10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-26 15:12:14 +02:00

Working on S^2

This commit is contained in:
Manu 2014-10-07 16:23:19 +02:00
parent 5e7644e166
commit 590cc9574b
9 changed files with 48 additions and 42 deletions

View File

@ -17,8 +17,9 @@ cis_dressed
determinants determinants
n_states 1 n_states 1
n_states_diag determinants_n_states
n_det_max_jacobi 5000 n_det_max_jacobi 5000
threshold_generators 0.999 threshold_generators 0.995
threshold_selectors 0.999 threshold_selectors 0.999
read_wf False read_wf False

View File

@ -175,7 +175,7 @@ subroutine CISD_SC2(dets_in,u_in,energies,dim_in,sze,N_st,Nint,convergence)
enddo enddo
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_tmp,size(H_matrix_all_dets,1),sze) H_matrix_tmp,size(H_matrix_all_dets,1),sze)
do j=1,min(N_states,sze) do j=1,min(N_states_diag,sze)
do i=1,sze do i=1,sze
u_in(i,j) = eigenvectors(i,j) u_in(i,j) = eigenvectors(i,j)
enddo enddo

View File

@ -12,7 +12,7 @@ BEGIN_PROVIDER [ integer, davidson_sze_max ]
! Max number of Davidson sizes ! Max number of Davidson sizes
END_DOC END_DOC
ASSERT (davidson_sze_max <= davidson_iter_max) ASSERT (davidson_sze_max <= davidson_iter_max)
davidson_sze_max = 8*N_states davidson_sze_max = 8*N_states_diag
END_PROVIDER END_PROVIDER
subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit) subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)

View File

@ -4,6 +4,7 @@ determinants
mo_label character*(64) mo_label character*(64)
n_det integer n_det integer
n_states integer n_states integer
n_states_diag integer
psi_coef double precision (determinants_n_det,determinants_n_states) psi_coef double precision (determinants_n_det,determinants_n_states)
psi_det integer*8 (determinants_n_int*determinants_bit_kind/8,2,determinants_n_det) psi_det integer*8 (determinants_n_int*determinants_bit_kind/8,2,determinants_n_det)
n_det_max_jacobi integer n_det_max_jacobi integer

View File

@ -150,7 +150,7 @@ subroutine read_dets(det,Nint,Ndet)
end end
BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ] BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file ! The wave function coefficients. Initialized with Hartree-Fock if the EZFIO file
@ -161,6 +161,11 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]
logical :: exists logical :: exists
double precision, allocatable :: psi_coef_read(:,:) double precision, allocatable :: psi_coef_read(:,:)
character*(64) :: label character*(64) :: label
psi_coef = 0.d0
do i=1,N_states_diag
psi_coef(i,i) = 1.d0
enddo
if (read_wf) then if (read_wf) then
call ezfio_has_determinants_psi_coef(exists) call ezfio_has_determinants_psi_coef(exists)
@ -183,22 +188,8 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]
enddo enddo
deallocate(psi_coef_read) deallocate(psi_coef_read)
else
psi_coef = 0.d0
do i=1,N_states
psi_coef(i,i) = 1.d0
enddo
endif endif
else
psi_coef = 0.d0
do i=1,N_states
psi_coef(i,i) = 1.d0
enddo
endif endif

View File

@ -9,13 +9,13 @@ BEGIN_PROVIDER [ character*(64), diag_algorithm ]
diag_algorithm = "Lapack" diag_algorithm = "Lapack"
endif endif
if (N_det < N_states) then if (N_det < N_states_diag) then
diag_algorithm = "Lapack" diag_algorithm = "Lapack"
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy, (N_states) ] BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix ! N_states lowest eigenvalues of the CI matrix
@ -24,23 +24,25 @@ BEGIN_PROVIDER [ double precision, CI_energy, (N_states) ]
integer :: j integer :: j
character*(8) :: st character*(8) :: st
call write_time(output_Dets) call write_time(output_Dets)
do j=1,N_states do j=1,N_states_diag
CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion
write(st,'(I4)') j write(st,'(I4)') j
call write_double(output_Dets,CI_energy(j),'Energy of state '//trim(st)) call write_double(output_Dets,CI_energy(j),'Energy of state '//trim(st))
call write_double(output_Dets,CI_eigenvectors_s2(j),'S^2 of state '//trim(st))
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states) ] BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Eigenvectors/values of the CI matrix ! Eigenvectors/values of the CI matrix
END_DOC END_DOC
integer :: i,j integer :: i,j
do j=1,N_states do j=1,N_states_diag
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = psi_coef(i,j) CI_eigenvectors(i,j) = psi_coef(i,j)
enddo enddo
@ -49,7 +51,7 @@ END_PROVIDER
if (diag_algorithm == "Davidson") then if (diag_algorithm == "Davidson") then
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, &
size(CI_eigenvectors,1),N_det,N_states,N_int,output_Dets) size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_Dets)
else if (diag_algorithm == "Lapack") then else if (diag_algorithm == "Lapack") then
@ -63,17 +65,18 @@ END_PROVIDER
double precision :: s2 double precision :: s2
j=0 j=0
i_state = 0 i_state = 0
! do while(i_state.lt.N_states) do while(i_state.lt.min(N_states_diag,N_det))
j+=1 j+=1
! call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
! if(dabs(s2-expected_s2).le.0.1d0)then if(dabs(s2-expected_s2).le.0.1d0)then
i_state += 1 i_state += 1
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,i_state) = eigenvectors(i,j) CI_eigenvectors(i,i_state) = eigenvectors(i,j)
enddo enddo
CI_electronic_energy(i_state) = eigenvalues(j) CI_electronic_energy(i_state) = eigenvalues(j)
! endif CI_eigenvectors_s2(i_state) = s2
! enddo endif
enddo
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif
@ -86,10 +89,10 @@ subroutine diagonalize_CI
! eigenstates of the CI matrix ! eigenstates of the CI matrix
END_DOC END_DOC
integer :: i,j integer :: i,j
do j=1,N_states do j=1,N_states_diag
do i=1,N_det do i=1,N_det
psi_coef(i,j) = CI_eigenvectors(i,j) psi_coef(i,j) = CI_eigenvectors(i,j)
enddo enddo
enddo enddo
SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2
end end

View File

@ -1,13 +1,13 @@
BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states) ] BEGIN_PROVIDER [ double precision, CI_SC2_energy, (N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix ! N_states_diag lowest eigenvalues of the CI matrix
END_DOC END_DOC
integer :: j integer :: j
character*(8) :: st character*(8) :: st
call write_time(output_Dets) call write_time(output_Dets)
do j=1,N_states do j=1,N_states_diag
CI_SC2_energy(j) = CI_SC2_electronic_energy(j) + nuclear_repulsion CI_SC2_energy(j) = CI_SC2_electronic_energy(j) + nuclear_repulsion
write(st,'(I4)') j write(st,'(I4)') j
call write_double(output_Dets,CI_SC2_energy(j),'Energy of state '//trim(st)) call write_double(output_Dets,CI_SC2_energy(j),'Energy of state '//trim(st))
@ -23,15 +23,15 @@ END_PROVIDER
threshold_convergence_SC2 = 1.d-10 threshold_convergence_SC2 = 1.d-10
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states) ] BEGIN_PROVIDER [ double precision, CI_SC2_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states) ] &BEGIN_PROVIDER [ double precision, CI_SC2_eigenvectors, (N_det,N_states_diag) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Eigenvectors/values of the CI matrix ! Eigenvectors/values of the CI matrix
END_DOC END_DOC
integer :: i,j integer :: i,j
do j=1,N_states do j=1,N_states_diag
do i=1,N_det do i=1,N_det
CI_SC2_eigenvectors(i,j) = psi_coef(i,j) CI_SC2_eigenvectors(i,j) = psi_coef(i,j)
! CI_SC2_eigenvectors(i,j) = CI_eigenvectors(i,j) ! CI_SC2_eigenvectors(i,j) = CI_eigenvectors(i,j)
@ -41,17 +41,17 @@ END_PROVIDER
double precision :: convergence double precision :: convergence
call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, & call CISD_SC2(psi_det,CI_SC2_eigenvectors,CI_SC2_electronic_energy, &
size(CI_SC2_eigenvectors,1),N_det,N_states,N_int,threshold_convergence_SC2) size(CI_SC2_eigenvectors,1),N_det,N_states_diag,N_int,threshold_convergence_SC2)
END_PROVIDER END_PROVIDER
subroutine diagonalize_CI_SC2 subroutine diagonalize_CI_SC2
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the ! Replace the coefficients of the CI states_diag by the coefficients of the
! eigenstates of the CI matrix ! eigenstates of the CI matrix
END_DOC END_DOC
integer :: i,j integer :: i,j
do j=1,N_states do j=1,N_states_diag
do i=1,N_det do i=1,N_det
psi_coef(i,j) = CI_SC2_eigenvectors(i,j) psi_coef(i,j) = CI_SC2_eigenvectors(i,j)
enddo enddo

View File

@ -9,6 +9,16 @@ T.set_ezfio_name( "N_states" )
T.set_output ( "output_dets" ) T.set_output ( "output_dets" )
print T print T
T.set_type ( "integer" )
T.set_name ( "N_states_diag" )
T.set_doc ( "Number of states to consider for the diagonalization " )
T.set_ezfio_dir ( "determinants" )
T.set_ezfio_name( "N_states_diag" )
T.set_output ( "output_dets" )
print T
T.set_name ( "N_det_max_jacobi" ) T.set_name ( "N_det_max_jacobi" )
T.set_doc ( "Maximum number of determinants diagonalized by Jacobi" ) T.set_doc ( "Maximum number of determinants diagonalized by Jacobi" )
T.set_ezfio_name( "N_det_max_jacobi" ) T.set_ezfio_name( "N_det_max_jacobi" )

View File

@ -52,7 +52,7 @@ BEGIN_PROVIDER [ double precision, expected_s2]
call ezfio_get_determinants_expected_s2(expected_s2) call ezfio_get_determinants_expected_s2(expected_s2)
else else
expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num)) expected_s2 = elec_alpha_num - elec_beta_num + 0.5d0 * ((elec_alpha_num - elec_beta_num)**2*0.5d0 - (elec_alpha_num-elec_beta_num))
call ezfio_set_determinants_expected_s2(expected_s2) ! call ezfio_set_determinants_expected_s2(expected_s2)
endif endif
END_PROVIDER END_PROVIDER