Cleaning plugins
839
LICENSE
@ -1,281 +1,622 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
0. Definitions.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
1. Source Code.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
2. Basic Permissions.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
14. Revised Versions of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
NO WARRANTY
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
@ -287,15 +628,15 @@ free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
{description}
|
||||
Copyright (C) {year} {fullname}
|
||||
Quantum Package
|
||||
Copyright (C) 2018 Anthony Scemama, Emmanuel Giner
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
@ -303,37 +644,31 @@ the "copyright" line and a pointer to where the full notice is found.
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
Quantum Package Copyright (C) 2018 Anthony Scemam, Emmanuel Giner
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
{signature of Ty Coon}, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||
|
@ -1,6 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
QP_ROOT=$( cd $(dirname "${BASH_SOURCE}")/.. ; pwd -P )
|
||||
source $HOME/.bashrc
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
exec $QP_ROOT/ocaml/qp_run $@
|
63
config/ifort_debug.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort
|
||||
LAPACK_LIB : -mkl=parallel
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 1 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -xAVX -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE4.2 -C -fpe0
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
8
configure
vendored
@ -66,7 +66,6 @@ d_dependency = {
|
||||
"python": [],
|
||||
"ninja": ["g++", "python"],
|
||||
"make": [],
|
||||
"p_graphviz": ["python"],
|
||||
"bats": [],
|
||||
"gmp" : ["make", "g++"]
|
||||
}
|
||||
@ -152,11 +151,6 @@ f77zmq = Info(
|
||||
description=' F77-ZeroMQ',
|
||||
default_path=join(QP_ROOT_LIB, "libf77zmq.a") )
|
||||
|
||||
p_graphviz = Info(
|
||||
url='https://github.com/xflr6/graphviz/archive/master.tar.gz',
|
||||
description=' Python library for graphviz',
|
||||
default_path=join(QP_ROOT_INSTALL, "p_graphviz"))
|
||||
|
||||
bats = Info(
|
||||
url='https://github.com/sstephenson/bats/archive/master.tar.gz',
|
||||
description=' Bash Automated Testing System',
|
||||
@ -165,7 +159,7 @@ bats = Info(
|
||||
d_info = dict()
|
||||
|
||||
for m in ["ocaml", "m4", "curl", "zlib", "patch", "irpf90", "docopt",
|
||||
"resultsFile", "ninja", "emsl", "ezfio", "p_graphviz",
|
||||
"resultsFile", "ninja", "emsl", "ezfio",
|
||||
"zeromq", "f77zmq", "bats", "gmp"]:
|
||||
exec ("d_info['{0}']={0}".format(m))
|
||||
|
||||
|
2
docs/source/Makefile
Normal file
@ -0,0 +1,2 @@
|
||||
default:
|
||||
make -C ../ html
|
@ -18,7 +18,7 @@ FCIDUMP
|
||||
|
||||
.. _Molden: http://cheminf.cmbi.ru.nl/molden/
|
||||
.. _GAMESS: https://www.msg.chem.iastate.edu/gamess/
|
||||
.. _QMC=Chem: https://github.com/scemama/qmcchem
|
||||
.. _QMC=Chem: https://gitlab.com/scemama/qmcchem
|
||||
.. _CHAMP: https://www.utwente.nl/en/tnw/ccp/research/CHAMP.html
|
||||
.. _NECI: https://github.com/ghb24/NECI_STABLE
|
||||
.. _Dice: https://sanshar.github.io/Dice/
|
||||
|
@ -25,15 +25,16 @@ their own programs.
|
||||
|
||||
The |qp| has been designed specifically for sCI, so all the
|
||||
algorithms which are programmed are not adapted to run SCF or DFT calculations
|
||||
on thousands of atoms.
|
||||
on thousands of atoms. Currently, the systems targeted have less than 500
|
||||
molecular orbitals.
|
||||
|
||||
The |qp| is *not* a massive production code. For conventional
|
||||
methods such as Hartree-Fock CISD or MP2, the users are recommended to use the
|
||||
methods such as Hartree-Fock, CISD or MP2, the users are recommended to use the
|
||||
existing standard production codes which are designed to make these methods run
|
||||
fast. Again, the role of the |qp| is to make life simple for the
|
||||
developer. Once a new method is developed and tested, the developer is encouraged
|
||||
to consider re-expressing it with an integral-driven formulation, and to
|
||||
implement the new method is open-source production codes, such as `NWChem`_
|
||||
implement the new method in open-source production codes, such as `NWChem`_
|
||||
or `GAMESS`_.
|
||||
|
||||
|
||||
|
@ -1,2 +1,5 @@
|
||||
Programming the Quantum Package
|
||||
===============================
|
||||
Programming in the Quantum Package
|
||||
==================================
|
||||
|
||||
.. include:: work.rst
|
||||
|
||||
|
38
ocaml/tests/test_progress_bar.ml
Normal file
@ -0,0 +1,38 @@
|
||||
open Core
|
||||
|
||||
let test1 () =
|
||||
let bar =
|
||||
Progress_bar.init ~title:"Title" ~start_value:2. ~end_value:23. ~bar_length:30
|
||||
in
|
||||
let rec loop bar = function
|
||||
| i when i = 24 -> ()
|
||||
| i ->
|
||||
let x =
|
||||
Float.of_int i
|
||||
in
|
||||
let bar =
|
||||
Progress_bar.update ~cur_value:x bar
|
||||
|> Progress_bar.display
|
||||
in
|
||||
Unix.sleep 1 ;
|
||||
loop bar (i+1)
|
||||
in
|
||||
loop bar 2
|
||||
|
||||
let test2 () =
|
||||
let bar =
|
||||
Progress_bar.init ~title:"Title" ~start_value:2. ~end_value:23. ~bar_length:30
|
||||
in
|
||||
let rec loop bar = function
|
||||
| i when i = 24 -> ()
|
||||
| i ->
|
||||
let bar =
|
||||
Progress_bar.increment bar
|
||||
|> Progress_bar.display
|
||||
in
|
||||
Unix.sleep 1 ;
|
||||
loop bar (i+1)
|
||||
in
|
||||
loop bar 2
|
||||
|
||||
let () = test2 ()
|
15
ocaml/tests/test_pub.py
Executable file
@ -0,0 +1,15 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import zmq
|
||||
import sys, os
|
||||
|
||||
def main():
|
||||
context = zmq.Context()
|
||||
socket = context.socket(zmq.SUB)
|
||||
socket.connect("tcp://127.0.0.1:41280")
|
||||
socket.setsockopt(zmq.SUBSCRIBE, "")
|
||||
while True:
|
||||
print socket.recv()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,23 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated energy
|
||||
interface: ezfio
|
||||
|
||||
[thresh_dressed_ci]
|
||||
type: Threshold
|
||||
doc: Threshold on the convergence of the dressed CI energy
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-5
|
||||
|
||||
[n_it_max_dressed_ci]
|
||||
type: Strictly_positive_int
|
||||
doc: Maximum number of dressed CI iterations
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 10
|
||||
|
||||
[h0_type]
|
||||
type: Perturbation
|
||||
doc: Type of zeroth-order Hamiltonian [ EN | Barycentric ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: EN
|
||||
|
@ -1,2 +0,0 @@
|
||||
Bitmask dress_zmq DavidsonDressed Generators_full Selectors_full
|
||||
|
@ -1,12 +0,0 @@
|
||||
==
|
||||
Bk
|
||||
==
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
@ -1,26 +0,0 @@
|
||||
program bk
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Shifted-Bk method
|
||||
END_DOC
|
||||
read_wf = .True.
|
||||
state_following = .True.
|
||||
TOUCH read_wf state_following
|
||||
call run()
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
call diagonalize_ci_dressed
|
||||
integer :: istate
|
||||
print *, 'Bk Energy'
|
||||
print *, '---------'
|
||||
print *, ''
|
||||
do istate = 1,N_states
|
||||
print *, istate, CI_energy_dressed(istate)
|
||||
enddo
|
||||
! call save_wavefunction
|
||||
call ezfio_set_bk_energy(ci_energy_dressed(1))
|
||||
end
|
||||
|
||||
|
@ -1,66 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, fock_diag_tmp_, (2,mo_tot_num+1,Nproc) ]
|
||||
&BEGIN_PROVIDER [ integer, current_generator_, (Nproc) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Temporary arrays for speedup
|
||||
END_DOC
|
||||
current_generator_(:) = 0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine dress_with_alpha_buffer(Nstates,Ndet,Nint,delta_ij_loc, i_gen, minilist, det_minilist, n_minilist, alpha, iproc)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!delta_ij_loc(:,:,1) : dressing column for H
|
||||
!delta_ij_loc(:,:,2) : dressing column for S2
|
||||
!minilist : indices of determinants connected to alpha ( in psi_det_sorted )
|
||||
!n_minilist : size of minilist
|
||||
!alpha : alpha determinant
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint, Ndet, Nstates, n_minilist, iproc, i_gen
|
||||
integer(bit_kind), intent(in) :: alpha(Nint,2), det_minilist(Nint, 2, n_minilist)
|
||||
integer,intent(in) :: minilist(n_minilist)
|
||||
double precision, intent(inout) :: delta_ij_loc(Nstates,Ndet,2)
|
||||
|
||||
integer :: j, j_mini, i_state
|
||||
double precision :: c_alpha(N_states), h_alpha_alpha, hdress, sdress
|
||||
double precision :: i_h_alpha, i_s_alpha, alpha_h_psi(N_states)
|
||||
|
||||
double precision, external :: diag_H_mat_elem_fock
|
||||
|
||||
if(current_generator_(iproc) /= i_gen) then
|
||||
current_generator_(iproc) = i_gen
|
||||
call build_fock_tmp(fock_diag_tmp_(1,1,iproc),psi_det_generators(1,1,i_gen),N_int)
|
||||
end if
|
||||
|
||||
h_alpha_alpha = diag_H_mat_elem_fock(psi_det_generators(1,1,i_gen),alpha,fock_diag_tmp_(1,1,iproc),N_int)
|
||||
call i_H_psi_minilist(alpha,det_minilist,minilist,n_minilist,psi_coef,N_int,n_minilist,size(psi_coef,1),N_states,alpha_h_psi)
|
||||
|
||||
do i_state=1,N_states
|
||||
if (h_alpha_alpha - dress_e0_denominator(i_state) > 0.1d0 ) then
|
||||
c_alpha(i_state) = alpha_h_psi(i_state) / &
|
||||
(dress_e0_denominator(i_state) - h_alpha_alpha)
|
||||
else
|
||||
c_alpha(i_state) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j_mini=1,n_minilist
|
||||
j = minilist(j_mini)
|
||||
call i_H_j (det_minilist(1,1,j_mini),alpha,N_int,i_h_alpha)
|
||||
call get_s2(det_minilist(1,1,j_mini),alpha,N_int,i_s_alpha)
|
||||
do i_state=1,N_states
|
||||
hdress = c_alpha(i_state) * i_h_alpha
|
||||
sdress = c_alpha(i_state) * i_s_alpha
|
||||
!$OMP ATOMIC
|
||||
delta_ij_loc(i_state,j,1) = delta_ij_loc(i_state,j,1) + hdress
|
||||
!$OMP ATOMIC
|
||||
delta_ij_loc(i_state,j,2) = delta_ij_loc(i_state,j,2) + sdress
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -1,58 +0,0 @@
|
||||
BEGIN_PROVIDER [ integer, N_dress_int_buffer ]
|
||||
&BEGIN_PROVIDER [ integer, N_dress_double_buffer ]
|
||||
&BEGIN_PROVIDER [ integer, N_dress_det_buffer ]
|
||||
implicit none
|
||||
N_dress_int_buffer = 1
|
||||
N_dress_double_buffer = 1
|
||||
N_dress_det_buffer = 1
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine delta_ij_done()
|
||||
BEGIN_DOC
|
||||
! This subroutine is executed on the master when the dressing has been computed,
|
||||
! before the diagonalization.
|
||||
END_DOC
|
||||
end
|
||||
|
||||
subroutine dress_pulled(ind, int_buf, double_buf, det_buf, N_buf)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dress the contributions pulled from the slave.
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: ind, N_buf(3)
|
||||
integer, intent(in) :: int_buf(*)
|
||||
double precision, intent(in) :: double_buf(*)
|
||||
integer(bit_kind), intent(in) :: det_buf(N_int,2,*)
|
||||
end
|
||||
|
||||
subroutine generator_start(i_gen, iproc)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This subroutine is executed on the slave before computing the contribution of a generator.
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: i_gen, iproc
|
||||
integer :: i
|
||||
end
|
||||
|
||||
subroutine generator_done(i_gen, int_buf, double_buf, det_buf, N_buf, iproc)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This subroutine is executed on the slave after computing the contribution of a generator.
|
||||
END_DOC
|
||||
integer, intent(in) :: i_gen, iproc
|
||||
integer, intent(out) :: int_buf(N_dress_int_buffer), N_buf(3)
|
||||
double precision, intent(out) :: double_buf(N_dress_double_buffer)
|
||||
integer(bit_kind), intent(out) :: det_buf(N_int, 2, N_dress_det_buffer)
|
||||
N_buf(:) = 1
|
||||
int_buf(:) = 0
|
||||
double_buf(:) = 0.d0
|
||||
det_buf(:,:,:) = 0
|
||||
end
|
||||
|
||||
|
||||
|
@ -1,15 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated CAS-SD energy
|
||||
interface: ezfio
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated selected CAS-SD energy with PT2 correction
|
||||
interface: ezfio
|
||||
|
||||
[do_ddci]
|
||||
type: logical
|
||||
doc: If true, remove purely inactive double excitations
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
@ -1,2 +0,0 @@
|
||||
Generators_CAS Perturbation Selectors_CASSD ZMQ DavidsonUndressed
|
||||
|
@ -1,14 +0,0 @@
|
||||
==========
|
||||
CAS_SD_ZMQ
|
||||
==========
|
||||
|
||||
Selected CAS+SD module with Zero-MQ parallelization.
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
||||
Documentation
|
||||
=============
|
||||
.. Do not edit this section It was auto-generated
|
||||
.. by the `update_README.py` script.
|
@ -1,230 +0,0 @@
|
||||
program cassd_zmq
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: degree
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in
|
||||
double precision :: error(N_states)
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has
|
||||
integer :: N_states_p
|
||||
character*(512) :: fmt
|
||||
character*(8) :: pt2_string
|
||||
|
||||
pt2 = -huge(1.d0)
|
||||
error = 0.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
if (do_pt2) then
|
||||
pt2_string = ' '
|
||||
else
|
||||
pt2_string = '(approx)'
|
||||
endif
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
|
||||
call ezfio_has_hartree_fock_energy(has)
|
||||
if (has) then
|
||||
call ezfio_get_hartree_fock_energy(hf_energy_ref)
|
||||
else
|
||||
hf_energy_ref = ref_bitmask_energy
|
||||
endif
|
||||
|
||||
if (N_det > N_det_max) then
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
N_det = N_det_max
|
||||
soft_touch N_det psi_det psi_coef
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1,N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E+PT2 = ', CI_energy(k) + pt2(k)
|
||||
print *, '-----'
|
||||
enddo
|
||||
endif
|
||||
double precision :: E_CI_before(N_states)
|
||||
|
||||
|
||||
if (.True.) then ! Avoid pre-calculation of CI_energy
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
endif
|
||||
n_det_before = 0
|
||||
|
||||
double precision :: correlation_energy_ratio
|
||||
correlation_energy_ratio = 0.d0
|
||||
|
||||
if (.True.) then ! Avoid pre-calculation of CI_energy
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
|
||||
(correlation_energy_ratio <= correlation_energy_ratio_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
||||
|
||||
correlation_energy_ratio = (CI_energy(1) - hf_energy_ref) / &
|
||||
(E_CI_before(1) + pt2(1) - hf_energy_ref)
|
||||
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
|
||||
|
||||
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
print*, 'correlation_ratio = ', correlation_energy_ratio
|
||||
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
|
||||
print *, '-----'
|
||||
if(N_states.gt.1)then
|
||||
print*,'Variational Energy difference'
|
||||
do i = 2, N_states
|
||||
print*,'Delta E = ',CI_energy(i) - CI_energy(1)
|
||||
enddo
|
||||
endif
|
||||
if(N_states.gt.1)then
|
||||
print*,'Variational + perturbative Energy difference'
|
||||
do i = 2, N_states
|
||||
print*,'Delta E = ',E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))
|
||||
enddo
|
||||
endif
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(N_det, to_select)
|
||||
to_select = min(to_select, N_det_max-n_det_before)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
N_states_p = min(N_det,N_states)
|
||||
|
||||
print *, ''
|
||||
print '(A,I12)', 'Summary at N_det = ', N_det
|
||||
print '(A)', '-----------------------------------'
|
||||
print *, ''
|
||||
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
|
||||
print *, ''
|
||||
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
|
||||
write(*,fmt) ('State',k, k=1,N_states_p)
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
|
||||
write(*,fmt) '# E ', E_CI_before(1:N_states_p)
|
||||
if (N_states_p > 1) then
|
||||
write(*,fmt) '# Excit. (au)', E_CI_before(1:N_states_p)-E_CI_before(1)
|
||||
write(*,fmt) '# Excit. (eV)', (E_CI_before(1:N_states_p)-E_CI_before(1))*27.211396641308d0
|
||||
endif
|
||||
write(fmt,*) '(A12,', 2*N_states_p, '(1X,F14.8))'
|
||||
write(*,fmt) '# PT2'//pt2_string, (pt2(k), error(k), k=1,N_states_p)
|
||||
write(*,'(A)') '#'
|
||||
write(*,fmt) '# E+PT2 ', (E_CI_before(k)+pt2(k),error(k), k=1,N_states_p)
|
||||
if (N_states_p > 1) then
|
||||
write(*,fmt) '# Excit. (au)', ( (E_CI_before(k)+pt2(k)-E_CI_before(1)-pt2(1)), &
|
||||
dsqrt(error(k)*error(k)+error(1)*error(1)), k=1,N_states_p)
|
||||
write(*,fmt) '# Excit. (eV)', ( (E_CI_before(k)+pt2(k)-E_CI_before(1)-pt2(1))*27.211396641308d0, &
|
||||
dsqrt(error(k)*error(k)+error(1)*error(1))*27.211396641308d0, k=1,N_states_p)
|
||||
endif
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
print *, ''
|
||||
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
print*, 'correlation_ratio = ', correlation_energy_ratio
|
||||
|
||||
do k=1, N_states_p
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', E_CI_before(k)
|
||||
print *, 'E+PT2'//pt2_string//' = ', E_CI_before(k)+pt2(k), ' +/- ', error(k)
|
||||
enddo
|
||||
|
||||
print *, '-----'
|
||||
if(N_states.gt.1)then
|
||||
print *, 'Variational Energy difference (au | eV)'
|
||||
do i=2, N_states_p
|
||||
print*,'Delta E = ', (E_CI_before(i) - E_CI_before(1)), &
|
||||
(E_CI_before(i) - E_CI_before(1)) * 27.211396641308d0
|
||||
enddo
|
||||
print *, '-----'
|
||||
print*, 'Variational + perturbative Energy difference (au | eV)'
|
||||
do i=2, N_states_p
|
||||
print*,'Delta E = ', (E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))), &
|
||||
(E_CI_before(i)+ pt2(i) - (E_CI_before(1) + pt2(1))) * 27.211396641308d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
if (N_det >= N_det_max) then
|
||||
threshold_davidson = threshold_davidson_in
|
||||
end if
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (N_det < N_det_max) then
|
||||
threshold_davidson = threshold_davidson_in
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
endif
|
||||
|
||||
integer :: exc_max, degree_min
|
||||
exc_max = 0
|
||||
print *, 'CAS determinants : ', N_det_cas
|
||||
do i=1,min(N_det_cas,20)
|
||||
do k=i,N_det_cas
|
||||
call get_excitation_degree(psi_cas(1,1,k),psi_cas(1,1,i),degree,N_int)
|
||||
exc_max = max(exc_max,degree)
|
||||
enddo
|
||||
print *, psi_cas_coef(i,:)
|
||||
call debug_det(psi_cas(1,1,i),N_int)
|
||||
print *, ''
|
||||
enddo
|
||||
print *, 'Max excitation degree in the CAS :', exc_max
|
||||
|
||||
if(do_pt2)then
|
||||
print*,'Last iteration only to compute the PT2'
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
TOUCH threshold_selectors threshold_generators
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, 'Final step'
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1,N_states
|
||||
print *, 'State', k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', E_CI_before(k)
|
||||
print *, 'E+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
print *, '-----'
|
||||
enddo
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
endif
|
||||
|
||||
end
|
@ -1,11 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! E0 in the denominator of the PT2
|
||||
END_DOC
|
||||
pt2_E0_denominator(1:N_states) = CI_electronic_energy(1:N_states)
|
||||
! pt2_E0_denominator(1:N_states) = HF_energy - nuclear_repulsion
|
||||
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
|
||||
call write_double(6,pt2_E0_denominator(1)+nuclear_repulsion, 'PT2 Energy denominator')
|
||||
END_PROVIDER
|
||||
|
@ -1,177 +0,0 @@
|
||||
|
||||
subroutine run_selection_slave(thread,iproc,energy)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states)
|
||||
integer, intent(in) :: thread, iproc
|
||||
integer :: rc, i
|
||||
|
||||
integer :: worker_id, task_id(1), ctask, ltask
|
||||
character*(512) :: task
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
type(selection_buffer) :: buf, buf2
|
||||
logical :: done
|
||||
double precision :: pt2(N_states)
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
integer, external :: connect_to_taskserver
|
||||
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
return
|
||||
endif
|
||||
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
buf%N = 0
|
||||
ctask = 1
|
||||
pt2 = 0d0
|
||||
|
||||
do
|
||||
integer, external :: get_task_from_taskserver
|
||||
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
|
||||
exit
|
||||
endif
|
||||
done = task_id(ctask) == 0
|
||||
if (done) then
|
||||
ctask = ctask - 1
|
||||
else
|
||||
integer :: i_generator, N
|
||||
read (task,*) i_generator, N
|
||||
if(buf%N == 0) then
|
||||
! Only first time
|
||||
call create_selection_buffer(N, N*2, buf)
|
||||
call create_selection_buffer(N, N*3, buf2)
|
||||
else
|
||||
if(N /= buf%N) stop "N changed... wtf man??"
|
||||
end if
|
||||
call select_connected(i_generator,energy,pt2,buf)
|
||||
endif
|
||||
|
||||
integer, external :: task_done_to_taskserver
|
||||
if(done .or. ctask == size(task_id)) then
|
||||
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
|
||||
do i=1, ctask
|
||||
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
|
||||
call sleep(1)
|
||||
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
|
||||
done = .True.
|
||||
ctask = 0
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
if(ctask > 0) then
|
||||
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
|
||||
do i=1,buf%cur
|
||||
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
|
||||
enddo
|
||||
call sort_selection_buffer(buf2)
|
||||
buf%mini = buf2%mini
|
||||
pt2 = 0d0
|
||||
buf%cur = 0
|
||||
end if
|
||||
ctask = 0
|
||||
end if
|
||||
|
||||
if(done) exit
|
||||
ctask = ctask + 1
|
||||
end do
|
||||
|
||||
integer, external :: disconnect_from_taskserver
|
||||
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
|
||||
continue
|
||||
endif
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
double precision, intent(in) :: pt2(N_states)
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(in) :: ntask, task_id(*)
|
||||
integer :: rc
|
||||
|
||||
call sort_selection_buffer(b)
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) stop "push"
|
||||
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
|
||||
if(rc /= 8*N_states) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
|
||||
if(rc /= 8*b%cur) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
|
||||
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) stop "push"
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
if(rc /= 4*ntask) stop "push"
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
|
||||
IRP_ENDIF
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
double precision, intent(inout) :: pt2(N_states)
|
||||
double precision, intent(out) :: val(*)
|
||||
integer(bit_kind), intent(out) :: det(N_int, 2, *)
|
||||
integer, intent(out) :: N, ntask, task_id(*)
|
||||
integer :: rc, rn, i
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
|
||||
if(rc /= 4) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
|
||||
if(rc /= 8*N_states) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
|
||||
if(rc /= 8*N) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
|
||||
if(rc /= bit_kind*N_int*2*N) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
|
||||
if(rc /= 4) stop "pull"
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
if(rc /= 4*ntask) stop "pull"
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
|
||||
IRP_ENDIF
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
|
@ -1,82 +0,0 @@
|
||||
|
||||
subroutine create_selection_buffer(N, siz, res)
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: N, siz
|
||||
type(selection_buffer), intent(out) :: res
|
||||
|
||||
allocate(res%det(N_int, 2, siz), res%val(siz))
|
||||
|
||||
res%val = 0d0
|
||||
res%det = 0_8
|
||||
res%N = N
|
||||
res%mini = 0d0
|
||||
res%cur = 0
|
||||
end subroutine
|
||||
|
||||
subroutine delete_selection_buffer(b)
|
||||
use selection_types
|
||||
implicit none
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
if (allocated(b%det)) then
|
||||
deallocate(b%det)
|
||||
endif
|
||||
if (allocated(b%val)) then
|
||||
deallocate(b%val)
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine add_to_selection_buffer(b, det, val)
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer(bit_kind), intent(in) :: det(N_int, 2)
|
||||
double precision, intent(in) :: val
|
||||
integer :: i
|
||||
|
||||
if(dabs(val) >= b%mini) then
|
||||
b%cur += 1
|
||||
b%det(:,:,b%cur) = det(:,:)
|
||||
b%val(b%cur) = val
|
||||
if(b%cur == size(b%val)) then
|
||||
call sort_selection_buffer(b)
|
||||
end if
|
||||
end if
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine sort_selection_buffer(b)
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
double precision, allocatable :: vals(:), absval(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
integer(bit_kind), allocatable :: detmp(:,:,:)
|
||||
integer :: i, nmwen
|
||||
logical, external :: detEq
|
||||
nmwen = min(b%N, b%cur)
|
||||
|
||||
|
||||
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
|
||||
absval = -dabs(b%val(:b%cur))
|
||||
do i=1,b%cur
|
||||
iorder(i) = i
|
||||
end do
|
||||
call dsort(absval, iorder, b%cur)
|
||||
|
||||
do i=1, nmwen
|
||||
detmp(:,:,i) = b%det(:,:,iorder(i))
|
||||
vals(i) = b%val(iorder(i))
|
||||
end do
|
||||
b%det(:,:,:nmwen) = detmp(:,:,:)
|
||||
b%det(:,:,nmwen+1:) = 0_bit_kind
|
||||
b%val(:nmwen) = vals(:)
|
||||
b%val(nmwen+1:) = 0d0
|
||||
b%mini = max(b%mini,dabs(b%val(b%N)))
|
||||
b%cur = nmwen
|
||||
end subroutine
|
||||
|
@ -1,94 +0,0 @@
|
||||
program prog_selection_slave
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Helper program to compute the PT2 in distributed mode.
|
||||
END_DOC
|
||||
|
||||
read_wf = .False.
|
||||
distributed_davidson = .False.
|
||||
SOFT_TOUCH read_wf distributed_davidson
|
||||
call provide_everything
|
||||
call switch_qp_run_to_master
|
||||
call run_wf
|
||||
end
|
||||
|
||||
subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_bielec_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context
|
||||
PROVIDE pt2_e0_denominator mo_tot_num N_int
|
||||
end
|
||||
|
||||
subroutine run_wf
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
double precision :: energy(N_states)
|
||||
character*(64) :: states(4)
|
||||
integer :: rc, i
|
||||
|
||||
integer, external :: zmq_get_psi
|
||||
call provide_everything
|
||||
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
states(1) = 'selection'
|
||||
states(2) = 'davidson'
|
||||
states(3) = 'pt2'
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
do
|
||||
|
||||
call wait_for_states(states,zmq_state,4)
|
||||
|
||||
if(trim(zmq_state) == 'Stopped') then
|
||||
|
||||
exit
|
||||
|
||||
else if (trim(zmq_state) == 'selection') then
|
||||
|
||||
! Selection
|
||||
! ---------
|
||||
|
||||
print *, 'Selection'
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
|
||||
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call run_selection_slave(0, i, energy)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'Selection done'
|
||||
|
||||
else if (trim(zmq_state) == 'davidson') then
|
||||
|
||||
! Davidson
|
||||
! --------
|
||||
|
||||
print *, 'Davidson'
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
|
||||
call omp_set_nested(.True.)
|
||||
call davidson_slave_tcp(0)
|
||||
call omp_set_nested(.False.)
|
||||
print *, 'Davidson done'
|
||||
|
||||
else if (trim(zmq_state) == 'pt2') then
|
||||
|
||||
! PT2
|
||||
! ---
|
||||
|
||||
print *, 'PT2'
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1,energy,N_states) == -1) cycle
|
||||
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call run_selection_slave(0, i, energy)
|
||||
!$OMP END PARALLEL
|
||||
print *, 'PT2 done'
|
||||
|
||||
endif
|
||||
|
||||
end do
|
||||
end
|
||||
|
||||
|
||||
|
@ -1,9 +0,0 @@
|
||||
module selection_types
|
||||
type selection_buffer
|
||||
integer :: N, cur
|
||||
integer(8), allocatable :: det(:,:,:)
|
||||
double precision, allocatable :: val(:)
|
||||
double precision :: mini
|
||||
endtype
|
||||
end module
|
||||
|
@ -1,109 +0,0 @@
|
||||
program fci_zmq
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref
|
||||
|
||||
double precision, allocatable :: psi_coef_ref(:,:)
|
||||
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
|
||||
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
! Stopping criterion is the PT2max
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = 2
|
||||
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
|
||||
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
|
||||
psi_coef_ref = psi_coef_sorted
|
||||
psi_det_ref = psi_det_sorted
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
do while (Nmax-Nmin > 1)
|
||||
psi_coef = psi_coef_ref
|
||||
psi_det = psi_det_ref
|
||||
TOUCH psi_det psi_coef
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
if (ratio < var_pt2_ratio) then
|
||||
Nmin = N_det
|
||||
else
|
||||
Nmax = N_det
|
||||
psi_coef_ref = psi_coef
|
||||
psi_det_ref = psi_det
|
||||
TOUCH psi_det psi_coef
|
||||
endif
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
call save_wavefunction
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_cas_sd_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_cas_sd_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 91 KiB |
Before Width: | Height: | Size: 115 KiB |
Before Width: | Height: | Size: 109 KiB |
@ -1,62 +0,0 @@
|
||||
program cis
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
call super_CI
|
||||
|
||||
end
|
||||
|
||||
subroutine super_CI
|
||||
implicit none
|
||||
double precision :: E, delta_E, delta_D, E_min
|
||||
integer :: k
|
||||
character :: save_char
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A4,X,A16, X, A16, X, A16 )') &
|
||||
'====','================','================','================'
|
||||
write(6,'(A4,X,A16, X, A16, X, A16 )') &
|
||||
' N ', 'Energy ', 'Energy diff ', 'Save '
|
||||
write(6,'(A4,X,A16, X, A16, X, A16 )') &
|
||||
'====','================','================','================'
|
||||
|
||||
E = HF_energy + 1.d0
|
||||
delta_D = 0.d0
|
||||
E_min = HF_energy
|
||||
FREE psi_det psi_coef
|
||||
call clear_mo_map
|
||||
N_det = 1
|
||||
SOFT_TOUCH N_det
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
TOUCH mo_coef
|
||||
do k=1,n_it_scf_max
|
||||
delta_E = HF_energy - E
|
||||
E = HF_energy
|
||||
if (E < E_min) then
|
||||
call save_mos
|
||||
save_char = 'X'
|
||||
else
|
||||
save_char = ' '
|
||||
endif
|
||||
E_min = min(E,E_min)
|
||||
write(6,'(I4,X,F16.10, X, F16.10, X, A8 )') &
|
||||
k, E, delta_E, save_char
|
||||
if ( (delta_E < 0.d0).and.(dabs(delta_E) < thresh_scf) ) then
|
||||
exit
|
||||
endif
|
||||
call H_apply_cis
|
||||
call diagonalize_CI
|
||||
call set_natural_mos
|
||||
FREE psi_det psi_coef
|
||||
call clear_mo_map
|
||||
N_det = 1
|
||||
SOFT_TOUCH N_det
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
TOUCH mo_coef
|
||||
enddo
|
||||
|
||||
write(6,'(A4,X,A16, X, A16, X, A16 )') &
|
||||
'====','================','================','================'
|
||||
call write_time(6)
|
||||
end
|
||||
|
Before Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 123 KiB |
Before Width: | Height: | Size: 102 KiB |
@ -1 +0,0 @@
|
||||
Determinants DavidsonUndressed
|
@ -1,27 +0,0 @@
|
||||
======
|
||||
Casino
|
||||
======
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
`prog_save_casino <http://github.com/LCPQ/quantum_package/tree/master/src/Casino/save_for_casino.irp.f#L266>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
`save_casino <http://github.com/LCPQ/quantum_package/tree/master/src/Casino/save_for_casino.irp.f#L1>`_
|
||||
Undocumented
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. by the `update_README.py` script.
|
||||
|
||||
.. image:: tree_dependency.png
|
||||
|
||||
* `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_
|
||||
|
@ -1,268 +0,0 @@
|
||||
subroutine save_casino
|
||||
use bitmasks
|
||||
implicit none
|
||||
character*(128) :: message
|
||||
integer :: getUnitAndOpen, iunit
|
||||
integer, allocatable :: itmp(:)
|
||||
integer :: n_ao_new
|
||||
double precision, allocatable :: rtmp(:)
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
iunit = getUnitAndOpen('gwfn.data','w')
|
||||
print *, 'Title?'
|
||||
read(*,*) message
|
||||
write(iunit,'(A)') trim(message)
|
||||
write(iunit,'(A)') ''
|
||||
write(iunit,'(A)') 'BASIC_INFO'
|
||||
write(iunit,'(A)') '----------'
|
||||
write(iunit,'(A)') 'Generated by:'
|
||||
write(iunit,'(A)') 'Quantum package'
|
||||
write(iunit,'(A)') 'Method:'
|
||||
print *, 'Method?'
|
||||
read(*,*) message
|
||||
write(iunit,'(A)') trim(message)
|
||||
write(iunit,'(A)') 'DFT Functional:'
|
||||
write(iunit,'(A)') 'none'
|
||||
write(iunit,'(A)') 'Periodicity:'
|
||||
write(iunit,'(A)') '0'
|
||||
write(iunit,'(A)') 'Spin unrestricted:'
|
||||
write(iunit,'(A)') '.false.'
|
||||
write(iunit,'(A)') 'nuclear-nuclear repulsion energy (au/atom):'
|
||||
write(iunit,*) nuclear_repulsion
|
||||
write(iunit,'(A)') 'Number of electrons per primitive cell:'
|
||||
write(iunit,*) elec_num
|
||||
write(iunit,*) ''
|
||||
|
||||
|
||||
write(iunit,*) 'GEOMETRY'
|
||||
write(iunit,'(A)') '--------'
|
||||
write(iunit,'(A)') 'Number of atoms:'
|
||||
write(iunit,*) nucl_num
|
||||
write(iunit,'(A)') 'Atomic positions (au):'
|
||||
integer :: i
|
||||
do i=1,nucl_num
|
||||
write(iunit,'(3(1PE20.13))') nucl_coord(i,1:3)
|
||||
enddo
|
||||
write(iunit,'(A)') 'Atomic numbers for each atom:'
|
||||
! Add 200 if pseudopotential
|
||||
allocate(itmp(nucl_num))
|
||||
do i=1,nucl_num
|
||||
itmp(i) = int(nucl_charge(i))
|
||||
enddo
|
||||
write(iunit,'(8(I10))') itmp(1:nucl_num)
|
||||
deallocate(itmp)
|
||||
write(iunit,'(A)') 'Valence charges for each atom:'
|
||||
write(iunit,'(4(1PE20.13))') nucl_charge(1:nucl_num)
|
||||
write(iunit,'(A)') ''
|
||||
|
||||
|
||||
write(iunit,'(A)') 'BASIS SET'
|
||||
write(iunit,'(A)') '---------'
|
||||
write(iunit,'(A)') 'Number of Gaussian centres'
|
||||
write(iunit,*) nucl_num
|
||||
write(iunit,'(A)') 'Number of shells per primitive cell'
|
||||
integer :: icount
|
||||
icount = 0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
icount += 1
|
||||
endif
|
||||
enddo
|
||||
write(iunit,*) icount
|
||||
write(iunit,'(A)') 'Number of basis functions (''AO'') per primitive cell'
|
||||
icount = 0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
icount += 2*ao_l(i)+1
|
||||
endif
|
||||
enddo
|
||||
n_ao_new = icount
|
||||
write(iunit,*) n_ao_new
|
||||
write(iunit,'(A)') 'Number of Gaussian primitives per primitive cell'
|
||||
allocate(itmp(ao_num))
|
||||
integer :: l
|
||||
l=0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
l += 1
|
||||
itmp(l) = ao_prim_num(i)
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(8(I10))') sum(itmp(1:l))
|
||||
write(iunit,'(A)') 'Highest shell angular momentum (s/p/d/f... 1/2/3/4...)'
|
||||
write(iunit,*) maxval(ao_l(1:ao_num))+1
|
||||
write(iunit,'(A)') 'Code for shell types (s/sp/p/d/f... 1/2/3/4/5...)'
|
||||
l=0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
l += 1
|
||||
if (ao_l(i) > 0) then
|
||||
itmp(l) = ao_l(i)+2
|
||||
else
|
||||
itmp(l) = ao_l(i)+1
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(8(I10))') itmp(1:l)
|
||||
write(iunit,'(A)') 'Number of primitive Gaussians in each shell'
|
||||
l=0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
l += 1
|
||||
itmp(l) = ao_prim_num(i)
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(8(I10))') itmp(1:l)
|
||||
deallocate(itmp)
|
||||
write(iunit,'(A)') 'Sequence number of first shell on each centre'
|
||||
allocate(itmp(nucl_num))
|
||||
l=0
|
||||
icount = 1
|
||||
itmp(icount) = 1
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
l = l+1
|
||||
if (ao_nucl(i) == icount) then
|
||||
continue
|
||||
else if (ao_nucl(i) == icount+1) then
|
||||
icount += 1
|
||||
itmp(icount) = l
|
||||
else
|
||||
print *, 'Problem in order of centers of basis functions'
|
||||
stop 1
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
! Check
|
||||
if (icount /= nucl_num) then
|
||||
print *, 'Error :'
|
||||
print *, ' icount :', icount
|
||||
print *, ' nucl_num:', nucl_num
|
||||
stop 2
|
||||
endif
|
||||
write(iunit,'(8(I10))') itmp(1:nucl_num)
|
||||
deallocate(itmp)
|
||||
write(iunit,'(A)') 'Exponents of Gaussian primitives'
|
||||
allocate(rtmp(ao_num))
|
||||
l=0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
do j=1,ao_prim_num(i)
|
||||
l+=1
|
||||
rtmp(l) = ao_expo(i,ao_prim_num(i)-j+1)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(4(1PE20.13))') rtmp(1:l)
|
||||
write(iunit,'(A)') 'Normalized contraction coefficients'
|
||||
l=0
|
||||
integer :: j
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
do j=1,ao_prim_num(i)
|
||||
l+=1
|
||||
rtmp(l) = ao_coef_normalized(i,ao_prim_num(i))
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(4(1PE20.13))') rtmp(1:l)
|
||||
deallocate(rtmp)
|
||||
write(iunit,'(A)') 'Position of each shell (au)'
|
||||
l=0
|
||||
do i=1,ao_num
|
||||
if (ao_l(i) == ao_power(i,1)) then
|
||||
write(iunit,'(3(1PE20.13))') nucl_coord( ao_nucl(i), 1:3 )
|
||||
endif
|
||||
enddo
|
||||
write(iunit,'(A)')
|
||||
|
||||
|
||||
write(iunit,'(A)') 'MULTIDETERMINANT INFORMATION'
|
||||
write(iunit,'(A)') '----------------------------'
|
||||
write(iunit,'(A)') 'GS'
|
||||
write(iunit,'(A)') 'ORBITAL COEFFICIENTS'
|
||||
write(iunit,'(A)') '------------------------'
|
||||
|
||||
! Transformation cartesian -> spherical
|
||||
double precision :: tf2(6,5), tf3(10,7), tf4(15,9)
|
||||
integer :: check2(3,6), check3(3,10), check4(3,15)
|
||||
check2(:,1) = (/ 2, 0, 0 /)
|
||||
check2(:,2) = (/ 1, 1, 0 /)
|
||||
check2(:,3) = (/ 1, 0, 1 /)
|
||||
check2(:,4) = (/ 0, 2, 0 /)
|
||||
check2(:,5) = (/ 0, 1, 1 /)
|
||||
check2(:,6) = (/ 0, 0, 2 /)
|
||||
|
||||
check3(:,1) = (/ 3, 0, 0 /)
|
||||
check3(:,2) = (/ 2, 1, 0 /)
|
||||
check3(:,3) = (/ 2, 0, 1 /)
|
||||
check3(:,4) = (/ 1, 2, 0 /)
|
||||
check3(:,5) = (/ 1, 1, 1 /)
|
||||
check3(:,6) = (/ 1, 0, 2 /)
|
||||
check3(:,7) = (/ 0, 3, 0 /)
|
||||
check3(:,8) = (/ 0, 2, 1 /)
|
||||
check3(:,9) = (/ 0, 1, 2 /)
|
||||
check3(:,10) = (/ 0, 0, 3 /)
|
||||
|
||||
check4(:,1) = (/ 4, 0, 0 /)
|
||||
check4(:,2) = (/ 3, 1, 0 /)
|
||||
check4(:,3) = (/ 3, 0, 1 /)
|
||||
check4(:,4) = (/ 2, 2, 0 /)
|
||||
check4(:,5) = (/ 2, 1, 1 /)
|
||||
check4(:,6) = (/ 2, 0, 2 /)
|
||||
check4(:,7) = (/ 1, 3, 0 /)
|
||||
check4(:,8) = (/ 1, 2, 1 /)
|
||||
check4(:,9) = (/ 1, 1, 2 /)
|
||||
check4(:,10) = (/ 1, 0, 3 /)
|
||||
check4(:,11) = (/ 0, 4, 0 /)
|
||||
check4(:,12) = (/ 0, 3, 1 /)
|
||||
check4(:,13) = (/ 0, 2, 2 /)
|
||||
check4(:,14) = (/ 0, 1, 3 /)
|
||||
check4(:,15) = (/ 0, 0, 4 /)
|
||||
|
||||
! tf2 = (/
|
||||
! -0.5, 0, 0, -0.5, 0, 1.0, &
|
||||
! 0, 0, 1.0, 0, 0, 0, &
|
||||
! 0, 0, 0, 0, 1.0, 0, &
|
||||
! 0.86602540378443864676, 0, 0, -0.86602540378443864676, 0, 0, &
|
||||
! 0, 1.0, 0, 0, 0, 0, &
|
||||
! /)
|
||||
! tf3 = (/
|
||||
! 0, 0, -0.67082039324993690892, 0, 0, 0, 0, -0.67082039324993690892, 0, 1.0, &
|
||||
! -0.61237243569579452455, 0, 0, -0.27386127875258305673, 0, 1.0954451150103322269, 0, 0, 0, 0, &
|
||||
! 0, -0.27386127875258305673, 0, 0, 0, 0, -0.61237243569579452455, 0, 1.0954451150103322269, 0, &
|
||||
! 0, 0, 0.86602540378443864676, 0, 0, 0, 0, -0.86602540378443864676, 0, 0, &
|
||||
! 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, &
|
||||
! 0.790569415042094833, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, &
|
||||
! 0, 1.0606601717798212866, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, &
|
||||
! /)
|
||||
! tf4 = (/
|
||||
! 0.375, 0, 0, 0.21957751641341996535, 0, -0.87831006565367986142, 0, 0, 0, 0, 0.375, 0, -0.87831006565367986142, 0, 1.0, &
|
||||
! 0, 0, -0.89642145700079522998, 0, 0, 0, 0, -0.40089186286863657703, 0, 1.19522860933439364, 0, 0, 0, 0, 0, &
|
||||
! 0, 0, 0, 0, -0.40089186286863657703, 0, 0, 0, 0, 0, 0, -0.89642145700079522998, 0, 1.19522860933439364, 0, &
|
||||
! -0.5590169943749474241, 0, 0, 0, 0, 0.9819805060619657157, 0, 0, 0, 0, 0.5590169943749474241, 0, -0.9819805060619657157, 0, 0, &
|
||||
! 0, -0.42257712736425828875, 0, 0, 0, 0, -0.42257712736425828875, 0, 1.1338934190276816816, 0, 0, 0, 0, 0, 0, &
|
||||
! 0, 0, 0.790569415042094833, 0, 0, 0, 0, -1.0606601717798212866, 0, 0, 0, 0, 0, 0, 0, &
|
||||
! 0, 0, 0, 0, 1.0606601717798212866, 0, 0, 0, 0, 0, 0, -0.790569415042094833, 0, 0, 0, &
|
||||
! 0.73950997288745200532, 0, 0, -1.2990381056766579701, 0, 0, 0, 0, 0, 0, 0.73950997288745200532, 0, 0, 0, 0, &
|
||||
! 0, 1.1180339887498948482, 0, 0, 0, 0, -1.1180339887498948482, 0, 0, 0, 0, 0, 0, 0, 0, &
|
||||
! /)
|
||||
!
|
||||
|
||||
|
||||
allocate(rtmp(ao_num*mo_tot_num))
|
||||
l=0
|
||||
do i=1,mo_tot_num
|
||||
do j=1,ao_num
|
||||
l += 1
|
||||
rtmp(l) = mo_coef(j,i)
|
||||
enddo
|
||||
enddo
|
||||
write(iunit,'(4(1PE20.13))') rtmp(1:l)
|
||||
deallocate(rtmp)
|
||||
close(iunit)
|
||||
end
|
||||
|
||||
program prog_save_casino
|
||||
call save_casino
|
||||
end
|
Before Width: | Height: | Size: 64 KiB |
@ -1,58 +0,0 @@
|
||||
====================
|
||||
DensityMatrix Module
|
||||
====================
|
||||
|
||||
Documentation
|
||||
=============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. NEEDED_MODULES file.
|
||||
|
||||
`iunit_two_body_dm_aa <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L2>`_
|
||||
Temporary files for 2-body dm calculation
|
||||
|
||||
`iunit_two_body_dm_ab <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L3>`_
|
||||
Temporary files for 2-body dm calculation
|
||||
|
||||
`iunit_two_body_dm_bb <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L4>`_
|
||||
Temporary files for 2-body dm calculation
|
||||
|
||||
`two_body_dm_diag_aa <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L170>`_
|
||||
diagonal part of the two body density matrix
|
||||
|
||||
`two_body_dm_diag_ab <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L172>`_
|
||||
diagonal part of the two body density matrix
|
||||
|
||||
`two_body_dm_diag_bb <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/density_matrix.irp.f#L171>`_
|
||||
diagonal part of the two body density matrix
|
||||
|
||||
`det_coef_provider <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L8>`_
|
||||
Undocumented
|
||||
|
||||
`det_num <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L3>`_
|
||||
Undocumented
|
||||
|
||||
`det_provider <http://github.com/LCPQ/quantum_package/tree/master/src/DensityMatrix/det_num.irp.f#L7>`_
|
||||
Undocumented
|
||||
|
||||
|
||||
|
||||
Needed Modules
|
||||
==============
|
||||
|
||||
.. Do not edit this section. It was auto-generated from the
|
||||
.. NEEDED_MODULES file.
|
||||
|
||||
* `AOs <http://github.com/LCPQ/quantum_package/tree/master/src/AOs>`_
|
||||
* `BiInts <http://github.com/LCPQ/quantum_package/tree/master/src/BiInts>`_
|
||||
* `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_
|
||||
* `Dets <http://github.com/LCPQ/quantum_package/tree/master/src/Dets>`_
|
||||
* `Electrons <http://github.com/LCPQ/quantum_package/tree/master/src/Electrons>`_
|
||||
* `Ezfio_files <http://github.com/LCPQ/quantum_package/tree/master/src/Ezfio_files>`_
|
||||
* `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock>`_
|
||||
* `MonoInts <http://github.com/LCPQ/quantum_package/tree/master/src/MonoInts>`_
|
||||
* `MOs <http://github.com/LCPQ/quantum_package/tree/master/src/MOs>`_
|
||||
* `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_
|
||||
* `Output <http://github.com/LCPQ/quantum_package/tree/master/src/Output>`_
|
||||
* `Utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils>`_
|
||||
|
@ -1,116 +0,0 @@
|
||||
use bitmasks
|
||||
BEGIN_PROVIDER [ double precision, two_body_dm_aa, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, two_body_dm_bb, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, two_body_dm_ab, (mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num) ]
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Temporary files for 2-body dm calculation
|
||||
END_DOC
|
||||
integer :: getUnitAndOpen
|
||||
|
||||
! Compute two body DM in file
|
||||
integer :: k,l,degree, idx,i,j
|
||||
integer :: exc(0:2,2,2),n_occ_alpha
|
||||
double precision :: phase, coef
|
||||
integer :: h1,h2,p1,p2,s1,s2, e1, e2
|
||||
double precision :: ck, cl
|
||||
character*(128), parameter :: f = '(i8,4(x,i5),x,d16.8)'
|
||||
integer :: istate
|
||||
|
||||
two_body_dm_aa = 0.d0
|
||||
two_body_dm_ab = 0.d0
|
||||
two_body_dm_bb = 0.d0
|
||||
|
||||
istate = 1
|
||||
! OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,ck,ckl,i,j,e1,e2,cl,phase,h1,p1,h2,p2,s1,s2,occ)
|
||||
! OMP DO SCHEDULE(dynamic,64)
|
||||
do k=1,N_det
|
||||
ck = psi_coef(k,istate)
|
||||
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
|
||||
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
|
||||
ckl = psi_coef(k,istate) * psi_coef(k,istate)
|
||||
do i = 1,elec_alpha_num
|
||||
e1=occ(i,1)
|
||||
do j = 1,elec_alpha_num
|
||||
e2=occ(j,1)
|
||||
! alpha-alpha
|
||||
two_body_dm_aa(e1,e2,e1,e2) += 0.5d0*ckl
|
||||
two_body_dm_aa(e1,e2,e2,e1) -= 0.5d0*ckl
|
||||
enddo
|
||||
do j = 1,elec_beta_num
|
||||
e2=occ(j,2)
|
||||
! alpha-beta
|
||||
two_body_dm_ab(e1,e2,e1,e2) += ckl
|
||||
enddo
|
||||
enddo
|
||||
do i = 1,elec_beta_num
|
||||
e1=occ(i,2)
|
||||
do j = 1,elec_beta_num
|
||||
e2=occ(j,2)
|
||||
! beta-beta
|
||||
two_body_dm_bb(e1,e2,e1,e2) += 0.5d0*ckl
|
||||
two_body_dm_bb(e1,e2,e2,e1) -= 0.5d0*ckl
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do l=1,k-1
|
||||
cl = 2.d0*psi_coef(l,istate)
|
||||
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
|
||||
if (degree == 2) then
|
||||
call get_double_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
ckl = phase*ck*cl
|
||||
select case (s1+s2)
|
||||
case(2) ! alpha alpha
|
||||
two_body_dm_aa(h1,h2,p1,p2) += ckl
|
||||
two_body_dm_aa(h1,h2,p2,p1) -= ckl
|
||||
case(3) ! alpha beta
|
||||
two_body_dm_ab(h1,h2,p1,p2) += ckl
|
||||
case(4) ! beta beta
|
||||
two_body_dm_bb(h1,h2,p1,p2) += ckl
|
||||
two_body_dm_bb(h1,h2,p2,p1) -= ckl
|
||||
end select
|
||||
else if (degree == 1) then
|
||||
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
double precision :: ckl
|
||||
ckl = phase*ck*cl
|
||||
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
|
||||
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
|
||||
select case (s1)
|
||||
case (1) ! Alpha single excitation
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
do i = 1, elec_alpha_num
|
||||
p2=occ(i,1)
|
||||
h2=p2
|
||||
two_body_dm_aa(h1,h2,p1,p2) += ckl
|
||||
two_body_dm_aa(h1,h2,p2,p1) -= ckl
|
||||
enddo
|
||||
do i = 1, elec_beta_num
|
||||
p2=occ(i,2)
|
||||
h2=p2
|
||||
two_body_dm_ab(h1,h2,p1,p2) += ckl
|
||||
enddo
|
||||
case (2) ! Beta single excitation
|
||||
do i = 1, elec_alpha_num
|
||||
p2=occ(i,1)
|
||||
h2=p2
|
||||
two_body_dm_ab(h1,h2,p1,p2) += ckl
|
||||
enddo
|
||||
do i = 1, elec_beta_num
|
||||
p2=occ(i,2)
|
||||
h2=p2
|
||||
two_body_dm_bb(h1,h2,p1,p2) += ckl
|
||||
two_body_dm_bb(h1,h2,p2,p1) -= ckl
|
||||
enddo
|
||||
end select
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
! OMP END DO
|
||||
! OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,67 +0,0 @@
|
||||
program pouet
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
double precision, external :: get_mo_bielec_integral
|
||||
read_wf = .True.
|
||||
TOUCH read_wf
|
||||
|
||||
double precision :: e(10)
|
||||
e = 0.d0
|
||||
|
||||
print *, '1RDM ALPHA'
|
||||
do i=1,mo_tot_num
|
||||
do j=1,mo_tot_num
|
||||
print *, i, j, one_body_dm_mo_alpha(i,j,1)
|
||||
e(4) += one_body_dm_mo_alpha(i,j,1) * mo_mono_elec_integral(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, '1RDM BETA'
|
||||
do i=1,mo_tot_num
|
||||
do j=1,mo_tot_num
|
||||
print *, i, j, one_body_dm_mo_beta(i,j,1)
|
||||
e(4) += one_body_dm_mo_beta(i,j,1) * mo_mono_elec_integral(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, '2RDM ALPHA ALPHA'
|
||||
do i=1,mo_tot_num
|
||||
do j=1,mo_tot_num
|
||||
do k=1,mo_tot_num
|
||||
do l=1,mo_tot_num
|
||||
print *, i, j, k, l, two_body_dm_aa(i,j,k,l)
|
||||
e(1) += two_body_dm_aa(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, '2RDM BETA BETA'
|
||||
do i=1,mo_tot_num
|
||||
do j=1,mo_tot_num
|
||||
do k=1,mo_tot_num
|
||||
do l=1,mo_tot_num
|
||||
print *, i, j, k, l, two_body_dm_bb(i,j,k,l)
|
||||
e(2) += two_body_dm_bb(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, '2RDM ALPHA BETA'
|
||||
do i=1,mo_tot_num
|
||||
do j=1,mo_tot_num
|
||||
do k=1,mo_tot_num
|
||||
do l=1,mo_tot_num
|
||||
print *, i, j, k, l, two_body_dm_ab(i,j,k,l)
|
||||
e(3) += two_body_dm_ab(i,j,k,l) * get_mo_bielec_integral(i,j,k,l, mo_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
print *, 'Energy ', sum(e(1:4)) + nuclear_repulsion
|
||||
|
||||
|
||||
end
|
@ -1 +1 @@
|
||||
Determinants DavidsonUndressed core_integrals
|
||||
Determinants DavidsonUndressed
|
||||
|
Before Width: | Height: | Size: 59 KiB |
@ -1,180 +0,0 @@
|
||||
subroutine four_index_transform(map_a,map_c,matrix_B,LDB, &
|
||||
i_start, j_start, k_start, l_start, &
|
||||
i_end , j_end , k_end , l_end , &
|
||||
a_start, b_start, c_start, d_start, &
|
||||
a_end , b_end , c_end , d_end )
|
||||
implicit none
|
||||
use map_module
|
||||
use mmap_module
|
||||
BEGIN_DOC
|
||||
! Performs a four-index transformation of map_a(N^4) into map_c(M^4) using b(NxM)
|
||||
! C_{abcd} = \sum_{ijkl} A_{ijkl}.B_{ia}.B_{jb}.B_{kc}.B_{ld}
|
||||
! Loops run over *_start->*_end
|
||||
END_DOC
|
||||
type(map_type), intent(in) :: map_a
|
||||
type(map_type), intent(inout) :: map_c
|
||||
integer, intent(in) :: LDB
|
||||
double precision, intent(in) :: matrix_B(LDB,*)
|
||||
integer, intent(in) :: i_start, j_start, k_start, l_start
|
||||
integer, intent(in) :: i_end , j_end , k_end , l_end
|
||||
integer, intent(in) :: a_start, b_start, c_start, d_start
|
||||
integer, intent(in) :: a_end , b_end , c_end , d_end
|
||||
|
||||
double precision, allocatable :: T(:,:,:), U(:,:,:), V(:,:,:)
|
||||
integer :: i_max, j_max, k_max, l_max
|
||||
integer :: i_min, j_min, k_min, l_min
|
||||
integer :: i, j, k, l
|
||||
integer :: a, b, c, d
|
||||
double precision, external :: get_ao_bielec_integral
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: tmp
|
||||
integer(key_kind), allocatable :: key(:)
|
||||
real(integral_kind), allocatable :: value(:)
|
||||
|
||||
ASSERT (k_start == i_start)
|
||||
ASSERT (l_start == j_start)
|
||||
ASSERT (a_start == c_start)
|
||||
ASSERT (b_start == d_start)
|
||||
|
||||
i_min = min(i_start,a_start)
|
||||
i_max = max(i_end ,a_end )
|
||||
j_min = min(j_start,b_start)
|
||||
j_max = max(j_end ,b_end )
|
||||
k_min = min(k_start,c_start)
|
||||
k_max = max(k_end ,c_end )
|
||||
l_min = min(l_start,d_start)
|
||||
l_max = max(l_end ,d_end )
|
||||
|
||||
ASSERT (0 < i_max)
|
||||
ASSERT (0 < j_max)
|
||||
ASSERT (0 < k_max)
|
||||
ASSERT (0 < l_max)
|
||||
ASSERT (LDB >= i_max)
|
||||
ASSERT (LDB >= j_max)
|
||||
ASSERT (LDB >= k_max)
|
||||
ASSERT (LDB >= l_max)
|
||||
|
||||
! Create a temporary memory-mapped file
|
||||
integer :: fd
|
||||
type(c_ptr) :: c_pointer
|
||||
integer*8, pointer :: a_array(:,:,:)
|
||||
call mmap(trim(ezfio_filename)//'/work/four_idx', &
|
||||
(/ 4_8,int(i_end-i_start+1,8),int(j_end-j_start+1,8),int(k_end-k_start+1,8), int(l_end-l_start+1,8) /), 8, fd, .False., c_pointer)
|
||||
call c_f_pointer(c_pointer, a_array, (/ 4, (i_end-i_start+1)*(j_end-j_start+1)*(k_end-k_start+1), l_end-l_start+1 /))
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) SHARED(a_array,c_pointer,fd, &
|
||||
!$OMP a_start,a_end,b_start,b_end,c_start,c_end,d_start,d_end,&
|
||||
!$OMP i_start,i_end,j_start,j_end,k_start,k_end,l_start,l_end,&
|
||||
!$OMP i_min,i_max,j_min,j_max,k_min,k_max,l_min,l_max, &
|
||||
!$OMP map_a,map_c,matrix_B) &
|
||||
!$OMP PRIVATE(key,value,T,U,V,i,j,k,l,idx, &
|
||||
!$OMP a,b,c,d,tmp)
|
||||
allocate( key(i_max*j_max*k_max), value(i_max*j_max*k_max) )
|
||||
allocate( U(a_start:a_end, c_start:c_end, b_start:b_end) )
|
||||
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic,4)
|
||||
do l=l_start,l_end
|
||||
a = 1
|
||||
do j=j_start,j_end
|
||||
do k=k_start,k_end
|
||||
do i=i_start,i_end
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
call map_get(map_a,idx,tmp)
|
||||
if (tmp /= 0.d0) then
|
||||
a = a+1
|
||||
a_array(1,a,l-l_start+1) = i
|
||||
a_array(2,a,l-l_start+1) = j
|
||||
a_array(3,a,l-l_start+1) = k
|
||||
a_array(4,a,l-l_start+1) = transfer(dble(tmp), 1_8)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
a_array(1,1,l-l_start+1) = a
|
||||
print *, l
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do d=d_start,d_end
|
||||
U = 0.d0
|
||||
do l=l_start,l_end
|
||||
if (dabs(matrix_B(l,d)) < 1.d-10) then
|
||||
cycle
|
||||
endif
|
||||
print *, d, l
|
||||
|
||||
allocate( T(i_start:i_end, k_start:k_end, j_start:j_end), &
|
||||
V(a_start:a_end, k_start:k_end, j_start:j_end) )
|
||||
|
||||
T = 0.d0
|
||||
do a=2,a_array(1,1,l-l_start+1)
|
||||
i = a_array(1,a,l-l_start+1)
|
||||
j = a_array(2,a,l-l_start+1)
|
||||
k = a_array(3,a,l-l_start+1)
|
||||
T(i, k,j) = transfer(a_array(4,a,l-l_start+1), 1.d0)
|
||||
enddo
|
||||
|
||||
call DGEMM('T','N', (a_end-a_start+1), &
|
||||
(k_end-k_start+1)*(j_end-j_start+1), &
|
||||
(i_end-i_start+1), 1.d0, &
|
||||
matrix_B(i_start,a_start), size(matrix_B,1), &
|
||||
T(i_start,k_start,j_start), size(T,1), 0.d0, &
|
||||
V(a_start,k_start,j_start), size(V, 1) )
|
||||
|
||||
deallocate(T)
|
||||
allocate( T(a_start:a_end, k_start:k_end, b_start:d) )
|
||||
|
||||
call DGEMM('N','N', (a_end-a_start+1)*(k_end-k_start+1), &
|
||||
(b_end-b_start+1), &
|
||||
(j_end-j_start+1), 1.d0, &
|
||||
V(a_start,k_start,j_start), size(V,1)*size(V,2), &
|
||||
matrix_B(j_start,b_start), size(matrix_B,1),0.d0, &
|
||||
T(a_start,k_start,b_start), size(T,1)*size(T,2) )
|
||||
|
||||
deallocate(V)
|
||||
|
||||
do b=b_start,b_end
|
||||
call DGEMM('N','N', (a_end-a_start+1), (c_end-c_start+1), &
|
||||
(k_end-k_start+1), matrix_B(l, d), &
|
||||
T(a_start,k_start,b), size(T,1), &
|
||||
matrix_B(k_start,c_start), size(matrix_B,1), 1.d0, &
|
||||
U(a_start,c_start,b), size(U,1) )
|
||||
enddo
|
||||
|
||||
deallocate(T)
|
||||
|
||||
enddo
|
||||
|
||||
idx = 0_8
|
||||
do b=b_start,b_end
|
||||
do c=c_start,c_end
|
||||
do a=a_start,a_end
|
||||
if (dabs(U(a,c,b)) < 1.d-15) then
|
||||
cycle
|
||||
endif
|
||||
idx = idx+1_8
|
||||
call bielec_integrals_index(a,b,c,d,key(idx))
|
||||
value(idx) = U(a,c,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP CRITICAL
|
||||
call map_append(map_c, key, value, idx)
|
||||
call map_sort(map_c)
|
||||
!$OMP END CRITICAL
|
||||
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(key,value)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call munmap( &
|
||||
(/ 4_8,int(i_end-i_start+1,8),int(j_end-j_start+1,8),int(k_end-k_start+1,8), int(l_end-l_start+1,8) /), 8, fd, c_pointer)
|
||||
|
||||
end
|
@ -1,277 +0,0 @@
|
||||
subroutine four_index_transform_sym(map_a,map_c,matrix_B,LDB, &
|
||||
i_start, j_start, k_start, l_start, &
|
||||
i_end , j_end , k_end , l_end , &
|
||||
a_start, b_start, c_start, d_start, &
|
||||
a_end , b_end , c_end , d_end )
|
||||
implicit none
|
||||
use map_module
|
||||
use mmap_module
|
||||
BEGIN_DOC
|
||||
! Performs a four-index transformation of map_a(N^4) into map_c(M^4) using b(NxM)
|
||||
! C_{abcd} = \sum_{ijkl} A_{ijkl}.B_{ia}.B_{jb}.B_{kc}.B_{ld}
|
||||
! Loops run over *_start->*_end
|
||||
END_DOC
|
||||
type(map_type), intent(in) :: map_a
|
||||
type(map_type), intent(inout) :: map_c
|
||||
integer, intent(in) :: LDB
|
||||
double precision, intent(in) :: matrix_B(LDB,*)
|
||||
integer, intent(in) :: i_start, j_start, k_start, l_start
|
||||
integer, intent(in) :: i_end , j_end , k_end , l_end
|
||||
integer, intent(in) :: a_start, b_start, c_start, d_start
|
||||
integer, intent(in) :: a_end , b_end , c_end , d_end
|
||||
|
||||
double precision, allocatable :: T(:,:), U(:,:,:), V(:,:)
|
||||
double precision, allocatable :: T2d(:,:), V2d(:,:)
|
||||
integer :: i_max, j_max, k_max, l_max
|
||||
integer :: i_min, j_min, k_min, l_min
|
||||
integer :: i, j, k, l, ik, ll
|
||||
integer :: a, b, c, d
|
||||
double precision, external :: get_ao_bielec_integral
|
||||
integer*8 :: ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: tmp
|
||||
integer(key_kind), allocatable :: key(:)
|
||||
real(integral_kind), allocatable :: value(:)
|
||||
integer*8, allocatable :: l_pointer(:)
|
||||
|
||||
ASSERT (k_start == i_start)
|
||||
ASSERT (l_start == j_start)
|
||||
ASSERT (a_start == c_start)
|
||||
ASSERT (b_start == d_start)
|
||||
|
||||
i_min = min(i_start,a_start)
|
||||
i_max = max(i_end ,a_end )
|
||||
j_min = min(j_start,b_start)
|
||||
j_max = max(j_end ,b_end )
|
||||
k_min = min(k_start,c_start)
|
||||
k_max = max(k_end ,c_end )
|
||||
l_min = min(l_start,d_start)
|
||||
l_max = max(l_end ,d_end )
|
||||
|
||||
ASSERT (0 < i_max)
|
||||
ASSERT (0 < j_max)
|
||||
ASSERT (0 < k_max)
|
||||
ASSERT (0 < l_max)
|
||||
ASSERT (LDB >= i_max)
|
||||
ASSERT (LDB >= j_max)
|
||||
ASSERT (LDB >= k_max)
|
||||
ASSERT (LDB >= l_max)
|
||||
|
||||
! Create a temporary memory-mapped file
|
||||
integer :: fd
|
||||
type(c_ptr) :: c_pointer
|
||||
integer*8, pointer :: a_array(:)
|
||||
call mmap(trim(ezfio_filename)//'/work/four_idx', &
|
||||
(/ 12_8 * map_a % n_elements /), 8, fd, .False., c_pointer)
|
||||
call c_f_pointer(c_pointer, a_array, (/ 12_8 * map_a % n_elements /))
|
||||
|
||||
allocate(l_pointer(l_start:l_end+1), value((i_max*k_max)) )
|
||||
ii = 1_8
|
||||
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l,ik,idx)
|
||||
do l=l_start,l_end
|
||||
!$OMP SINGLE
|
||||
l_pointer(l) = ii
|
||||
!$OMP END SINGLE
|
||||
do j=j_start,j_end
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do k=k_start,k_end
|
||||
do i=i_start,k
|
||||
ik = (i-i_start+1) + ishft( (k-k_start)*(k-k_start+1), -1 )
|
||||
call bielec_integrals_index(i,j,k,l,idx)
|
||||
call map_get(map_a,idx,value(ik))
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP SINGLE
|
||||
ik=0
|
||||
do k=k_start,k_end
|
||||
do i=i_start,k
|
||||
ik = ik+1
|
||||
tmp=value(ik)
|
||||
if (tmp /= 0.d0) then
|
||||
a_array(ii) = ik
|
||||
ii = ii+1_8
|
||||
a_array(ii) = j
|
||||
ii = ii+1_8
|
||||
a_array(ii) = transfer(dble(tmp), 1_8)
|
||||
ii = ii+1_8
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END SINGLE
|
||||
enddo
|
||||
enddo
|
||||
!$OMP SINGLE
|
||||
l_pointer(l_end+1) = ii
|
||||
!$OMP END SINGLE
|
||||
!$OMP END PARALLEL
|
||||
deallocate(value)
|
||||
|
||||
!INPUT DATA
|
||||
!open(unit=10,file='INPUT',form='UNFORMATTED')
|
||||
!write(10) i_start, j_start, i_end, j_end
|
||||
!write(10) a_start, b_start, a_end, b_end
|
||||
!write(10) LDB, mo_tot_num
|
||||
!write(10) matrix_B(1:LDB,1:mo_tot_num)
|
||||
!idx=size(a_array)
|
||||
!write(10) idx
|
||||
!write(10) a_array
|
||||
!write(10) l_pointer
|
||||
!close(10)
|
||||
!open(unit=10,file='OUTPUT',form='FORMATTED')
|
||||
! END INPUT DATA
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) SHARED(a_array,c_pointer,fd, &
|
||||
!$OMP a_start,a_end,b_start,b_end,c_start,c_end,d_start,d_end,&
|
||||
!$OMP i_start,i_end,j_start,j_end,k_start,k_end,l_start,l_end,&
|
||||
!$OMP i_min,i_max,j_min,j_max,k_min,k_max,l_min,l_max, &
|
||||
!$OMP map_c,matrix_B,l_pointer) &
|
||||
!$OMP PRIVATE(key,value,T,U,V,i,j,k,l,idx,ik,ll, &
|
||||
!$OMP a,b,c,d,tmp,T2d,V2d,ii)
|
||||
allocate( key(i_max*j_max*k_max), value(i_max*j_max*k_max) )
|
||||
allocate( U(a_start:a_end, c_start:c_end, b_start:b_end) )
|
||||
|
||||
|
||||
|
||||
allocate( T2d((i_end-i_start+1)*(k_end-k_start+2)/2, j_start:j_end), &
|
||||
V2d((i_end-i_start+1)*(k_end-k_start+2)/2, b_start:b_end), &
|
||||
V(i_start:i_end, k_start:k_end), &
|
||||
T(k_start:k_end, a_start:a_end))
|
||||
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do d=d_start,d_end
|
||||
U = 0.d0
|
||||
do l=l_start,l_end
|
||||
if (dabs(matrix_B(l,d)) < 1.d-10) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
ii=l_pointer(l)
|
||||
do j=j_start,j_end
|
||||
ik=0
|
||||
do k=k_start,k_end
|
||||
do i=i_start,k
|
||||
ik = ik+1
|
||||
if ( (ik /= a_array(ii)).or.(j /= a_array(ii+1_8)) &
|
||||
.or.(ii >= l_pointer(l+1)) ) then
|
||||
T2d(ik,j) = 0.d0
|
||||
else
|
||||
T2d(ik,j) = transfer(a_array(ii+2_8), 1.d0)
|
||||
ii=ii+3_8
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call DGEMM('N','N', ishft( (i_end-i_start+1)*(i_end-i_start+2), -1),&
|
||||
(d-b_start+1), &
|
||||
(j_end-j_start+1), 1.d0, &
|
||||
T2d(1,j_start), size(T2d,1), &
|
||||
matrix_B(j_start,b_start), size(matrix_B,1),0.d0, &
|
||||
V2d(1,b_start), size(V2d,1) )
|
||||
|
||||
do b=b_start,d
|
||||
ik = 0
|
||||
do k=k_start,k_end
|
||||
do i=i_start,k
|
||||
ik = ik+1
|
||||
V(i,k) = V2d(ik,b)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! T = 0.d0
|
||||
! do a=a_start,b
|
||||
! do k=k_start,k_end
|
||||
! do i=i_start,k
|
||||
! T(k,a) = T(k,a) + V(i,k)*matrix_B(i,a)
|
||||
! enddo
|
||||
! do i=k+1,i_end
|
||||
! T(k,a) = T(k,a) + V(k,i)*matrix_B(i,a)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
call DSYMM('L','U', (k_end-k_start+1), (b-a_start+1), &
|
||||
1.d0, &
|
||||
V(i_start,k_start), size(V,1), &
|
||||
matrix_B(i_start,a_start), size(matrix_B,1),0.d0, &
|
||||
T(k_start,a_start), size(T,1) )
|
||||
|
||||
! do c=c_start,b
|
||||
! do a=a_start,c
|
||||
! do k=k_start,k_end
|
||||
! U(a,c,b) = U(a,c,b) + T(k,a)*matrix_B(k,c)*matrix_B(l,d)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
call DGEMM('T','N', (b-a_start+1), (b-c_start+1), &
|
||||
(k_end-k_start+1), matrix_B(l, d), &
|
||||
T(k_start,a_start), size(T,1), &
|
||||
matrix_B(k_start,c_start), size(matrix_B,1), 1.d0, &
|
||||
U(a_start,c_start,b), size(U,1) )
|
||||
! do c=b+1,c_end
|
||||
! do a=a_start,b
|
||||
! do k=k_start,k_end
|
||||
! U(a,c,b) = U(a,c,b) + T(k,a)*matrix_B(k,c)*matrix_B(l,d)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
if (b < b_end) then
|
||||
call DGEMM('T','N', (b-a_start+1), (c_end-b), &
|
||||
(k_end-k_start+1), matrix_B(l, d), &
|
||||
T(k_start,a_start), size(T,1), &
|
||||
matrix_B(k_start,b+1), size(matrix_B,1), 1.d0, &
|
||||
U(a_start,b+1,b), size(U,1) )
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
idx = 0_8
|
||||
do b=b_start,d
|
||||
do c=c_start,c_end
|
||||
do a=a_start,min(b,c)
|
||||
if (dabs(U(a,c,b)) < 1.d-15) then
|
||||
cycle
|
||||
endif
|
||||
idx = idx+1_8
|
||||
call bielec_integrals_index(a,b,c,d,key(idx))
|
||||
value(idx) = U(a,c,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP CRITICAL
|
||||
call map_append(map_c, key, value, idx)
|
||||
!$OMP END CRITICAL
|
||||
|
||||
!WRITE OUTPUT
|
||||
! OMP CRITICAL
|
||||
!print *, d
|
||||
!do b=b_start,d
|
||||
! do c=c_start,c_end
|
||||
! do a=a_start,min(b,c)
|
||||
! if (dabs(U(a,c,b)) < 1.d-15) then
|
||||
! cycle
|
||||
! endif
|
||||
! write(10,*) d,c,b,a,U(a,c,b)
|
||||
! enddo
|
||||
! enddo
|
||||
!enddo
|
||||
! OMP END CRITICAL
|
||||
!END WRITE OUTPUT
|
||||
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(key,value,V,T)
|
||||
!$OMP END PARALLEL
|
||||
call map_sort(map_c)
|
||||
|
||||
call munmap( &
|
||||
(/ 12_8 * map_a % n_elements /), 8, fd, c_pointer)
|
||||
deallocate(l_pointer)
|
||||
|
||||
end
|
Before Width: | Height: | Size: 110 KiB |
@ -1,109 +0,0 @@
|
||||
program target_pt2_ratio
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref
|
||||
|
||||
double precision, allocatable :: psi_coef_ref(:,:)
|
||||
integer(bit_kind), allocatable :: psi_det_ref(:,:,:)
|
||||
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
! Stopping criterion is the PT2max
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = 2
|
||||
allocate (psi_coef_ref(size(psi_coef_sorted,1),size(psi_coef_sorted,2)))
|
||||
allocate (psi_det_ref(N_int,2,size(psi_det_sorted,3)))
|
||||
psi_coef_ref = psi_coef_sorted
|
||||
psi_det_ref = psi_det_sorted
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
do while (Nmax-Nmin > 1)
|
||||
psi_coef = psi_coef_ref
|
||||
psi_det = psi_det_ref
|
||||
TOUCH psi_det psi_coef
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
if (ratio < var_pt2_ratio) then
|
||||
Nmin = N_det
|
||||
else
|
||||
Nmax = N_det
|
||||
psi_coef_ref = psi_coef
|
||||
psi_det_ref = psi_det
|
||||
TOUCH psi_det psi_coef
|
||||
endif
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', var_pt2_ratio
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
call save_wavefunction
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
print *, 'E+PT2 = ', CI_energy(1)+pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
@ -1,95 +0,0 @@
|
||||
program target_pt2
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
logical, external :: detEq
|
||||
|
||||
double precision, allocatable :: pt2(:)
|
||||
integer :: Nmin, Nmax
|
||||
integer :: n_det_before, to_select
|
||||
double precision :: threshold_davidson_in, ratio, E_ref, pt2_ratio
|
||||
|
||||
allocate (pt2(N_states))
|
||||
|
||||
pt2 = 1.d0
|
||||
threshold_davidson_in = threshold_davidson
|
||||
threshold_davidson = threshold_davidson_in * 100.d0
|
||||
SOFT_TOUCH threshold_davidson
|
||||
|
||||
double precision :: E_CI_before(N_states)
|
||||
do while (dabs(pt2(1)) > pt2_max)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
do k=1, N_states
|
||||
print*,'State ',k
|
||||
print *, 'PT2 = ', pt2(k)
|
||||
print *, 'E = ', CI_energy(k)
|
||||
print *, 'E(before)+PT2 = ', E_CI_before(k)+pt2(k)
|
||||
enddo
|
||||
print *, '-----'
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = max(64-to_select, to_select)
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
enddo
|
||||
|
||||
threshold_selectors = max(threshold_selectors,threshold_selectors_pt2)
|
||||
threshold_generators = max(threshold_generators,threshold_generators_pt2)
|
||||
threshold_davidson = threshold_davidson_in
|
||||
TOUCH threshold_selectors threshold_generators threshold_davidson
|
||||
call diagonalize_CI
|
||||
call ZMQ_selection(0, pt2)
|
||||
|
||||
E_ref = CI_energy(1) + pt2(1)
|
||||
pt2_ratio = (E_ref + pt2_max - HF_energy) / (E_ref - HF_energy)
|
||||
print *, 'Est FCI = ', E_ref
|
||||
|
||||
Nmax = N_det
|
||||
Nmin = N_det/8
|
||||
do while (Nmax-Nmin > 1)
|
||||
call diagonalize_CI
|
||||
ratio = (CI_energy(1) - HF_energy) / (E_ref - HF_energy)
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
TOUCH psi_coef psi_det
|
||||
if (ratio < pt2_ratio) then
|
||||
Nmin = N_det
|
||||
to_select = (Nmax-Nmin)/2
|
||||
call ZMQ_selection(to_select, pt2)
|
||||
else
|
||||
Nmax = N_det
|
||||
N_det = Nmin + (Nmax-Nmin)/2
|
||||
endif
|
||||
print *, '-----'
|
||||
print *, 'Det min, Det max: ', Nmin, Nmax
|
||||
print *, 'Ratio : ', ratio, ' ~ ', pt2_ratio
|
||||
print *, 'HF_energy = ', HF_energy
|
||||
print *, 'Est FCI = ', E_ref
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
enddo
|
||||
call ZMQ_selection(0, pt2)
|
||||
print *, '------'
|
||||
print *, 'E = ', CI_energy(1)
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
|
||||
E_CI_before(1:N_states) = CI_energy(1:N_states)
|
||||
call save_wavefunction
|
||||
call ezfio_set_full_ci_zmq_energy(CI_energy(1))
|
||||
call ezfio_set_full_ci_zmq_energy_pt2(E_CI_before(1)+pt2(1))
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 67 KiB |
Before Width: | Height: | Size: 81 KiB |
@ -1,6 +0,0 @@
|
||||
program guess
|
||||
implicit none
|
||||
character*(64) :: label
|
||||
call huckel_guess
|
||||
|
||||
end
|
@ -1,61 +0,0 @@
|
||||
program scf
|
||||
BEGIN_DOC
|
||||
! Produce `Hartree_Fock` MO orbital
|
||||
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
|
||||
! output: hartree_fock.energy
|
||||
! optional: mo_basis.mo_coef
|
||||
END_DOC
|
||||
call create_guess
|
||||
call orthonormalize_mos
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine create_guess
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create a MO guess if no MOs are present in the EZFIO directory
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_mo_basis_mo_coef(exists)
|
||||
if (.not.exists) then
|
||||
if (mo_guess_type == "HCore") then
|
||||
mo_coef = ao_ortho_lowdin_coef
|
||||
TOUCH mo_coef
|
||||
mo_label = 'Guess'
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_mono_elec_integral,size(mo_mono_elec_integral,1),size(mo_mono_elec_integral,2),mo_label)
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
else if (mo_guess_type == "Huckel") then
|
||||
call huckel_guess
|
||||
else
|
||||
print *, 'Unrecognized MO guess type : '//mo_guess_type
|
||||
stop 1
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine run
|
||||
|
||||
BEGIN_DOC
|
||||
! Run SCF calculation
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
|
||||
double precision :: EHF
|
||||
integer :: i_it, i, j, k
|
||||
|
||||
EHF = HF_energy
|
||||
|
||||
mo_label = "Canonical"
|
||||
|
||||
! Choose SCF algorithm
|
||||
|
||||
call damping_SCF ! Deprecated routine
|
||||
! call Roothaan_Hall_SCF
|
||||
|
||||
end
|
||||
|
||||
|
@ -1,75 +0,0 @@
|
||||
program localize_mos
|
||||
implicit none
|
||||
integer :: rank, i,j,k
|
||||
double precision, allocatable :: W(:,:)
|
||||
double precision :: f, f_incr
|
||||
|
||||
allocate (W(ao_num,ao_num))
|
||||
|
||||
W = 0.d0
|
||||
do k=1,elec_beta_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,elec_beta_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,elec_beta_num,W, size(W,1), &
|
||||
mo_coef(1,1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
|
||||
if (elec_alpha_num>elec_beta_num) then
|
||||
W = 0.d0
|
||||
do k=elec_beta_num+1,elec_alpha_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,elec_alpha_num-elec_beta_num,W, size(W,1), &
|
||||
mo_coef(1,elec_beta_num+1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
endif
|
||||
|
||||
W = 0.d0
|
||||
do k=elec_alpha_num+1,mo_tot_num
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
W(i,j) = W(i,j) + mo_coef(i,k) * mo_coef(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call svd_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
|
||||
! mo_coef(1,1),size(mo_coef,1))
|
||||
call cholesky_mo(ao_num,mo_tot_num-elec_alpha_num,W, size(W,1), &
|
||||
mo_coef(1,elec_alpha_num+1),size(mo_coef,1),1.d-6,rank)
|
||||
print *, rank
|
||||
mo_label = "Localized"
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
W(1:ao_num,1:mo_tot_num) = mo_coef(1:ao_num,1:mo_tot_num)
|
||||
integer :: iorder(mo_tot_num)
|
||||
double precision :: s(mo_tot_num), swap(ao_num)
|
||||
do k=1,mo_tot_num
|
||||
iorder(k) = k
|
||||
s(k) = Fock_matrix_diag_mo(k)
|
||||
enddo
|
||||
call dsort(s(1),iorder(1),elec_beta_num)
|
||||
call dsort(s(elec_beta_num+1),iorder(elec_beta_num+1),elec_alpha_num-elec_beta_num)
|
||||
call dsort(s(elec_alpha_num+1),iorder(elec_alpha_num+1),mo_tot_num-elec_alpha_num)
|
||||
do k=1,mo_tot_num
|
||||
mo_coef(1:ao_num,k) = W(1:ao_num,iorder(k))
|
||||
print *, k, s(k)
|
||||
enddo
|
||||
call save_mos
|
||||
|
||||
end
|
Before Width: | Height: | Size: 68 KiB |
@ -1,26 +0,0 @@
|
||||
[slater_expo_ezfio]
|
||||
type: double precision
|
||||
doc: Exponents of the additional Slater functions
|
||||
size: (nuclei.nucl_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[slater_coef_ezfio]
|
||||
type: double precision
|
||||
doc: Exponents of the additional Slater functions
|
||||
size: (nuclei.nucl_num,mo_basis.mo_tot_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[projector]
|
||||
type: double precision
|
||||
doc: Orthogonal AO basis
|
||||
size: (ao_basis.ao_num,ao_basis.ao_num)
|
||||
interface: ezfio
|
||||
|
||||
[ao_orthoSlaOverlap]
|
||||
type: double precision
|
||||
doc: Orthogonal AO basis
|
||||
size: (ao_basis.ao_num,nuclei.nucl_num)
|
||||
interface: ezfio
|
||||
|
||||
|
||||
|
@ -1,63 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, cusp_A, (nucl_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Equations to solve : A.X = B
|
||||
END_DOC
|
||||
|
||||
integer :: mu, A, B
|
||||
|
||||
cusp_A = 0.d0
|
||||
do A=1,nucl_num
|
||||
cusp_A(A,A) = slater_expo(A)/nucl_charge(A) * slater_value_at_nucl(A,A)
|
||||
do B=1,nucl_num
|
||||
cusp_A(A,B) -= slater_value_at_nucl(B,A)
|
||||
! Projector
|
||||
do mu=1,mo_tot_num
|
||||
cusp_A(A,B) += AO_orthoSlaOverlap_matrix(mu,B) * ao_ortho_value_at_nucl(mu,A)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cusp_B, (nucl_num, mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Equations to solve : A.C = B
|
||||
END_DOC
|
||||
|
||||
integer :: i, A, info
|
||||
|
||||
do i=1,mo_tot_num
|
||||
do A=1,nucl_num
|
||||
cusp_B(A,i) = mo_value_at_nucl(i,A)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cusp_C, (nucl_num, mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Equations to solve : A.C = B
|
||||
END_DOC
|
||||
|
||||
integer :: info
|
||||
integer :: ipiv(nucl_num)
|
||||
double precision, allocatable :: AF(:,:)
|
||||
allocate ( AF(nucl_num,nucl_num) )
|
||||
|
||||
cusp_C(1:nucl_num,1:mo_tot_num) = cusp_B(1:nucl_num,1:mo_tot_num)
|
||||
AF(1:nucl_num,1:nucl_num) = cusp_A(1:nucl_num,1:nucl_num)
|
||||
call dgetrf(nucl_num,nucl_num,AF,size(AF,1),ipiv,info)
|
||||
if (info /= 0) then
|
||||
print *, info
|
||||
stop 'dgetrf failed'
|
||||
endif
|
||||
call dgetrs('N',nucl_num,mo_tot_num,AF,size(AF,1),ipiv,cusp_C,size(cusp_C,1),info)
|
||||
if (info /= 0) then
|
||||
print *, info
|
||||
stop 'dgetrs failed'
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,105 +0,0 @@
|
||||
program scf
|
||||
BEGIN_DOC
|
||||
! Produce `Hartree_Fock` MO orbital with Slater cusp dressing
|
||||
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
|
||||
! output: hartree_fock.energy
|
||||
! optional: mo_basis.mo_coef
|
||||
END_DOC
|
||||
call check_mos
|
||||
call debug
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine check_mos
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create a MO guess if no MOs are present in the EZFIO directory
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_mo_basis_mo_coef(exists)
|
||||
if (.not.exists) then
|
||||
print *, 'Please run SCF first'
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine debug
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
print *, 'A'
|
||||
do i=1,nucl_num
|
||||
print *, i, cusp_A(1:nucl_num, i)
|
||||
enddo
|
||||
print *, 'B'
|
||||
do i=1,mo_tot_num
|
||||
print *, i, cusp_B(1:nucl_num, i)
|
||||
enddo
|
||||
print *, 'X'
|
||||
do i=1,mo_tot_num
|
||||
print *, i, cusp_C(1:nucl_num, i)
|
||||
enddo
|
||||
print *, '-----'
|
||||
return
|
||||
do k=-100,100
|
||||
double precision :: x, y, z
|
||||
x = 0.01d0 * k
|
||||
y = 0.d0
|
||||
do i=1,ao_num
|
||||
z = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
z += ao_coef_normalized_ordered_transp(j,i) * dexp(-ao_expo_ordered_transp(j,i) * x**2)
|
||||
enddo
|
||||
y += mo_coef(i,1) * z
|
||||
y += exp(-slater_expo(1)*dabs(x)) * slater_coef(1,1)
|
||||
z = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
z += ao_coef_normalized_ordered_transp(j,i) * dexp(-ao_expo_ordered_transp(j,i) * x**2)
|
||||
enddo
|
||||
y -= z * GauSlaOverlap_matrix(i,1)* slater_coef(1,1)
|
||||
enddo
|
||||
print *, x, y
|
||||
enddo
|
||||
print *, '-----'
|
||||
end
|
||||
|
||||
subroutine run
|
||||
|
||||
BEGIN_DOC
|
||||
! Run SCF calculation
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
|
||||
double precision :: EHF
|
||||
integer :: i_it, i, j, k
|
||||
|
||||
mo_label = 'None'
|
||||
|
||||
|
||||
! print *, HF_energy
|
||||
|
||||
do i=1,ao_num
|
||||
print *, mo_coef(i,1), cusp_corrected_mos(i,1)
|
||||
enddo
|
||||
mo_coef(1:ao_num,1:mo_tot_num) = cusp_corrected_mos(1:ao_num,1:mo_tot_num)
|
||||
SOFT_TOUCH mo_coef slater_coef
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(slater_coef)
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_projector(ao_ortho_canonical_coef(1:ao_num,1:ao_num))
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_ao_orthoSlaOverlap(AO_orthoSlaOverlap_matrix)
|
||||
call save_mos
|
||||
print *, 'ci'
|
||||
print *, mo_coef(1:ao_num,1)
|
||||
print *, 'cAi'
|
||||
print *, slater_coef
|
||||
|
||||
|
||||
! EHF = HF_energy
|
||||
! print *, HF_energy
|
||||
! call Roothaan_Hall_SCF
|
||||
|
||||
end
|
||||
|
||||
|
@ -1,74 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision , ao_value_at_nucl, (ao_num,nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Values of the atomic orbitals at the nucleus
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: x,y,z,expo,poly, r2
|
||||
|
||||
do k=1,nucl_num
|
||||
do i=1,ao_num
|
||||
ao_value_at_nucl(i,k) = 0.d0
|
||||
x = nucl_coord(ao_nucl(i),1) - nucl_coord(k,1)
|
||||
y = nucl_coord(ao_nucl(i),2) - nucl_coord(k,2)
|
||||
z = nucl_coord(ao_nucl(i),3) - nucl_coord(k,3)
|
||||
poly = x**(ao_power(i,1)) * y**(ao_power(i,2)) * z**(ao_power(i,3))
|
||||
if (poly == 0.d0) cycle
|
||||
|
||||
r2 = (x*x) + (y*y) + (z*z)
|
||||
do j=1,ao_prim_num(i)
|
||||
expo = ao_expo_ordered_transp(j,i)*r2
|
||||
if (expo > 40.d0) cycle
|
||||
ao_value_at_nucl(i,k) = ao_value_at_nucl(i,k) + &
|
||||
ao_coef_normalized_ordered_transp(j,i) * &
|
||||
dexp(-expo)
|
||||
enddo
|
||||
ao_value_at_nucl(i,k) *= poly
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_ortho_value_at_nucl, (ao_num,nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Values of the molecular orbitals at the nucleus
|
||||
END_DOC
|
||||
|
||||
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
|
||||
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
|
||||
ao_value_at_nucl, size(ao_value_at_nucl,1), &
|
||||
0.d0, ao_ortho_value_at_nucl,size(ao_ortho_value_at_nucl,1))
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_value_at_nucl, (mo_tot_num,nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Values of the molecular orbitals at the nucleus
|
||||
END_DOC
|
||||
|
||||
call dgemm('T','N',mo_tot_num,nucl_num,ao_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
ao_value_at_nucl, size(ao_value_at_nucl,1), &
|
||||
0.d0, mo_value_at_nucl, size(mo_value_at_nucl,1))
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision , slater_value_at_nucl, (nucl_num,nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Values of the Slater orbitals (1) at the nucleus (2)
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: x,y,z,expo,poly, r
|
||||
|
||||
do k=1,nucl_num
|
||||
do i=1,nucl_num
|
||||
x = nucl_coord(i,1) - nucl_coord(k,1)
|
||||
y = nucl_coord(i,2) - nucl_coord(k,2)
|
||||
z = nucl_coord(i,3) - nucl_coord(k,3)
|
||||
expo = slater_expo(i) * dsqrt((x*x) + (y*y) + (z*z))
|
||||
slater_value_at_nucl(i,k) = dexp(-expo) * slater_normalization(i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -1,172 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, ao_ortho_mono_elec_integral_dressing, (ao_num,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressing of the core hamiltonian in the orthogonal AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k
|
||||
integer :: mu, nu, lambda, A
|
||||
double precision :: tmp
|
||||
|
||||
ao_ortho_mono_elec_integral_dressing = 0.d0
|
||||
i = idx_dressing
|
||||
do mu=1,ao_num
|
||||
if (dabs(mo_coef_in_ao_ortho_basis(mu,i)) > 1.d-5) then
|
||||
do A=1,nucl_num
|
||||
tmp = 0.d0
|
||||
do nu=1,ao_num
|
||||
tmp += AO_orthoSlaOverlap_matrix(nu,A) * ao_ortho_mono_elec_integral(mu,nu)
|
||||
enddo
|
||||
ao_ortho_mono_elec_integral_dressing(mu,mu) += cusp_C(A,i) * (AO_orthoSlaH_matrix(mu,A) - tmp)
|
||||
enddo
|
||||
ao_ortho_mono_elec_integral_dressing(mu,mu) *= 1.d0/mo_coef_in_ao_ortho_basis(mu,i)
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_ortho_mono_elec_integral, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! h core in orthogonal AO basis
|
||||
END_DOC
|
||||
double precision, allocatable :: T(:,:)
|
||||
allocate(T(ao_num,ao_num))
|
||||
call dgemm('T','N',ao_num,ao_num,ao_num,1.d0, &
|
||||
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
|
||||
ao_mono_elec_integral, size(ao_mono_elec_integral,1), &
|
||||
0.d0, T, size(T,1))
|
||||
call dgemm('N','N',ao_num,ao_num,ao_num,1.d0, &
|
||||
T, size(T,1), &
|
||||
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
|
||||
0.d0, ao_ortho_mono_elec_integral, size(ao_ortho_mono_elec_integral,1))
|
||||
deallocate(T)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_mono_elec_integral_dressing, (ao_num,ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressing of the core hamiltonian in the AO basis set
|
||||
END_DOC
|
||||
call ao_ortho_cano_to_ao(ao_ortho_mono_elec_integral_dressing,size(ao_ortho_mono_elec_integral_dressing,1),&
|
||||
ao_mono_elec_integral_dressing,size(ao_mono_elec_integral_dressing,1))
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_mono_elec_integral_dressing, (mo_tot_num,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressing of the core hamiltonian in the MO basis set
|
||||
END_DOC
|
||||
|
||||
call ao_to_mo(ao_mono_elec_integral_dressing,size(ao_mono_elec_integral_dressing,1),&
|
||||
mo_mono_elec_integral_dressing,size(mo_mono_elec_integral_dressing,1))
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, idx_dressing ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Index of the MO which is being dressed
|
||||
END_DOC
|
||||
idx_dressing = 1
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cusp_corrected_mos, (ao_num,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dressing core hamiltonian in the AO basis set
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision, allocatable :: F(:,:), M(:,:)
|
||||
allocate(F(mo_tot_num,mo_tot_num),M(ao_num,mo_tot_num))
|
||||
|
||||
logical :: oneshot
|
||||
|
||||
! oneshot = .True.
|
||||
oneshot = .False.
|
||||
|
||||
if (oneshot) then
|
||||
cusp_corrected_mos(1:ao_num,1:mo_tot_num) = mo_coef(1:ao_num,1:mo_tot_num)
|
||||
slater_coef(1:nucl_num,1:mo_tot_num) = cusp_C(1:nucl_num,1:mo_tot_num)
|
||||
return
|
||||
|
||||
else
|
||||
|
||||
|
||||
do idx_dressing=1,mo_tot_num
|
||||
|
||||
if (idx_dressing>1) then
|
||||
TOUCH idx_dressing
|
||||
endif
|
||||
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
F(i,j) = Fock_matrix_mo(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=1,mo_tot_num
|
||||
do i=1,ao_num
|
||||
M(i,j) = mo_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: it
|
||||
do it=1,128
|
||||
|
||||
! print *, 'X', ao_ortho_canonical_coef(1:ao_num,1:ao_num)
|
||||
! print *, 'C', mo_coef(1:ao_num,1:mo_tot_num)
|
||||
! print *, 'Cp', mo_coef_in_ao_ortho_basis(1:ao_num,1:mo_tot_num)
|
||||
! print *, 'cAi', cusp_C(1:nucl_num,1:mo_tot_num)
|
||||
! print *, 'FmuA', AO_orthoSlaH_matrix(1:ao_num,1:nucl_num)
|
||||
! print *, 'Fock:', Fock_matrix_ao(1:ao_num,1:ao_num)
|
||||
! print *, 'Diag Dressing:', ao_ortho_mono_elec_integral_dressing(1:ao_num,1:ao_num)
|
||||
! print *, 'Dressing:', ao_mono_elec_integral_dressing(1:ao_num,1:ao_num)
|
||||
! print *, 'Dressed Fock:', Fock_matrix_ao(1:ao_num,1:ao_num) + ao_mono_elec_integral_dressing(1:ao_num,1:ao_num)
|
||||
! print *, 'AO_orthoSlaOverlap_matrix', AO_orthoSlaOverlap_matrix(1:ao_num,1:nucl_num)
|
||||
! print *, 'AO_orthoSlaH_matrix', AO_orthoSlaH_matrix(1:ao_num,1:nucl_num)
|
||||
! print *, 'ao_ortho_mono_elec_integral', ao_ortho_mono_elec_integral(1:ao_num,1:ao_num)
|
||||
! print *, 'Fock MO:', Fock_matrix_mo(1:mo_tot_num,1:mo_tot_num)
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
Fock_matrix_mo(i,j) += mo_mono_elec_integral_dressing(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i=1,mo_tot_num
|
||||
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
|
||||
enddo
|
||||
! print *, 'Dressed Fock MO:', Fock_matrix_mo(1:mo_tot_num,1:mo_tot_num)
|
||||
double precision :: conv
|
||||
conv = 0.d0
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
if (i==j) cycle
|
||||
conv = max(conv,Fock_matrix_mo(i,j))
|
||||
enddo
|
||||
enddo
|
||||
TOUCH Fock_matrix_mo Fock_matrix_diag_mo
|
||||
|
||||
mo_coef(1:ao_num,1:mo_tot_num) = eigenvectors_fock_matrix_mo(1:ao_num,1:mo_tot_num)
|
||||
TOUCH mo_coef
|
||||
!print *, 'C', mo_coef(1:ao_num,1:mo_tot_num)
|
||||
!print *, '-----'
|
||||
print *, idx_dressing, it, real(mo_coef(1,idx_dressing)), real(conv)
|
||||
if (conv < 1.d-5) exit
|
||||
!stop
|
||||
|
||||
enddo
|
||||
cusp_corrected_mos(1:ao_num,idx_dressing) = mo_coef(1:ao_num,idx_dressing)
|
||||
slater_coef(1:nucl_num,idx_dressing) = cusp_C(1:nucl_num,idx_dressing)
|
||||
enddo
|
||||
|
||||
idx_dressing = 1
|
||||
mo_coef(1:ao_num,1:mo_tot_num) = M(1:ao_num,1:mo_tot_num)
|
||||
soft_TOUCH mo_coef idx_dressing slater_coef
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,625 +0,0 @@
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla,result)
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the overlap integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(out) :: result
|
||||
|
||||
! Final value of the integrals
|
||||
double precision :: ss,ps,ds
|
||||
double precision :: pxs,pys,pzs
|
||||
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
|
||||
|
||||
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! calculate the length AB between the two centers and other usful quantities
|
||||
|
||||
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
|
||||
AB = dsqrt(AB)
|
||||
|
||||
AxBx = (cGau(1)-cSla(1))/2d0
|
||||
AyBy = (cGau(2)-cSla(2))/2d0
|
||||
AzBz = (cGau(3)-cSla(3))/2d0
|
||||
ds = 0.d0
|
||||
|
||||
! intermediate variables
|
||||
|
||||
t = expSla*dsqrt(0.25d0/expGau)
|
||||
u = dsqrt(expGau)*AB
|
||||
|
||||
double precision :: d, et2
|
||||
if(AB > 0d0) then
|
||||
|
||||
! (s|s)
|
||||
ss = 0.d0
|
||||
|
||||
d = derfc(t+u)
|
||||
if (dabs(d) > 1.d-30) then
|
||||
ss = (t+u)*d*dexp(2d0*t*(t+u))
|
||||
endif
|
||||
|
||||
d = derfc(t-u)
|
||||
if (dabs(d) > 1.d-30) then
|
||||
ss -= (t-u)*d*dexp(2d0*t*(t-u))
|
||||
endif
|
||||
|
||||
! (p|s)
|
||||
ps = 0.d0
|
||||
if (t*t-u*u > 300.d0) then
|
||||
et2 = huge(1.0)
|
||||
else
|
||||
et2 = dexp(t*t-u*u)
|
||||
endif
|
||||
if (et2 /= 0.d0) then
|
||||
d = derfc(t-u)
|
||||
if (d /= 0.d0) then
|
||||
ps += dexp((t-u)**2)*(1d0+2d0*t*(t-u))*d
|
||||
endif
|
||||
d = derfc(t+u)
|
||||
if (d /= 0.d0) then
|
||||
ps += dexp((t+u)**2)*(1d0+2d0*t*(t+u))*d
|
||||
endif
|
||||
ps *= dsqrt(pi)
|
||||
ps -= 4d0*t
|
||||
ps *= et2/dsqrt(pi)
|
||||
endif
|
||||
|
||||
! (d|s)
|
||||
! ds = 4d0*dexp(2d0*t*(t-u))*t*(-((1d0+t**2-t*u)*derfc(t-u))+dexp(4d0*t*u)*(1d0+t*(t+u))*derfc(t+u))
|
||||
ds = 0.d0
|
||||
d = derfc(t+u)
|
||||
if (d /= 0.d0) then
|
||||
ds = dexp(4d0*t*u)*(1d0+t*(t+u))*d
|
||||
endif
|
||||
d = derfc(t-u)
|
||||
if (d /= 0.d0) then
|
||||
ds -= (1d0+t*t-t*u)*d
|
||||
endif
|
||||
|
||||
if ( dabs(ds) > 1.d-100) then
|
||||
ds *= 4d0*dexp(2d0*t*(t-u))*t
|
||||
endif
|
||||
|
||||
! backward scaling
|
||||
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
|
||||
ps = ps/u**2-ss/u**3d0
|
||||
ss = ss/u
|
||||
|
||||
else
|
||||
|
||||
! concentric case
|
||||
d = derfc(t)
|
||||
if (d /= 0.d0) then
|
||||
et2 = dexp(t*t)
|
||||
ss = 2d0*et2*((-2d0*t)/dsqrt(pi)+et2*(1d0+2d0*t*t)*d)
|
||||
ps = (8d0*et2*t*(-2d0*(1d0+t*t)+et2*dsqrt(pi)*t*(3d0+2d0*t*t)*d))/(3d0*dsqrt(pi))
|
||||
else
|
||||
ss = 0.d0
|
||||
ps = 0.d0
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
k = t**3d0*dexp(-t*t)*4d0*pi/expSla**(3d0/2d0)
|
||||
|
||||
! (s|s)
|
||||
ss = k*ss
|
||||
|
||||
! (p|s)
|
||||
ps = k*ps
|
||||
|
||||
pxs = AxBx*ps
|
||||
pys = AyBy*ps
|
||||
pzs = AzBz*ps
|
||||
|
||||
! (d|s)
|
||||
ds = k*ds
|
||||
|
||||
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2*ds
|
||||
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2*ds
|
||||
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2*ds
|
||||
|
||||
dxys = AxBx*AyBy*ds
|
||||
dxzs = AxBx*AzBz*ds
|
||||
dyzs = AyBy*AzBz*ds
|
||||
|
||||
select case (sum(aGau))
|
||||
case (0)
|
||||
result = ss
|
||||
|
||||
case (1)
|
||||
if (aGau(1) == 1) then
|
||||
result = pxs
|
||||
else if (aGau(2) == 1) then
|
||||
result = pys
|
||||
else if (aGau(3) == 1) then
|
||||
result = pzs
|
||||
endif
|
||||
|
||||
case (2)
|
||||
if (aGau(1) == 2) then
|
||||
result = dxxs
|
||||
else if (aGau(2) == 2) then
|
||||
result = dyys
|
||||
else if (aGau(3) == 2) then
|
||||
result = dzzs
|
||||
else if (aGau(1)+aGau(2) == 2) then
|
||||
result = dxys
|
||||
else if (aGau(1)+aGau(3) == 2) then
|
||||
result = dxzs
|
||||
else if (aGau(2)+aGau(3) == 2) then
|
||||
result = dyzs
|
||||
endif
|
||||
|
||||
case default
|
||||
stop 'GauSlaOverlap not implemented'
|
||||
|
||||
end select
|
||||
|
||||
end
|
||||
!*****************************************************************************
|
||||
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaKinetic(expGau,cGau,aGau,expSla,cSla,result)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the kinetic energy integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(out) :: result
|
||||
|
||||
! Final value of the integrals
|
||||
double precision :: ss,ps,ds
|
||||
double precision :: pxs,pys,pzs
|
||||
double precision :: dxxs,dyys,dzzs,dxys,dxzs,dyzs
|
||||
|
||||
double precision :: pi,E,AB,AxBx,AyBy,AzBz,t,u,k
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
! calculate the length AB between the two centers
|
||||
|
||||
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
|
||||
AB = dsqrt(AB)
|
||||
|
||||
AxBx = (cGau(1)-cSla(1))/2d0
|
||||
AyBy = (cGau(2)-cSla(2))/2d0
|
||||
AzBz = (cGau(3)-cSla(3))/2d0
|
||||
|
||||
! intermediate variables
|
||||
|
||||
t = expSla*dsqrt(0.25d0/expGau)
|
||||
u = dsqrt(expGau)*AB
|
||||
|
||||
if(AB > 0d0) then
|
||||
|
||||
! (s|s)
|
||||
ss = (1d0+t*(t-u))*derfc(t-u)*dexp(2d0*t*(t-u)) - (1d0+t*(t+u))*derfc(t+u)*dexp(2d0*t*(t+u))
|
||||
|
||||
! (p|s)
|
||||
ps = (dexp(t**2-2d0*t*u-u**2)*(4d0*dexp(2d0*t*u)*(1d0+t**2) &
|
||||
+ dsqrt(pi)*t*(-(dexp(t**2+u**2)*(3d0+2d0*t*(t-u))*derfc(t-u)) &
|
||||
- dexp(2d0*t*u+(t+u)**2)*(3d0+2d0*t*(t+u))*derfc(t+u))))/dsqrt(pi)
|
||||
|
||||
! (d|s)
|
||||
ds = (-8d0*dexp(t**2-u**2)*u+4d0*dexp(2d0*t*(t-u))*dsqrt(pi)*t**2*((2d0+t**2-t*u)*derfc(t-u) &
|
||||
- dexp(4d0*t*u)*(2d0+t*(t+u))*derfc(t+u)))/dsqrt(pi)
|
||||
|
||||
! backward scaling
|
||||
ds = 3d0*ss/u**5d0 - 3d0*ps/u**4d0 + ds/u**3d0
|
||||
ps = ps/u**2-ss/u**3d0
|
||||
ss = ss/u
|
||||
|
||||
else
|
||||
|
||||
! concentric case
|
||||
ss = (4d0*dexp(t**2)*(1d0+t**2))/dsqrt(pi)-2d0*dexp(2d0*t**2)*t*(3d0+2d0*t**2)*derfc(t)
|
||||
ps = (8d0*dexp(t**2)*(-1d0+4d0*t**2+2d0*t**4d0-dexp(t**2)*dsqrt(pi)*t**3d0*(5d0+2d0*t**2)*derfc(t)))/(3d0*dsqrt(pi))
|
||||
|
||||
endif
|
||||
|
||||
k = expSla*dsqrt(expGau)*t**3d0*dexp(-t*t)*4d0*pi/expSla**(3d0/2d0)
|
||||
|
||||
! (s|s)
|
||||
ss = k*ss
|
||||
|
||||
! (p|s)
|
||||
ps = k*ps
|
||||
|
||||
pxs = AxBx*ps
|
||||
pys = AyBy*ps
|
||||
pzs = AzBz*ps
|
||||
|
||||
! (d|s)
|
||||
ds = k*ds
|
||||
|
||||
dxxs = (2d0*ss+ps)/(4d0*expGau) + AxBx**2*ds
|
||||
dyys = (2d0*ss+ps)/(4d0*expGau) + AyBy**2*ds
|
||||
dzzs = (2d0*ss+ps)/(4d0*expGau) + AzBz**2*ds
|
||||
|
||||
dxys = AxBx*AyBy*ds
|
||||
dxzs = AxBx*AzBz*ds
|
||||
dyzs = AyBy*AzBz*ds
|
||||
|
||||
select case (sum(aGau))
|
||||
case (0)
|
||||
result = ss
|
||||
|
||||
case (1)
|
||||
if (aGau(1) == 1) then
|
||||
result = pxs
|
||||
else if (aGau(2) == 1) then
|
||||
result = pys
|
||||
else if (aGau(3) == 1) then
|
||||
result = pzs
|
||||
endif
|
||||
|
||||
case (2)
|
||||
if (aGau(1) == 2) then
|
||||
result = dxxs
|
||||
else if (aGau(2) == 2) then
|
||||
result = dyys
|
||||
else if (aGau(3) == 2) then
|
||||
result = dzzs
|
||||
else if (aGau(1)+aGau(2) == 2) then
|
||||
result = dxys
|
||||
else if (aGau(1)+aGau(3) == 2) then
|
||||
result = dxzs
|
||||
else if (aGau(2)+aGau(3) == 2) then
|
||||
result = dyzs
|
||||
endif
|
||||
|
||||
case default
|
||||
stop 'GauSlaOverlap not implemented'
|
||||
|
||||
end select
|
||||
|
||||
end
|
||||
!*****************************************************************************
|
||||
|
||||
|
||||
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the nuclear attraction integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(in) :: cNuc(3)
|
||||
double precision,intent(in) :: ZNuc
|
||||
double precision,intent(out) :: result
|
||||
|
||||
! Final value of the overlap integral
|
||||
double precision :: ss,ps,ds,fs
|
||||
double precision :: pxs,pys,pzs
|
||||
|
||||
double precision :: pi,E,AB,x,y,k
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
E = exp(1d0)
|
||||
|
||||
! calculate the length AB between the two centers
|
||||
|
||||
AB = (cGau(1)-cSla(1))**2 + (cGau(2)-cSla(2))**2 + (cGau(3)-cSla(3))**2
|
||||
AB = dsqrt(AB)
|
||||
|
||||
! intermediate variables
|
||||
|
||||
x = dsqrt(expSla**2/(4d0*expGau))
|
||||
y = dsqrt(expGau)*AB
|
||||
|
||||
if(AB > 0d0) then
|
||||
ss = (1d0+x*(x+y))*derfc(x+y)*dexp(2d0*x*(x+y)) - (1d0+x*(x-y))*derfc(x-y)*dexp(2d0*x*(x-y))
|
||||
ss = ss/y
|
||||
else
|
||||
ss = (4d0*E**x**2*(1d0+x**2))/dsqrt(Pi)-2d0*E**(2d0*x**2)*x*(3d0+2d0*x**2)*dErfc(x)
|
||||
endif
|
||||
|
||||
k = expSla*dsqrt(expGau)*x**3d0*dexp(-x*x)*4d0*pi/expSla**(3d0/2d0)
|
||||
ss = k*ss
|
||||
|
||||
! Print result
|
||||
! write(*,*) ss
|
||||
result = 0.d0
|
||||
|
||||
end
|
||||
!*****************************************************************************
|
||||
|
||||
double precision function BoysF0(t)
|
||||
implicit none
|
||||
double precision, intent(in) :: t
|
||||
double precision :: pi
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
|
||||
if(t > 0d0) then
|
||||
BoysF0 = 0.5d0*dsqrt(pi/t)*derf(dsqrt(t))
|
||||
else
|
||||
BoysF0 = 1d0
|
||||
endif
|
||||
|
||||
end
|
||||
!*****************************************************************************
|
||||
|
||||
!TODO
|
||||
subroutine GauSlaOverlap_write(expGau,cGau,aGau,expSla,cSla,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
write(iunit, *) &
|
||||
'SDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{', expSla,', {',cSla(1),',',cSla(2),',',cSla(3),'} } ],'
|
||||
result = 0.d0
|
||||
end
|
||||
|
||||
subroutine GauSlaOverlap_read(expGau,cGau,aGau,expSla,cSla,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
read(iunit, *) result
|
||||
end
|
||||
|
||||
subroutine GauSlaKinetic_write(expGau,cGau,aGau,expSla,cSla,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
write(iunit, *) &
|
||||
'TDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{', expSla,',{',cSla(1),',',cSla(2),',',cSla(3),'} } ],'
|
||||
result = 0.d0
|
||||
end
|
||||
|
||||
subroutine GauSlaKinetic_read(expGau,cGau,aGau,expSla,cSla,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
read(iunit, *) result
|
||||
end
|
||||
|
||||
subroutine GauSlaNuclear_write(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(in) :: cNuc(3)
|
||||
double precision,intent(in) :: ZNuc
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
write(iunit, *) &
|
||||
'VDrSla[ {',expGau,',{',cGau(1),',',cGau(2),',',cGau(3),'},{',aGau(1),',',aGau(2),',',aGau(3),'} },{ ', expSla,',{',cSla(1),',',cSla(2),',',cSla(3),'} }, {', ZNuc, ',{', cNuc(1),',', cNuc(2),',', cNuc(3), '} } ],'
|
||||
result = 0.d0
|
||||
end
|
||||
|
||||
subroutine GauSlaNuclear_read(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc,result,iunit)
|
||||
implicit none
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(in) :: cNuc(3)
|
||||
double precision,intent(in) :: ZNuc
|
||||
integer,intent(in) :: iunit
|
||||
double precision,intent(out) :: result
|
||||
read(iunit, *) result
|
||||
end
|
||||
!TODO
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
BEGIN_PROVIDER [ double precision, GauSla$X_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <Gaussian | Slater> overlap matrix
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: cGau(3)
|
||||
double precision :: cSla(3)
|
||||
double precision :: expSla, res, expGau
|
||||
integer :: aGau(3)
|
||||
|
||||
!TODO
|
||||
! logical :: read
|
||||
! integer :: iunit
|
||||
! integer :: getunitandopen
|
||||
!
|
||||
! inquire(FILE=trim(ezfio_filename)//'/work/GauSla$X.dat',EXIST=read)
|
||||
! if (read) then
|
||||
! print *, 'READ $X'
|
||||
! iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSla$X.dat','r')
|
||||
! else
|
||||
! print *, 'WRITE $X'
|
||||
! iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSla$X.inp','w')
|
||||
! write(iunit,*) '{'
|
||||
! endif
|
||||
!TODO
|
||||
|
||||
do k=1,nucl_num
|
||||
cSla(1:3) = nucl_coord_transp(1:3,k)
|
||||
expSla = slater_expo(k)
|
||||
|
||||
do i=1,ao_num
|
||||
cGau(1:3) = nucl_coord_transp(1:3, ao_nucl(i))
|
||||
aGau(1:3) = ao_power(i,1:3)
|
||||
GauSla$X_matrix(i,k) = 0.d0
|
||||
|
||||
do j=1,ao_prim_num(i)
|
||||
expGau = ao_expo_ordered_transp(j,i)
|
||||
call GauSla$X(expGau,cGau,aGau,expSla,cSla,res)
|
||||
! if (read) then
|
||||
! call GauSla$X_read(expGau,cGau,aGau,expSla,cSla,res,iunit)
|
||||
! else
|
||||
! call GauSla$X_write(expGau,cGau,aGau,expSla,cSla,res,iunit)
|
||||
! endif
|
||||
GauSla$X_matrix(i,k) += ao_coef_normalized_ordered_transp(j,i) * res
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
! if (.not.read) then
|
||||
! write(iunit,*) '0.}'
|
||||
! endif
|
||||
! close(iunit)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, MOSla$X_matrix, (mo_tot_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <MO | Slater>
|
||||
END_DOC
|
||||
call dgemm('T','N',mo_tot_num,nucl_num,ao_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
GauSla$X_matrix, size(GauSla$X_matrix,1), &
|
||||
0.d0, MOSla$X_matrix, size(MOSla$X_matrix,1))
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, AO_orthoSla$X_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <AO_ortho | Slater>
|
||||
END_DOC
|
||||
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
|
||||
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
|
||||
GauSla$X_matrix, size(GauSla$X_matrix,1), &
|
||||
0.d0, AO_orthoSla$X_matrix, size(AO_orthoSla$X_matrix,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
SUBST [ X ]
|
||||
|
||||
Overlap ;;
|
||||
Kinetic ;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
BEGIN_PROVIDER [ double precision, GauSlaNuclear_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <Gaussian | Slater> overlap matrix
|
||||
END_DOC
|
||||
integer :: i,j,k,A
|
||||
double precision :: cGau(3)
|
||||
double precision :: cSla(3)
|
||||
double precision :: expSla, res, expGau, Znuc, cNuc(3)
|
||||
integer :: aGau(3)
|
||||
|
||||
!TODO
|
||||
logical :: read
|
||||
integer :: iunit
|
||||
integer :: getunitandopen
|
||||
|
||||
inquire(FILE=trim(ezfio_filename)//'/work/GauSlaNuclear.dat',EXIST=read)
|
||||
if (read) then
|
||||
print *, 'READ Nuclear'
|
||||
iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSlaNuclear.dat','r')
|
||||
else
|
||||
print *, 'WRITE Nuclear'
|
||||
iunit = getunitandopen(trim(ezfio_filename)//'/work/GauSlaNuclear.inp','w')
|
||||
write(iunit,*)'{'
|
||||
endif
|
||||
!TODO
|
||||
|
||||
do k=1,nucl_num
|
||||
cSla(1:3) = nucl_coord_transp(1:3,k)
|
||||
expSla = slater_expo(k)
|
||||
|
||||
do i=1,ao_num
|
||||
cGau(1:3) = nucl_coord_transp(1:3, ao_nucl(i))
|
||||
aGau(1:3) = ao_power(i,1:3)
|
||||
GauSlaNuclear_matrix(i,k) = 0.d0
|
||||
|
||||
do j=1,ao_prim_num(i)
|
||||
expGau = ao_expo_ordered_transp(j,i)
|
||||
do A=1,nucl_num
|
||||
cNuc(1:3) = nucl_coord_transp(1:3,A)
|
||||
Znuc = nucl_charge(A)
|
||||
! call GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res)
|
||||
if (read) then
|
||||
call GauSlaNuclear_read(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res,iunit)
|
||||
else
|
||||
call GauSlaNuclear_write(expGau,cGau,aGau,expSla,cSla,Znuc,cNuc,res,iunit)
|
||||
endif
|
||||
GauSlaNuclear_matrix(i,k) += ao_coef_normalized_ordered_transp(j,i) * res
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
if (.not.read) then
|
||||
write(iunit,*) '0.}'
|
||||
endif
|
||||
close(iunit)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, GauSlaH_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Core hamiltonian in AO basis
|
||||
END_DOC
|
||||
GauSlaH_matrix(1:ao_num,1:nucl_num) = &
|
||||
GauSlaKinetic_matrix(1:ao_num,1:nucl_num) + &
|
||||
GauSlaNuclear_matrix(1:ao_num,1:nucl_num)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, MOSlaNuclear_matrix, (mo_tot_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <MO | Slater>
|
||||
END_DOC
|
||||
call dgemm('N','N',mo_tot_num,nucl_num,ao_num,1.d0, &
|
||||
mo_coef_transp, size(mo_coef_transp,1), &
|
||||
GauSlaNuclear_matrix, size(GauSlaNuclear_matrix,1), &
|
||||
0.d0, MOSlaNuclear_matrix, size(MOSlaNuclear_matrix,1))
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, AO_orthoSlaH_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <AO ortho | Slater>
|
||||
END_DOC
|
||||
call dgemm('T','N',ao_num,nucl_num,ao_num,1.d0, &
|
||||
ao_ortho_canonical_coef, size(ao_ortho_canonical_coef,1), &
|
||||
GauSlaH_matrix, size(GauSlaH_matrix,1), &
|
||||
0.d0, AO_orthoSlaH_matrix, size(AO_orthoSlaH_matrix,1))
|
||||
END_PROVIDER
|
||||
|
@ -1,46 +0,0 @@
|
||||
BEGIN_PROVIDER [ double precision, slater_expo, (nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Exponents of the Slater functions
|
||||
END_DOC
|
||||
logical :: exists
|
||||
call ezfio_has_Hartree_Fock_SlaterDressed_slater_expo_ezfio(exists)
|
||||
if (exists) then
|
||||
slater_expo(1:nucl_num) = slater_expo_ezfio(1:nucl_num)
|
||||
else
|
||||
integer :: i
|
||||
do i=1,nucl_num
|
||||
slater_expo(i) = nucl_charge(i)
|
||||
enddo
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_expo_ezfio(slater_expo)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, slater_coef, (nucl_num,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Exponents of the Slater functions
|
||||
END_DOC
|
||||
logical :: exists
|
||||
slater_coef = 0.d0
|
||||
call ezfio_has_Hartree_Fock_SlaterDressed_slater_coef_ezfio(exists)
|
||||
if (exists) then
|
||||
slater_coef = slater_coef_ezfio
|
||||
else
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(slater_coef)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, slater_normalization, (nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Normalization of Slater functions : sqrt(expo^3/pi)
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i=1,nucl_num
|
||||
slater_normalization(i) = dsqrt( slater_expo(i)**3/dacos(-1.d0) )
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,5 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: MP2 energy
|
||||
interface: ezfio
|
||||
|
@ -1,14 +0,0 @@
|
||||
use bitmasks
|
||||
BEGIN_SHELL [ /usr/bin/env python2 ]
|
||||
from generate_h_apply import *
|
||||
from perturbation import perturbations
|
||||
|
||||
s = H_apply("mp2")
|
||||
s.set_perturbation("Moller_plesset")
|
||||
print s
|
||||
|
||||
s = H_apply("mp2_selection")
|
||||
s.set_selection_pt2("Moller_Plesset")
|
||||
print s
|
||||
END_SHELL
|
||||
|
@ -1 +0,0 @@
|
||||
Perturbation Selectors_full SingleRefMethod ZMQ DavidsonUndressed
|
@ -1,23 +0,0 @@
|
||||
program mp2
|
||||
no_vvvv_integrals = .True.
|
||||
SOFT_TOUCH no_vvvv_integrals
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
double precision, allocatable :: pt2(:), norm_pert(:)
|
||||
double precision :: H_pert_diag, E_old
|
||||
integer :: N_st, iter
|
||||
PROVIDE Fock_matrix_diag_mo H_apply_buffer_allocated
|
||||
N_st = N_states
|
||||
allocate (pt2(N_st), norm_pert(N_st))
|
||||
E_old = HF_energy
|
||||
call H_apply_mp2(pt2, norm_pert, H_pert_diag, N_st)
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_states = ', N_states
|
||||
print *, 'MP2 = ', pt2
|
||||
print *, 'E = ', E_old
|
||||
print *, 'E+MP2 = ', E_old+pt2
|
||||
deallocate(pt2,norm_pert)
|
||||
end
|
@ -1,43 +0,0 @@
|
||||
program mp2_wf
|
||||
no_vvvv_integrals = .True.
|
||||
SOFT_TOUCH no_vvvv_integrals
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save the MP2 wave function
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
|
||||
|
||||
double precision, allocatable :: pt2(:), norm_pert(:), H_pert_diag(:)
|
||||
integer :: N_st, iter
|
||||
N_st = N_states
|
||||
allocate (pt2(N_st), norm_pert(N_st), H_pert_diag(N_st))
|
||||
|
||||
pt2 = 1.d0
|
||||
selection_criterion_factor = 0.d0
|
||||
TOUCH selection_criterion_min selection_criterion selection_criterion_factor
|
||||
call H_apply_mp2_selection(pt2, norm_pert, H_pert_diag, N_st)
|
||||
touch N_det psi_det psi_coef
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
touch N_det psi_det psi_coef
|
||||
do i=N_det,1,-1
|
||||
if (dabs(psi_coef(i,1)) <= 1.d-8) then
|
||||
N_det -= 1
|
||||
endif
|
||||
enddo
|
||||
print*,'N_det = ',N_det
|
||||
print*,'-----'
|
||||
print *, 'PT2 = ', pt2(1)
|
||||
print *, 'E = ', HF_energy
|
||||
print *, 'E_before +PT2 = ', HF_energy+pt2(1)
|
||||
N_det = min(N_det,N_det_max)
|
||||
touch N_det psi_det psi_coef
|
||||
call save_wavefunction
|
||||
call ezfio_set_mp2_energy(HF_energy+pt2(1))
|
||||
deallocate(pt2,norm_pert,H_pert_diag)
|
||||
end
|
Before Width: | Height: | Size: 106 KiB |
@ -1,4 +0,0 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated MRCC energy
|
||||
interface: ezfio
|
@ -1,39 +0,0 @@
|
||||
use bitmasks
|
||||
BEGIN_SHELL [ /usr/bin/env python2 ]
|
||||
from generate_h_apply import *
|
||||
|
||||
s = H_apply("mrcc")
|
||||
s.data["parameters"] = ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["declarations"] += """
|
||||
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
|
||||
double precision, intent(in) :: delta_ij_(Nstates, Ndet_non_ref, Ndet_ref)
|
||||
"""
|
||||
s.data["keys_work"] = "call mrcc_dress(delta_ij_,Nstates,Ndet_non_ref,Ndet_ref,i_generator,key_idx,keys_out,N_int,iproc,key_mask)"
|
||||
s.data["params_post"] += ", delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["params_main"] += "delta_ij_, Nstates, Ndet_non_ref, Ndet_ref"
|
||||
s.data["decls_main"] += """
|
||||
integer, intent(in) :: Ndet_ref, Ndet_non_ref, Nstates
|
||||
double precision, intent(in) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
|
||||
"""
|
||||
s.data["finalization"] = ""
|
||||
s.data["copy_buffer"] = ""
|
||||
s.data["generate_psi_guess"] = ""
|
||||
s.data["size_max"] = "3072"
|
||||
print s
|
||||
|
||||
|
||||
|
||||
s = H_apply("mrcc_PT2")
|
||||
s.energy = "ci_electronic_energy_dressed"
|
||||
s.set_perturbation("epstein_nesbet_2x2")
|
||||
s.unset_openmp()
|
||||
print s
|
||||
|
||||
s = H_apply("mrcepa_PT2")
|
||||
s.energy = "psi_energy"
|
||||
s.set_perturbation("epstein_nesbet_2x2")
|
||||
s.unset_openmp()
|
||||
print s
|
||||
|
||||
END_SHELL
|
||||
|
@ -1 +0,0 @@
|
||||
Perturbation Selectors_full Generators_full Psiref_Utils Psiref_CAS
|
@ -1,270 +0,0 @@
|
||||
BEGIN_PROVIDER [ integer, n_exc_active ]
|
||||
&BEGIN_PROVIDER [ integer, active_pp_idx, (hh_nex) ]
|
||||
&BEGIN_PROVIDER [ integer, active_hh_idx, (hh_nex) ]
|
||||
&BEGIN_PROVIDER [ logical, is_active_exc, (hh_nex) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! is_active_exc : True if the excitation involves at least one active MO
|
||||
!
|
||||
! n_exc_active : Number of active excitations : Number of excitations without the inactive ones.
|
||||
!
|
||||
! active_hh_idx :
|
||||
!
|
||||
! active_pp_idx :
|
||||
END_DOC
|
||||
integer :: hh, pp, II
|
||||
integer :: ind
|
||||
logical :: ok
|
||||
integer(bit_kind) :: myDet(N_int, 2), myMask(N_int, 2)
|
||||
|
||||
integer, allocatable :: pathTo(:)
|
||||
integer, external :: searchDet
|
||||
|
||||
allocate(pathTo(N_det_non_ref))
|
||||
|
||||
pathTo(:) = 0
|
||||
is_active_exc(:) = .True.
|
||||
n_exc_active = 0
|
||||
|
||||
! do hh = 1, hh_shortcut(0)
|
||||
! do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
|
||||
! do II = 1, N_det_ref
|
||||
!
|
||||
! call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
|
||||
! if(.not. ok) cycle
|
||||
!
|
||||
! call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
|
||||
! if(.not. ok) cycle
|
||||
!
|
||||
! ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
|
||||
! if(ind == -1) cycle
|
||||
!
|
||||
! logical, external :: is_a_two_holes_two_particles
|
||||
! if (is_a_two_holes_two_particles(myDet)) then
|
||||
! is_active_exc(pp) = .False.
|
||||
! endif
|
||||
|
||||
! ind = psi_non_ref_sorted_idx(ind)
|
||||
! if(pathTo(ind) == 0) then
|
||||
! pathTo(ind) = pp
|
||||
! else
|
||||
! is_active_exc(pp) = .true.
|
||||
! is_active_exc(pathTo(ind)) = .true.
|
||||
! end if
|
||||
|
||||
! end do
|
||||
! end do
|
||||
! end do
|
||||
|
||||
do hh = 1, hh_shortcut(0)
|
||||
do pp = hh_shortcut(hh), hh_shortcut(hh+1)-1
|
||||
if(is_active_exc(pp)) then
|
||||
n_exc_active = n_exc_active + 1
|
||||
active_hh_idx(n_exc_active) = hh
|
||||
active_pp_idx(n_exc_active) = pp
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
deallocate(pathTo)
|
||||
|
||||
print *, n_exc_active, "active excitations /", hh_nex
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ logical, has_a_unique_parent, (N_det_non_ref) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! True if the determinant in the non-reference has a unique parent
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
integer :: degree
|
||||
do j=1,N_det_non_ref
|
||||
has_a_unique_parent(j) = .True.
|
||||
n=0
|
||||
do i=1,N_det_ref
|
||||
call get_excitation_degree(psi_ref(1,1,i), psi_non_ref(1,1,j), degree, N_int)
|
||||
if (degree < 2) then
|
||||
n = n+1
|
||||
if (n > 1) then
|
||||
has_a_unique_parent(j) = .False.
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_exc_active_sze ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Dimension of arrays to avoid zero-sized arrays
|
||||
END_DOC
|
||||
n_exc_active_sze = max(n_exc_active,1)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, active_excitation_to_determinants_idx, (0:N_det_ref+1, n_exc_active_sze) ]
|
||||
&BEGIN_PROVIDER [ double precision, active_excitation_to_determinants_val, (N_states,N_det_ref+1, n_exc_active_sze) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Sparse matrix A containing the matrix to transform the active excitations to
|
||||
! determinants : A | \Psi_0 > = | \Psi_SD >
|
||||
END_DOC
|
||||
integer :: s, ppp, pp, hh, II, ind, wk, i
|
||||
integer, allocatable :: lref(:)
|
||||
integer(bit_kind) :: myDet(N_int,2), myMask(N_int,2)
|
||||
double precision :: phase
|
||||
logical :: ok
|
||||
integer, external :: searchDet
|
||||
|
||||
|
||||
!$OMP PARALLEL default(none) shared(psi_non_ref, hh_exists, pp_exists, N_int,&
|
||||
!$OMP active_excitation_to_determinants_val, active_excitation_to_determinants_idx)&
|
||||
!$OMP shared(hh_shortcut, psi_ref_coef, N_det_non_ref, psi_non_ref_sorted, &
|
||||
!$OMP psi_non_ref_sorted_idx, psi_ref, N_det_ref, N_states)&
|
||||
!$OMP shared(active_hh_idx, active_pp_idx, n_exc_active)&
|
||||
!$OMP private(lref, pp, II, ok, myMask, myDet, ind, phase, wk, ppp, hh, s)
|
||||
allocate(lref(N_det_non_ref))
|
||||
!$OMP DO schedule(dynamic)
|
||||
do ppp=1,n_exc_active
|
||||
active_excitation_to_determinants_val(:,:,ppp) = 0d0
|
||||
active_excitation_to_determinants_idx(:,ppp) = 0
|
||||
pp = active_pp_idx(ppp)
|
||||
hh = active_hh_idx(ppp)
|
||||
lref = 0
|
||||
do II = 1, N_det_ref
|
||||
call apply_hole_local(psi_ref(1,1,II), hh_exists(1, hh), myMask, ok, N_int)
|
||||
if(.not. ok) cycle
|
||||
call apply_particle_local(myMask, pp_exists(1, pp), myDet, ok, N_int)
|
||||
if(.not. ok) cycle
|
||||
ind = searchDet(psi_non_ref_sorted(1,1,1), myDet(1,1), N_det_non_ref, N_int)
|
||||
if(ind /= -1) then
|
||||
call get_phase(myDet(1,1), psi_ref(1,1,II), phase, N_int)
|
||||
if (phase > 0.d0) then
|
||||
lref(psi_non_ref_sorted_idx(ind)) = II
|
||||
else
|
||||
lref(psi_non_ref_sorted_idx(ind)) = -II
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
wk = 0
|
||||
do i=1, N_det_non_ref
|
||||
if(lref(i) > 0) then
|
||||
wk += 1
|
||||
do s=1,N_states
|
||||
active_excitation_to_determinants_val(s,wk, ppp) = psi_ref_coef(lref(i), s)
|
||||
enddo
|
||||
active_excitation_to_determinants_idx(wk, ppp) = i
|
||||
else if(lref(i) < 0) then
|
||||
wk += 1
|
||||
do s=1,N_states
|
||||
active_excitation_to_determinants_val(s,wk, ppp) = -psi_ref_coef(-lref(i), s)
|
||||
enddo
|
||||
active_excitation_to_determinants_idx(wk, ppp) = i
|
||||
end if
|
||||
end do
|
||||
active_excitation_to_determinants_idx(0,ppp) = wk
|
||||
end do
|
||||
!$OMP END DO
|
||||
deallocate(lref)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, mrcc_AtA_ind, (N_det_ref * n_exc_active_sze) ]
|
||||
&BEGIN_PROVIDER [ double precision, mrcc_AtA_val, (N_states, N_det_ref * n_exc_active_sze) ]
|
||||
&BEGIN_PROVIDER [ integer, mrcc_col_shortcut, (n_exc_active_sze) ]
|
||||
&BEGIN_PROVIDER [ integer, mrcc_N_col, (n_exc_active_sze) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! A is active_excitation_to_determinants in At.A
|
||||
END_DOC
|
||||
integer :: AtA_size, i,k
|
||||
integer :: at_roww, at_row, wk, a_coll, a_col, r1, r2, s
|
||||
double precision, allocatable :: t(:), A_val_mwen(:,:), As2_val_mwen(:,:)
|
||||
integer, allocatable :: A_ind_mwen(:)
|
||||
double precision :: sij
|
||||
PROVIDE psi_non_ref
|
||||
|
||||
mrcc_AtA_ind(:) = 0
|
||||
mrcc_AtA_val(:,:) = 0.d0
|
||||
mrcc_col_shortcut(:) = 0
|
||||
mrcc_N_col(:) = 0
|
||||
AtA_size = 0
|
||||
|
||||
|
||||
!$OMP PARALLEL default(none) shared(k, active_excitation_to_determinants_idx,&
|
||||
!$OMP active_excitation_to_determinants_val, hh_nex) &
|
||||
!$OMP private(at_row, a_col, t, i, r1, r2, wk, A_ind_mwen, A_val_mwen,&
|
||||
!$OMP As2_val_mwen, a_coll, at_roww,sij) &
|
||||
!$OMP shared(N_states,mrcc_col_shortcut, mrcc_N_col, AtA_size, mrcc_AtA_val, mrcc_AtA_ind, &
|
||||
!$OMP n_exc_active, active_pp_idx,psi_non_ref)
|
||||
allocate(A_val_mwen(N_states,hh_nex), As2_val_mwen(N_states,hh_nex), A_ind_mwen(hh_nex), t(N_states) )
|
||||
|
||||
!$OMP DO schedule(dynamic, 100)
|
||||
do at_roww = 1, n_exc_active ! hh_nex
|
||||
at_row = active_pp_idx(at_roww)
|
||||
wk = 0
|
||||
|
||||
do a_coll = 1, n_exc_active
|
||||
a_col = active_pp_idx(a_coll)
|
||||
t(:) = 0d0
|
||||
r1 = 1
|
||||
r2 = 1
|
||||
do while ((active_excitation_to_determinants_idx(r1, at_roww) /= 0).and.(active_excitation_to_determinants_idx(r2, a_coll) /= 0))
|
||||
if(active_excitation_to_determinants_idx(r1, at_roww) > active_excitation_to_determinants_idx(r2, a_coll)) then
|
||||
r2 = r2+1
|
||||
else if(active_excitation_to_determinants_idx(r1, at_roww) < active_excitation_to_determinants_idx(r2, a_coll)) then
|
||||
r1 = r1+1
|
||||
else
|
||||
do s=1,N_states
|
||||
t(s) = t(s) - active_excitation_to_determinants_val(s,r1, at_roww) * active_excitation_to_determinants_val(s,r2, a_coll)
|
||||
enddo
|
||||
r1 = r1+1
|
||||
r2 = r2+1
|
||||
end if
|
||||
end do
|
||||
|
||||
if (a_col == at_row) then
|
||||
t(:) = t(:) + 1.d0
|
||||
endif
|
||||
if (sum(dabs(t(:))) > 0.d0) then
|
||||
wk = wk+1
|
||||
A_ind_mwen(wk) = a_col
|
||||
A_val_mwen(:,wk) = t(:)
|
||||
endif
|
||||
|
||||
end do
|
||||
|
||||
if(wk /= 0) then
|
||||
!$OMP CRITICAL
|
||||
mrcc_col_shortcut(at_roww) = AtA_size+1
|
||||
mrcc_N_col(at_roww) = wk
|
||||
if (AtA_size+wk > size(mrcc_AtA_ind,1)) then
|
||||
print *, AtA_size+wk , size(mrcc_AtA_ind,1)
|
||||
stop 'too small'
|
||||
endif
|
||||
do i=1,wk
|
||||
mrcc_AtA_ind(AtA_size+i) = A_ind_mwen(i)
|
||||
do s=1,N_states
|
||||
mrcc_AtA_val(s,AtA_size+i) = A_val_mwen(s,i)
|
||||
enddo
|
||||
enddo
|
||||
AtA_size += wk
|
||||
!$OMP END CRITICAL
|
||||
end if
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate (A_ind_mwen, A_val_mwen, As2_val_mwen, t)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
print *, "At.A SIZE", ata_size
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,423 +0,0 @@
|
||||
use omp_lib
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer(omp_lock_kind), psi_ref_lock, (psi_det_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Locks on ref determinants to fill delta_ij
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i=1,psi_det_size
|
||||
call omp_init_lock( psi_ref_lock(i) )
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine mrcc_dress(delta_ij_, Nstates, Ndet_non_ref, Ndet_ref,i_generator,n_selected,det_buffer,Nint,iproc,key_mask)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint, iproc
|
||||
integer, intent(in) :: Nstates, Ndet_ref, Ndet_non_ref
|
||||
double precision, intent(inout) :: delta_ij_(Nstates,Ndet_non_ref,Ndet_ref)
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,l,m
|
||||
integer :: degree_alpha(psi_det_size)
|
||||
integer :: idx_alpha(0:psi_det_size)
|
||||
logical :: good, fullMatch
|
||||
|
||||
integer(bit_kind) :: tq(Nint,2,n_selected)
|
||||
integer :: N_tq, c_ref ,degree
|
||||
|
||||
double precision :: hIk, hla, hIl, dIk(Nstates), dka(Nstates), dIa(Nstates)
|
||||
double precision, allocatable :: dIa_hla(:,:)
|
||||
double precision :: haj, phase, phase2
|
||||
double precision :: f(Nstates), ci_inv(Nstates)
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: h1,h2,p1,p2,s1,s2
|
||||
integer(bit_kind) :: tmp_det(Nint,2)
|
||||
integer :: iint, ipos
|
||||
integer :: i_state, k_sd, l_sd, i_I, i_alpha
|
||||
|
||||
integer(bit_kind),allocatable :: miniList(:,:,:)
|
||||
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
|
||||
integer,allocatable :: idx_miniList(:)
|
||||
integer :: N_miniList, ni, leng
|
||||
double precision, allocatable :: hij_cache(:)
|
||||
|
||||
integer(bit_kind), allocatable :: microlist(:,:,:), microlist_zero(:,:,:)
|
||||
integer, allocatable :: idx_microlist(:), N_microlist(:), ptr_microlist(:), idx_microlist_zero(:)
|
||||
integer :: mobiles(2), smallerlist
|
||||
logical, external :: is_generable
|
||||
|
||||
leng = max(N_det_generators, N_det_non_ref)
|
||||
allocate(miniList(Nint, 2, leng), idx_minilist(leng), hij_cache(N_det_non_ref))
|
||||
|
||||
!create_minilist_find_previous(key_mask, fullList, miniList, N_fullList, N_miniList, fullMatch, Nint)
|
||||
call create_minilist_find_previous(key_mask, psi_det_generators, miniList, i_generator-1, N_miniList, fullMatch, Nint)
|
||||
|
||||
if(fullMatch) then
|
||||
return
|
||||
end if
|
||||
|
||||
allocate(ptr_microlist(0:mo_tot_num*2+1), &
|
||||
N_microlist(0:mo_tot_num*2) )
|
||||
allocate( microlist(Nint,2,N_minilist*4), &
|
||||
idx_microlist(N_minilist*4))
|
||||
|
||||
if(key_mask(1,1) /= 0_8) then
|
||||
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
|
||||
call find_triples_and_quadruples_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
|
||||
else
|
||||
call find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_minilist)
|
||||
end if
|
||||
|
||||
|
||||
|
||||
deallocate(microlist, idx_microlist)
|
||||
|
||||
allocate (dIa_hla(Nstates,Ndet_non_ref))
|
||||
|
||||
! |I>
|
||||
|
||||
! |alpha>
|
||||
|
||||
if(N_tq > 0) then
|
||||
|
||||
call create_minilist(key_mask, psi_non_ref, miniList, idx_minilist, N_det_non_ref, N_minilist, Nint)
|
||||
if(N_minilist == 0) return
|
||||
|
||||
|
||||
if(key_mask(1,1) /= 0) then !!!!!!!!!!! PAS GENERAL !!!!!!!!!
|
||||
allocate(microlist_zero(Nint,2,N_minilist), idx_microlist_zero(N_minilist))
|
||||
|
||||
allocate( microlist(Nint,2,N_minilist*4), &
|
||||
idx_microlist(N_minilist*4))
|
||||
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
|
||||
|
||||
|
||||
do i=0,mo_tot_num*2
|
||||
do k=ptr_microlist(i),ptr_microlist(i+1)-1
|
||||
idx_microlist(k) = idx_minilist(idx_microlist(k))
|
||||
end do
|
||||
end do
|
||||
|
||||
do l=1,N_microlist(0)
|
||||
do k=1,Nint
|
||||
microlist_zero(k,1,l) = microlist(k,1,l)
|
||||
microlist_zero(k,2,l) = microlist(k,2,l)
|
||||
enddo
|
||||
idx_microlist_zero(l) = idx_microlist(l)
|
||||
enddo
|
||||
end if
|
||||
end if
|
||||
|
||||
|
||||
|
||||
do i_alpha=1,N_tq
|
||||
! ok = .false.
|
||||
! do i=N_det_generators, 1, -1
|
||||
! if(is_generable(psi_det_generators(1,1,i), tq(1,1,i_alpha), Nint)) then
|
||||
! ok = .true.
|
||||
! exit
|
||||
! end if
|
||||
! end do
|
||||
! if(.not. ok) then
|
||||
! cycle
|
||||
! end if
|
||||
|
||||
if(key_mask(1,1) /= 0) then
|
||||
call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint)
|
||||
|
||||
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
|
||||
smallerlist = mobiles(1)
|
||||
else
|
||||
smallerlist = mobiles(2)
|
||||
end if
|
||||
|
||||
|
||||
do l=0,N_microlist(smallerlist)-1
|
||||
microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l)
|
||||
idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l)
|
||||
end do
|
||||
|
||||
call get_excitation_degree_vector(microlist_zero,tq(1,1,i_alpha),degree_alpha,Nint,N_microlist(smallerlist)+N_microlist(0),idx_alpha)
|
||||
do j=1,idx_alpha(0)
|
||||
idx_alpha(j) = idx_microlist_zero(idx_alpha(j))
|
||||
end do
|
||||
else
|
||||
call get_excitation_degree_vector(miniList,tq(1,1,i_alpha),degree_alpha,Nint,N_minilist,idx_alpha)
|
||||
do j=1,idx_alpha(0)
|
||||
idx_alpha(j) = idx_miniList(idx_alpha(j))
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd))
|
||||
enddo
|
||||
|
||||
! |I>
|
||||
do i_I=1,N_det_ref
|
||||
! Find triples and quadruple grand parents
|
||||
call get_excitation_degree(tq(1,1,i_alpha),psi_ref(1,1,i_I),degree,Nint)
|
||||
if (degree > 4) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
do i_state=1,Nstates
|
||||
dIa(i_state) = 0.d0
|
||||
enddo
|
||||
|
||||
! <I| <> |alpha>
|
||||
do k_sd=1,idx_alpha(0)
|
||||
|
||||
! Loop if lambda == 0
|
||||
logical :: loop
|
||||
loop = .True.
|
||||
do i_state=1,Nstates
|
||||
if (lambda_mrcc(i_state,idx_alpha(k_sd)) /= 0.d0) then
|
||||
loop = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (loop) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint)
|
||||
if (degree > 2) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! <I| /k\ |alpha>
|
||||
! <I|H|k>
|
||||
hIk = hij_mrcc(idx_alpha(k_sd),i_I)
|
||||
! call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),Nint,hIk)
|
||||
do i_state=1,Nstates
|
||||
dIk(i_state) = hIk * lambda_mrcc(i_state,idx_alpha(k_sd))
|
||||
enddo
|
||||
! |l> = Exc(k -> alpha) |I>
|
||||
call get_excitation(psi_non_ref(1,1,idx_alpha(k_sd)),tq(1,1,i_alpha),exc,degree,phase,Nint)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
do k=1,N_int
|
||||
tmp_det(k,1) = psi_ref(k,1,i_I)
|
||||
tmp_det(k,2) = psi_ref(k,2,i_I)
|
||||
enddo
|
||||
|
||||
logical :: ok
|
||||
call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint)
|
||||
if(.not. ok) cycle
|
||||
|
||||
! <I| \l/ |alpha>
|
||||
do i_state=1,Nstates
|
||||
dka(i_state) = 0.d0
|
||||
enddo
|
||||
do l_sd=k_sd+1,idx_alpha(0)
|
||||
|
||||
call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint)
|
||||
if (degree == 0) then
|
||||
|
||||
loop = .True.
|
||||
do i_state=1,Nstates
|
||||
if (lambda_mrcc(i_state,idx_alpha(l_sd)) /= 0.d0) then
|
||||
loop = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (.not.loop) then
|
||||
call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),exc,degree,phase2,Nint)
|
||||
hIl = hij_mrcc(idx_alpha(l_sd),i_I)
|
||||
! call i_h_j(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hIl)
|
||||
do i_state=1,Nstates
|
||||
dka(i_state) = hIl * lambda_mrcc(i_state,idx_alpha(l_sd)) * phase * phase2
|
||||
enddo
|
||||
endif
|
||||
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
do i_state=1,Nstates
|
||||
dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i_state=1,Nstates
|
||||
ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state)
|
||||
enddo
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
hla = hij_cache(k_sd)
|
||||
! call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hla)
|
||||
do i_state=1,Nstates
|
||||
dIa_hla(i_state,k_sd) = dIa(i_state) * hla
|
||||
enddo
|
||||
enddo
|
||||
call omp_set_lock( psi_ref_lock(i_I) )
|
||||
|
||||
|
||||
do i_state=1,Nstates
|
||||
if(dabs(psi_ref_coef(i_I,i_state)).ge.5.d-5)then
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
|
||||
enddo
|
||||
else
|
||||
do l_sd=1,idx_alpha(0)
|
||||
k_sd = idx_alpha(l_sd)
|
||||
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0 * dIa_hla(i_state,k_sd)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
call omp_unset_lock( psi_ref_lock(i_I) )
|
||||
enddo
|
||||
enddo
|
||||
deallocate (dIa_hla,hij_cache)
|
||||
deallocate(miniList, idx_miniList)
|
||||
end
|
||||
|
||||
|
||||
subroutine find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_miniList)
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,m
|
||||
logical :: is_in_wavefunction
|
||||
integer :: degree(psi_det_size)
|
||||
integer :: idx(0:psi_det_size)
|
||||
logical :: good
|
||||
|
||||
integer(bit_kind), intent(out) :: tq(Nint,2,n_selected)
|
||||
integer, intent(out) :: N_tq
|
||||
|
||||
|
||||
integer :: nt,ni
|
||||
logical, external :: is_connected_to
|
||||
|
||||
|
||||
integer(bit_kind),intent(in) :: miniList(Nint,2,N_det_generators)
|
||||
integer,intent(in) :: N_miniList
|
||||
|
||||
|
||||
|
||||
N_tq = 0
|
||||
|
||||
|
||||
|
||||
i_loop : do i=1,N_selected
|
||||
if(is_connected_to(det_buffer(1,1,i), miniList, Nint, N_miniList)) then
|
||||
cycle
|
||||
end if
|
||||
|
||||
! Select determinants that are triple or quadruple excitations
|
||||
! from the ref
|
||||
good = .True.
|
||||
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
|
||||
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
|
||||
do k=1,idx(0)
|
||||
if (degree(k) < 3) then
|
||||
good = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (good) then
|
||||
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
|
||||
N_tq += 1
|
||||
do k=1,N_int
|
||||
tq(k,1,N_tq) = det_buffer(k,1,i)
|
||||
tq(k,2,N_tq) = det_buffer(k,2,i)
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
enddo i_loop
|
||||
end
|
||||
|
||||
|
||||
subroutine find_triples_and_quadruples_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_generator,n_selected, Nint
|
||||
|
||||
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
|
||||
integer :: i,j,k,m
|
||||
logical :: is_in_wavefunction
|
||||
integer :: degree(psi_det_size)
|
||||
integer :: idx(0:psi_det_size)
|
||||
logical :: good
|
||||
|
||||
integer(bit_kind), intent(out) :: tq(Nint,2,n_selected)
|
||||
integer, intent(out) :: N_tq
|
||||
|
||||
|
||||
integer :: nt,ni
|
||||
logical, external :: is_connected_to
|
||||
|
||||
|
||||
integer(bit_kind),intent(in) :: microlist(Nint,2,*)
|
||||
integer,intent(in) :: ptr_microlist(0:*)
|
||||
integer,intent(in) :: N_microlist(0:*)
|
||||
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
|
||||
|
||||
integer :: mobiles(2), smallerlist
|
||||
|
||||
N_tq = 0
|
||||
|
||||
|
||||
|
||||
i_loop : do i=1,N_selected
|
||||
call getMobiles(det_buffer(1,1,i), key_mask, mobiles, Nint)
|
||||
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
|
||||
smallerlist = mobiles(1)
|
||||
else
|
||||
smallerlist = mobiles(2)
|
||||
end if
|
||||
|
||||
if(N_microlist(smallerlist) > 0) then
|
||||
if(is_connected_to(det_buffer(1,1,i), microlist(1,1,ptr_microlist(smallerlist)), Nint, N_microlist(smallerlist))) then
|
||||
cycle
|
||||
end if
|
||||
end if
|
||||
|
||||
if(N_microlist(0) > 0) then
|
||||
if(is_connected_to(det_buffer(1,1,i), microlist, Nint, N_microlist(0))) then
|
||||
cycle
|
||||
end if
|
||||
end if
|
||||
|
||||
! Select determinants that are triple or quadruple excitations
|
||||
! from the ref
|
||||
good = .True.
|
||||
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
|
||||
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
|
||||
do k=1,idx(0)
|
||||
if (degree(k) < 3) then
|
||||
good = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (good) then
|
||||
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
|
||||
N_tq += 1
|
||||
do k=1,N_int
|
||||
tq(k,1,N_tq) = det_buffer(k,1,i)
|
||||
tq(k,2,N_tq) = det_buffer(k,2,i)
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
enddo i_loop
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 128 KiB |
19
plugins/Molden/.gitignore
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
# Automatically created by $QP_ROOT/scripts/module/module_handler.py
|
||||
.ninja_deps
|
||||
.ninja_log
|
||||
AO_Basis
|
||||
Electrons
|
||||
Ezfio_files
|
||||
IRPF90_man
|
||||
IRPF90_temp
|
||||
MO_Basis
|
||||
MPI
|
||||
Makefile
|
||||
Makefile.depend
|
||||
Nuclei
|
||||
Utils
|
||||
ezfio_interface.irp.f
|
||||
irpf90.make
|
||||
irpf90_entities
|
||||
print_mo
|
||||
tags
|
Before Width: | Height: | Size: 31 KiB |
@ -1,21 +0,0 @@
|
||||
// ['Orbital_Entanglement']
|
||||
digraph {
|
||||
Orbital_Entanglement [fontcolor=red]
|
||||
Orbital_Entanglement -> Determinants
|
||||
Determinants -> Integrals_Monoelec
|
||||
Integrals_Monoelec -> MO_Basis
|
||||
MO_Basis -> AO_Basis
|
||||
AO_Basis -> Nuclei
|
||||
Nuclei -> Ezfio_files
|
||||
Nuclei -> Utils
|
||||
MO_Basis -> Electrons
|
||||
Electrons -> Ezfio_files
|
||||
Integrals_Monoelec -> Pseudo
|
||||
Pseudo -> Nuclei
|
||||
Determinants -> Integrals_Bielec
|
||||
Integrals_Bielec -> Pseudo
|
||||
Integrals_Bielec -> Bitmask
|
||||
Bitmask -> MO_Basis
|
||||
Integrals_Bielec -> ZMQ
|
||||
ZMQ -> Utils
|
||||
}
|