10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-17 02:35:26 +02:00

S2 is selected by Davidson

This commit is contained in:
Anthony Scemama 2016-09-30 21:38:01 +02:00
parent 53306453c2
commit 5ada238422
2 changed files with 112 additions and 133 deletions

View File

@ -96,14 +96,15 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
integer :: k_pairs, kl
integer :: iter2
double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:), S(:,:,:)
double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), H_small(:,:)
double precision, allocatable :: W(:,:), U(:,:), R(:,:), S(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:)
double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
integer :: shift, shift2
include 'constants.include.F'
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, R, S, y, h, lambda
@ -153,17 +154,18 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
allocate( &
kl_pairs(2,N_st_diag*(N_st_diag+1)/2), &
W(sze_8,N_st_diag,davidson_sze_max), &
U(sze_8,N_st_diag,davidson_sze_max), &
W(sze_8,N_st_diag*davidson_sze_max), &
U(sze_8,N_st_diag*davidson_sze_max), &
R(sze_8,N_st_diag), &
S(sze_8,N_st_diag,davidson_sze_max), &
h(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
y(N_st_diag,davidson_sze_max,N_st_diag,davidson_sze_max), &
S(sze_8,N_st_diag*davidson_sze_max), &
h(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
y(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
s_tmp(N_st_diag*davidson_sze_max,N_st_diag*davidson_sze_max), &
residual_norm(N_st_diag), &
overlap(N_st_diag,N_st_diag), &
c(N_st_diag*davidson_sze_max), &
H_small(N_st_diag,N_st_diag), &
s2(N_st_diag), &
s2(N_st_diag*davidson_sze_max), &
lambda(N_st_diag*davidson_sze_max))
ASSERT (N_st > 0)
@ -203,16 +205,21 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag
do i=1,sze
U(i,k,1) = u_in(i,k)
U(i,k) = u_in(i,k)
enddo
enddo
do iter=1,davidson_sze_max-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------------
call H_S2_u_0_nstates(W(1,1,iter),S(1,1,iter),U(1,1,iter),H_jj,S2_jj,sze,dets_in,Nint,N_st_diag,sze_8)
call H_S2_u_0_nstates(W(1,shift+1),S(1,shift+1),U(1,shift+1),H_jj,S2_jj,sze,dets_in,Nint,N_st_diag,sze_8)
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
@ -232,56 +239,95 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
! enddo
! enddo
call dgemm('T','N', N_st_diag*iter, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,1,iter), size(W,1), &
0.d0, h(1,1,1,iter), size(h,1)*size(h,2))
call dgemm('T','N', shift2, N_st_diag, sze, &
1.d0, U, size(U,1), W(1,shift+1), size(W,1), &
0.d0, h(1,shift+1), size(h,1))
call dgemm('T','N', shift2, N_st_diag, sze, &
1.d0, U, size(U,1), S(1,shift+1), size(S,1), &
0.d0, s_(1,shift+1), size(s_,1))
! Diagonalize h
! -------------
call lapack_diag(lambda,y,h,N_st_diag*davidson_sze_max,N_st_diag*iter)
call lapack_diag(lambda,y,h,size(h,1),shift2)
! Compute S2 for each eigenvector
! -------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, s_, size(s_,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, s_, size(s_,1))
do k=1,shift2
s2(k) = s_(k,k) + S_z2_Sz
enddo
if (s2_eig) then
logical :: state_ok(N_st_diag*davidson_sze_max)
do k=1,shift2
state_ok(k) = (dabs(s2(k)-expected_s2) < 0.3d0)
enddo
do k=1,shift2
if (.not. state_ok(k)) then
do l=k+1,shift2
if (state_ok(l)) then
call dswap(shift2, y(1,k), 1, y(1,l), 1)
call dswap(1, s2(k), 1, s2(l), 1)
call dswap(1, lambda(k), 1, lambda(l), 1)
state_ok(k) = .True.
state_ok(l) = .False.
exit
endif
enddo
endif
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
do k=1,N_st_diag
do i=1,sze
U(i,k,iter+1) = 0.d0
W(i,k,iter+1) = 0.d0
S(i,k,iter+1) = 0.d0
enddo
enddo
! do k=1,N_st_diag
! do iter2=1,iter
! do l=1,N_st_diag
! do i=1,sze
! U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
! W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
! S(i,k,iter+1) = W(i,k,iter+1) + S(i,l,iter2)*y(l,iter2,k,1)
! enddo
! do i=1,sze
! U(i,shift2+k) = 0.d0
! W(i,shift2+k) = 0.d0
! S(i,shift2+k) = 0.d0
! enddo
! do l=1,N_st_diag*iter
! do i=1,sze
! U(i,shift2+k) = U(i,shift2+k) + U(i,l)*y(l,k)
! W(i,shift2+k) = W(i,shift2+k) + W(i,l)*y(l,k)
! S(i,shift2+k) = S(i,shift2+k) + S(i,l)*y(l,k)
! enddo
! enddo
! enddo
!
!
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, &
1.d0, U, size(U,1), y, size(y,1)*size(y,2), 0.d0, U(1,1,iter+1), size(U,1))
call dgemm('N','N',sze,N_st_diag,N_st_diag*iter, &
1.d0, W, size(W,1), y, size(y,1)*size(y,2), 0.d0, W(1,1,iter+1), size(W,1))
call dgemm('N','N',sze,N_st_diag,1, &
1.d0, S, size(S,1), y, size(y,1)*size(y,2), 0.d0, S(1,1,iter+1), size(S,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, S, size(S,1), y, size(y,1), 0.d0, S(1,shift2+1), size(S,1))
! Compute residual vector
! -----------------------
do k=1,N_st_diag
s2(k) = u_dot_v(U(1,k,iter+1), S(1,k,iter+1), sze) + S_z2_Sz
enddo
! do k=1,N_st_diag
! print *, s2(k)
! s2(k) = u_dot_v(U(1,shift2+k), S(1,shift2+k), sze) + S_z2_Sz
! print *, s2(k)
! print *, ''
! pause
! enddo
do k=1,N_st_diag
do i=1,sze
R(i,k) = (lambda(k) * U(i,k,iter+1) - W(i,k,iter+1) ) &
* (1.d0 + s2(k) * U(i,k,iter+1) - S(i,k,iter+1) - S_z2_Sz)
R(i,k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
* (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(R(1,k),sze)
@ -305,7 +351,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag
do i=1,sze
U(i,k,iter+1) = - R(i,k)/max(H_jj(i) - lambda(k),1.d-2)
U(i,shift2+k) = - R(i,k)/max(H_jj(i) - lambda(k),1.d-2)
enddo
enddo
@ -314,33 +360,31 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag
! do iter2=1,iter
! do l=1,N_st_diag
! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
! do l=1,N_st_diag*iter
! c(1) = u_dot_v(U(1,shift2+k),U(1,l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter2)
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,l)
! enddo
! enddo
! enddo
!
call dgemv('T',sze,N_st_diag*iter,1.d0,U,size(U,1), &
U(1,k,iter+1),1,0.d0,c,1)
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,N_st_diag*iter,-1.d0,U,size(U,1), &
c,1,1.d0,U(1,k,iter+1),1)
c,1,1.d0,U(1,shift2+k),1)
!
! do l=1,k-1
! c(1) = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze)
! c(1) = u_dot_v(U(1,shift2+k),U(1,shift2+l),sze)
! do i=1,sze
! U(i,k,iter+1) = U(i,k,iter+1) - c(1) * U(i,l,iter+1)
! U(i,k,iter+1) = U(i,shift2+k) - c(1) * U(i,shift2+l)
! enddo
! enddo
!
call dgemv('T',sze,k-1,1.d0,U(1,1,iter+1),size(U,1), &
U(1,k,iter+1),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,U(1,1,iter+1),size(U,1), &
c,1,1.d0,U(1,k,iter+1),1)
call dgemv('T',sze,k-1,1.d0,U(1,shift2+1),size(U,1), &
U(1,shift2+k),1,0.d0,c,1)
call dgemv('N',sze,k-1,-1.d0,U(1,shift2+1),size(U,1), &
c,1,1.d0,U(1,shift2+k),1)
call normalize( U(1,k,iter+1), sze )
call normalize( U(1,shift2+k), sze )
enddo
enddo
@ -354,23 +398,19 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
do k=1,N_st_diag
energies(k) = lambda(k)
do i=1,sze
u_in(i,k) = 0.d0
enddo
enddo
! do k=1,N_st_diag
! do i=1,sze
! do iter2=1,iter
! do l=1,N_st_diag
! u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
! do l=1,iter*N_st_diag
! u_in(i,k) += U(i,l)*y(l,k)
! enddo
! enddo
! enddo
! enddo
call dgemm('N','N', sze, N_st_diag, N_st_diag*iter, 1.d0, &
U, size(U,1), y, N_st_diag*davidson_sze_max, &
0.d0, u_in, size(u_in,1))
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
enddo
@ -386,9 +426,9 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_jj,energies,dim_in,sze,N_s
kl_pairs, &
W, residual_norm, &
U, overlap, &
R, c, &
R, c, S, &
h, &
y, &
y, s_, s_tmp, &
lambda &
)
end

View File

@ -55,6 +55,10 @@ END_PROVIDER
if (diag_algorithm == "Davidson") then
! call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, &
! size(CI_eigenvectors,1), &
! N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,output_determinants)
!
call davidson_diag_HS2(psi_det,CI_eigenvectors, &
size(CI_eigenvectors,1),CI_electronic_energy, &
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,output_determinants)
@ -145,71 +149,6 @@ END_PROVIDER
deallocate(eigenvectors,eigenvalues)
endif
if( s2_eig.and.(N_states_diag > 1).and.(N_det >= N_states_diag) )then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag), e_array(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,N_det,size(psi_det,3), &
size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
double precision, allocatable :: psi_coef_tmp(:,:)
allocate(psi_coef_tmp(psi_det_size,N_states_diag))
do j = 1, N_states_diag
do i = 1, N_det
psi_coef_tmp(i,j) = CI_eigenvectors(i,j)
enddo
enddo
call u_0_H_u_0(e_array,psi_coef_tmp,n_det,psi_det,N_int,N_states_diag,psi_det_size)
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
i_state = 0
do j = 1, N_states_diag
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
good_state_array(j) = .True.
i_state +=1
index_good_state_array(i_state) = j
endif
enddo
! Sorting the i_state good states by energy
allocate(iorder(i_state))
do j = 1, i_state
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef_tmp(i,index_good_state_array(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
CI_electronic_energy(j) = e_array(j)
iorder(j) = j
enddo
call dsort(e_array,iorder,i_state)
do j = 1, i_state
CI_electronic_energy(j) = e_array(j)
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef_tmp(i,index_good_state_array(iorder(j)))
enddo
enddo
! Then setting the other states without any specific energy order
i_other_state = 0
do j = 1, N_states_diag
if(good_state_array(j))cycle
i_other_state +=1
do i = 1, N_det
CI_eigenvectors(i,i_state + i_other_state) = psi_coef_tmp(i,j)
enddo
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
CI_electronic_energy(i_state + i_other_state) = e_array(i_state + i_other_state)
enddo
deallocate(iorder,e_array,index_good_state_array,good_state_array,psi_coef_tmp)
deallocate(s2_eigvalues)
endif
END_PROVIDER
subroutine diagonalize_CI