hh = 1, hh_shortcut(0)
! do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
! do II = 1, N_det_ref
!
! call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
! if(.not. ok) cycle
!
! call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
! if(.not. ok) cycle
!
! ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
! if(ind == -1) cycle
!
! logical, external :: is_a_two_holes_two_particles
! if (is_a_two_holes_two_particles(myDet)) then
! is_active_exc(pp) = .False.
! endif
! ind = psi_non_ref_sorted_idx(ind)
! if(pathTo(ind) == 0) then
! pathTo(ind) = pp
! else
! is_active_exc(pp) = .true.
! is_active_exc(pathTo(ind)) = .true.
! end if
! end do
! end do
! end do
do hh = 1, hh_shortcut(0)
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
if(is_active_exc(pp)) then
n_exc_active = n_exc_active + 1
active_hh_idx(n_exc_active) = hh
active_pp_idx(n_exc_active) = pp
end if
end do
end do
deallocate(pathTo)
print *, n_exc_active, "active excitations /", hh_nex
END_PROVIDER
BEGIN_PROVIDER [ logical, has_a_unique_parent, (N_det_non_ref) ]
implicit none
BEGIN_DOC
! True if the determinant in the non-reference has a unique parent
END_DOC
integer :: i,j,n
integer :: degree
do j=1,N_det_non_ref
has_a_unique_parent(j) = .True.
n=0
do i=1,N_det_ref
call get_excitation_degree(psi_ref(1,1,i), psi_non_ref(1,1,j), degree, N_int)
if (degree < 2) then
n = n+1
if (n > 1) then
has_a_unique_parent(j) = .False.
exit
endif
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, n_exc_active_sze ]
implicit none
BEGIN_DOC
! Dimension of arrays to avoid zero-sized arrays
END_DOC
n_exc_active_sze = max(n_exc_active,1)
END_PROVIDER
BEGIN_PROVIDER [ integer, active_excitation_to_determinants_idx, (0:N_det_ref+1, n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, active_excitation_to_determinants_val, (N_states,N_det_ref+1, n_exc_active_sze) ]
implicit none
BEGIN_DOC
! Sparse matrix A containing the matrix to transform the active excitations to
! determinants : A | \Psi_0 > = | \Psi_SD >
END_DOC
integer :: s, ppp, pp, hh, II, ind, wk, i
integer, allocatable :: lref(:)
integer(bit_kind) :: myDet(N_int,2), myMask(N_int,2)
double precision :: phase
logical :: ok
integer, external :: searchDet
!$OMP PARALLEL default(none) shared(psi_non_ref, hh_exists, pp_exists, N_int,&
!$OMP active_excitation_to_determinants_val, active_excitation_to_determinants_idx)&
!$OMP shared(hh_shortcut, psi_ref_coef, N_det_non_ref, psi_non_ref_sorted, &
!$OMP psi_non_ref_sorted_idx, psi_ref, N_det_ref, N_states)&
!$OMP shared(active_hh_idx, active_pp_idx, n_exc_active)&
!$OMP private(lref, pp, II, ok, myMask, myDet, ind, phase, wk, ppp, hh, s)
allocate(lref(N_det_non_ref))
!$OMP DO schedule(dynamic)
do ppp=1,n_exc_active
active_excitation_to_determinants_val(:,:,ppp) = 0d0
active_excitation_to_determinants_idx(:,ppp) = 0
pp = active_pp_idx(ppp)
hh = active_hh_idx(ppp)
lref = 0
do II = 1, N_det_ref
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
if(.not. ok) cycle
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
if(.not. ok) cycle
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
if(ind /= -1) then
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
if (phase > 0.d0) then
lref(psi_non_ref_sorted_idx(ind)) = II
else
lref(psi_non_ref_sorted_idx(ind)) = -II
endif
end if
end do
wk = 0
do i=1, N_det_non_ref
if(lref(i) > 0) then
wk += 1
do s=1,N_states
active_excitation_to_determinants_val(s,wk, ppp) = psi_ref_coef(lref(i), s)
enddo
active_excitation_to_determinants_idx(wk, ppp) = i
else if(lref(i) < 0) then
wk += 1
do s=1,N_states
active_excitation_to_determinants_val(s,wk, ppp) = -psi_ref_coef(-lref(i), s)
enddo
active_excitation_to_determinants_idx(wk, ppp) = i
end if
end do
active_excitation_to_determinants_idx(0,ppp) = wk
end do
!$OMP END DO
deallocate(lref)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ integer, mrcc_AtA_ind, (N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ double precision, mrcc_AtA_val, (N_states, N_det_ref * n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_col_shortcut, (n_exc_active_sze) ]
&BEGIN_PROVIDER [ integer, mrcc_N_col, (n_exc_active_sze) ]
implicit none
BEGIN_DOC
! A is active_excitation_to_determinants in At.A
END_DOC
integer :: AtA_size, i,k
integer :: at_roww, at_row, wk, a_coll, a_col, r1, r2, s
double precision, allocatable :: t(:), A_val_mwen(:,:), As2_val_mwen(:,:)
integer, allocatable :: A_ind_mwen(:)
double precision :: sij
PROVIDE psi_non_ref
mrcc_AtA_ind(:) = 0
mrcc_AtA_val(:,:) = 0.d0
mrcc_col_shortcut(:) = 0
mrcc_N_col(:) = 0
AtA_size = 0
!$OMP PARALLEL default(none) shared(k, active_excitation_to_determinants_idx,&
!$OMP active_excitation_to_determinants_val, hh_nex) &
!$OMP private(at_row, a_col, t, i, r1, r2, wk, A_ind_mwen, A_val_mwen,&
!$OMP As2_val_mwen, a_coll, at_roww,sij) &
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtA_size, mrcc_AtA_val, mrcc_AtA_ind, &
!$OMP n_exc_active, active_pp_idx,psi_non_ref)
allocate(A_val_mwen(N_states,hh_nex), As2_val_mwen(N_states,hh_nex), A_ind_mwen(hh_nex), t(N_states) )
!$OMP DO schedule(dynamic, 100)
do at_roww = 1, n_exc_active ! hh_nex
at_row = active_pp_idx(at_roww)
wk = 0
do a_coll = 1, n_exc_active
a_col = active_pp_idx(a_coll)
t(:) = 0d0
r1 = 1
r2 = 1
do while ((active_excitation_to_determinants_idx(r1, at_roww) /= 0).and.(active_excitation_to_determinants_idx(r2, a_coll) /= 0))
if(active_excitation_to_determinants_idx(r1, at_roww) > active_excitation_to_determinants_idx(r2, a_coll)) then
r2 = r2+1
else if(active_excitation_to_determinants_idx(r1, at_roww) < active_excitation_to_determinants_idx(r2, a_coll)) then
r1 = r1+1
else
do s=1,N_states
t(s) = t(s) - active_excitation_to_determinants_val(s,r1, at_roww) * active_excitation_to_determinants_val(s,r2, a_coll)
enddo
r1 = r1+1
r2 = r2+1
end if
end do
if (a_col == at_row) then
t(:) = t(:) + 1.d0
endif
if (sum(dabs(t(:))) > 0.d0) then
wk = wk+1
A_ind_mwen(wk) = a_col
A_val_mwen(:,wk) = t(:)
endif
end do
if(wk /= 0) then
!$OMP CRITICAL
mrcc_col_shortcut(at_roww) = AtA_size+1
mrcc_N_col(at_roww) = wk
if (AtA_size+wk > size(mrcc_AtA_ind,1)) then
print *, AtA_size+wk , size(mrcc_AtA_ind,1)
stop 'too small'
endif
do i=1,wk
mrcc_AtA_ind(AtA_size+i) = A_ind_mwen(i)
do s=1,N_states
mrcc_AtA_val(s,AtA_size+i) = A_val_mwen(s,i)
enddo
enddo
AtA_size += wk
!$OMP END CRITICAL
end if
end do
!$OMP END DO NOWAIT
deallocate (A_ind_mwen, A_val_mwen, As2_val_mwen, t)
!$OMP END PARALLEL
print *, "At.A SIZE", ata_size
END_PROVIDER

View File

@ -1,423 +0,0 @@
use omp_lib
use bitmasks
BEGIN_PROVIDER [ integer(omp_lock_kind), psi_ref_lock, (psi_det_size) ]
implicit none
BEGIN_DOC
! Locks on ref determinants to fill delta_ij
END_DOC
integer :: i
do i=1,psi_det_size
call omp_init_lock( psi_ref_lock(i) )
enddo
END_PROVIDER
subroutine mrcc_dress(delta_ij_, Nstates, Ndet_non_ref, Ndet_ref,i_generator,n_selected,det_buffer,Nint,iproc,key_mask)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint, iproc
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
double precision, intent(inout) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,l,m
integer :: degree_alpha(psi_det_size)
integer :: idx_alpha(0:psi_det_size)
logical :: good, fullMatch
integer(bit_kind) :: tq(Nint,2,n_selected)
integer :: N_tq, c_ref ,degree
double precision :: hIk, hla, hIl, dIk(Nstates), dka(Nstates), dIa(Nstates)
double precision, allocatable :: dIa_hla(:,:)
double precision :: haj, phase, phase2
double precision :: f(Nstates), ci_inv(Nstates)
integer :: exc(0:2,2,2)
integer :: h1,h2,p1,p2,s1,s2
integer(bit_kind) :: tmp_det(Nint,2)
integer :: iint, ipos
integer :: i_state, k_sd, l_sd, i_I, i_alpha
integer(bit_kind),allocatable :: miniList(:,:,:)
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
integer,allocatable :: idx_miniList(:)
integer :: N_miniList, ni, leng
double precision, allocatable :: hij_cache(:)
integer(bit_kind), allocatable :: microlist(:,:,:), microlist_zero(:,:,:)
integer, allocatable :: idx_microlist(:), N_microlist(:), ptr_microlist(:), idx_microlist_zero(:)
integer :: mobiles(2), smallerlist
logical, external :: is_generable
leng = max(N_det_generators, N_det_non_ref)
allocate(miniList(Nint, 2, leng), idx_minilist(leng), hij_cache(N_det_non_ref))
!create_minilist_find_previous(key_mask, fullList, miniList, N_fullList, N_miniList, fullMatch, Nint)
call create_minilist_find_previous(key_mask, psi_det_generators, miniList, i_generator-1, N_miniList, fullMatch, Nint)
if(fullMatch) then
return
end if
allocate(ptr_microlist(0:mo_tot_num*2+1), &
N_microlist(0:mo_tot_num*2) )
allocate( microlist(Nint,2,N_minilist*4), &
idx_microlist(N_minilist*4))
if(key_mask(1,1) /= 0_8) then
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
call find_triples_and_quadruples_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
else
call find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_minilist)
end if
deallocate(microlist, idx_microlist)
allocate (dIa_hla(Nstates,Ndet_non_ref))
! |I>
! |alpha>
if(N_tq > 0) then
call create_minilist(key_mask, psi_non_ref, miniList, idx_minilist, N_det_non_ref, N_minilist, Nint)
if(N_minilist == 0) return
if(key_mask(1,1) /= 0) then !!!!!!!!!!! PAS GENERAL !!!!!!!!!
allocate(microlist_zero(Nint,2,N_minilist), idx_microlist_zero(N_minilist))
allocate( microlist(Nint,2,N_minilist*4), &
idx_microlist(N_minilist*4))
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
do i=0,mo_tot_num*2
do k=ptr_microlist(i),ptr_microlist(i+1)-1
idx_microlist(k) = idx_minilist(idx_microlist(k))
end do
end do
do l=1,N_microlist(0)
do k=1,Nint
microlist_zero(k,1,l) = microlist(k,1,l)
microlist_zero(k,2,l) = microlist(k,2,l)
enddo
idx_microlist_zero(l) = idx_microlist(l)
enddo
end if
end if
do i_alpha=1,N_tq
! ok = .false.
! do i=N_det_generators, 1, -1
! if(is_generable(psi_det_generators(1,1,i), tq(1,1,i_alpha), Nint)) then
! ok = .true.
! exit
! end if
! end do
! if(.not. ok) then
! cycle
! end if
if(key_mask(1,1) /= 0) then
call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint)
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
smallerlist = mobiles(1)
else
smallerlist = mobiles(2)
end if
do l=0,N_microlist(smallerlist)-1
microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l)
idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l)
end do
call get_excitation_degree_vector(microlist_zero,tq(1,1,i_alpha),degree_alpha,Nint,N_microlist(smallerlist)+N_microlist(0),idx_alpha)
do j=1,idx_alpha(0)
idx_alpha(j) = idx_microlist_zero(idx_alpha(j))
end do
else
call get_excitation_degree_vector(miniList,tq(1,1,i_alpha),degree_alpha,Nint,N_minilist,idx_alpha)
do j=1,idx_alpha(0)
idx_alpha(j) = idx_miniList(idx_alpha(j))
end do
end if
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd))
enddo
! |I>
do i_I=1,N_det_ref
! Find triples and quadruple grand parents
call get_excitation_degree(tq(1,1,i_alpha),psi_ref(1,1,i_I),degree,Nint)
if (degree > 4) then
cycle
endif
do i_state=1,Nstates
dIa(i_state) = 0.d0
enddo
! <I| <> |alpha>
do k_sd=1,idx_alpha(0)
! Loop if lambda == 0
logical :: loop
loop = .True.
do i_state=1,Nstates
if (lambda_mrcc(i_state,idx_alpha(k_sd)) /= 0.d0) then
loop = .False.
exit
endif
enddo
if (loop) then
cycle
endif
call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint)
if (degree > 2) then
cycle
endif
! <I| /k\ |alpha>
! <I|H|k>
hIk = hij_mrcc(idx_alpha(k_sd),i_I)
! call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),Nint,hIk)
do i_state=1,Nstates
dIk(i_state) = hIk * lambda_mrcc(i_state,idx_alpha(k_sd))
enddo
! |l> = Exc(k -> alpha) |I>
call get_excitation(psi_non_ref(1,1,idx_alpha(k_sd)),tq(1,1,i_alpha),exc,degree,phase,Nint)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do k=1,N_int
tmp_det(k,1) = psi_ref(k,1,i_I)
tmp_det(k,2) = psi_ref(k,2,i_I)
enddo
logical :: ok
call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint)
if(.not. ok) cycle
! <I| \l/ |alpha>
do i_state=1,Nstates
dka(i_state) = 0.d0
enddo
do l_sd=k_sd+1,idx_alpha(0)
call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint)
if (degree == 0) then
loop = .True.
do i_state=1,Nstates
if (lambda_mrcc(i_state,idx_alpha(l_sd)) /= 0.d0) then
loop = .False.
exit
endif
enddo
if (.not.loop) then
call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),exc,degree,phase2,Nint)
hIl = hij_mrcc(idx_alpha(l_sd),i_I)
! call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hIl)
do i_state=1,Nstates
dka(i_state) = hIl * lambda_mrcc(i_state,idx_alpha(l_sd)) * phase * phase2
enddo
endif
exit
endif
enddo
do i_state=1,Nstates
dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state)
enddo
enddo
do i_state=1,Nstates
ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state)
enddo
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
hla = hij_cache(k_sd)
! call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hla)
do i_state=1,Nstates
dIa_hla(i_state,k_sd) = dIa(i_state) * hla
enddo
enddo
call omp_set_lock( psi_ref_lock(i_I) )
do i_state=1,Nstates
if(dabs(psi_ref_coef(i_I,i_state)).ge.5.d-5)then
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
enddo
else
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0 * dIa_hla(i_state,k_sd)
enddo
endif
enddo
call omp_unset_lock( psi_ref_lock(i_I) )
enddo
enddo
deallocate (dIa_hla,hij_cache)
deallocate(miniList, idx_miniList)
end
subroutine find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_miniList)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,m
logical :: is_in_wavefunction
integer :: degree(psi_det_size)
integer :: idx(0:psi_det_size)
logical :: good
integer(bit_kind), intent(out) :: tq(Nint,2,n_selected)
integer, intent(out) :: N_tq
integer :: nt,ni
logical, external :: is_connected_to
integer(bit_kind),intent(in) :: miniList(Nint,2,N_det_generators)
integer,intent(in) :: N_miniList
N_tq = 0
i_loop : do i=1,N_selected
if(is_connected_to(det_buffer(1,1,i), miniList, Nint, N_miniList)) then
cycle
end if
! Select determinants that are triple or quadruple excitations
! from the ref
good = .True.
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
do k=1,idx(0)
if (degree(k) < 3) then
good = .False.
exit
endif
enddo
if (good) then
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
N_tq += 1
do k=1,N_int
tq(k,1,N_tq) = det_buffer(k,1,i)
tq(k,2,N_tq) = det_buffer(k,2,i)
enddo
endif
endif
enddo i_loop
end
subroutine find_triples_and_quadruples_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,m
logical :: is_in_wavefunction
integer :: degree(psi_det_size)
integer :: idx(0:psi_det_size)
logical :: good
integer(bit_kind), intent(out) :: tq(Nint,2,n_selected)
integer, intent(out) :: N_tq
integer :: nt,ni
logical, external :: is_connected_to
integer(bit_kind),intent(in) :: microlist(Nint,2,*)
integer,intent(in) :: ptr_microlist(0:*)
integer,intent(in) :: N_microlist(0:*)
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
integer :: mobiles(2), smallerlist
N_tq = 0
i_loop : do i=1,N_selected
call getMobiles(det_buffer(1,1,i), key_mask, mobiles, Nint)
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
smallerlist = mobiles(1)
else
smallerlist = mobiles(2)
end if
if(N_microlist(smallerlist) > 0) then
if(is_connected_to(det_buffer(1,1,i), microlist(1,1,ptr_microlist(smallerlist)), Nint, N_microlist(smallerlist))) then
cycle
end if
end if
if(N_microlist(0) > 0) then
if(is_connected_to(det_buffer(1,1,i), microlist, Nint, N_microlist(0))) then
cycle
end if
end if
! Select determinants that are triple or quadruple excitations
! from the ref
good = .True.
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
do k=1,idx(0)
if (degree(k) < 3) then
good = .False.
exit
endif
enddo
if (good) then
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
N_tq += 1
do k=1,N_int
tq(k,1,N_tq) = det_buffer(k,1,i)
tq(k,2,N_tq) = det_buffer(k,2,i)
enddo
endif
endif
enddo i_loop
end

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

19
plugins/Molden/.gitignore vendored Normal file
View File

@ -0,0 +1,19 @@
# Automatically created by $QP_ROOT/scripts/module/module_handler.py
.ninja_deps
.ninja_log
AO_Basis
Electrons
Ezfio_files
IRPF90_man
IRPF90_temp
MO_Basis
MPI
Makefile
Makefile.depend
Nuclei
Utils
ezfio_interface.irp.f
irpf90.make
irpf90_entities
print_mo
tags

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

View File

@ -1,21 +0,0 @@
// ['Orbital_Entanglement']
digraph {
Orbital_Entanglement [fontcolor=red]
Orbital_Entanglement -> Determinants
Determinants -> Integrals_Monoelec
Integrals_Monoelec -> MO_Basis
MO_Basis -> AO_Basis
AO_Basis -> Nuclei
Nuclei -> Ezfio_files
Nuclei -> Utils
MO_Basis -> Electrons
Electrons -> Ezfio_files
Integrals_Monoelec -> Pseudo
Pseudo -> Nuclei
Determinants -> Integrals_Bielec
Integrals_Bielec -> Pseudo
Integrals_Bielec -> Bitmask
Bitmask -> MO_Basis
Integrals_Bielec -> ZMQ
ZMQ -> Utils
}

Some files were not shown because too many files have changed in this diff Show More