mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 10:05:57 +01:00
Working on Slater dressing
This commit is contained in:
parent
9242ca4584
commit
4cb4d5e416
@ -13,7 +13,7 @@
|
||||
FC : gfortran -g -ffree-line-length-none -I .
|
||||
LAPACK_LIB : -llapack -lblas
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert
|
||||
|
||||
# Global options
|
||||
################
|
||||
|
@ -216,7 +216,24 @@ END_DOC
|
||||
double precision, allocatable :: AF(:,:)
|
||||
allocate (AF(dim_DIIS+1,dim_DIIS+1))
|
||||
double precision :: rcond, ferr, berr
|
||||
integer :: iwork(dim_DIIS+1)
|
||||
integer :: iwork(dim_DIIS+1), lwork
|
||||
|
||||
call dsysvx('N','U',dim_DIIS+1,1, &
|
||||
B_matrix_DIIS,size(B_matrix_DIIS,1), &
|
||||
AF, size(AF,1), &
|
||||
ipiv, &
|
||||
C_vector_DIIS,size(C_vector_DIIS,1), &
|
||||
X_vector_DIIS,size(X_vector_DIIS,1), &
|
||||
rcond, &
|
||||
ferr, &
|
||||
berr, &
|
||||
scratch,-1, &
|
||||
iwork, &
|
||||
info &
|
||||
)
|
||||
lwork = int(scratch(1,1))
|
||||
deallocate(scratch)
|
||||
allocate(scratch(lwork,1))
|
||||
|
||||
call dsysvx('N','U',dim_DIIS+1,1, &
|
||||
B_matrix_DIIS,size(B_matrix_DIIS,1), &
|
||||
|
@ -1,46 +1,38 @@
|
||||
BEGIN_PROVIDER [ double precision, diagonal_Fock_matrix_mo, (mo_tot_num) ]
|
||||
BEGIN_PROVIDER [ double precision, diagonal_Fock_matrix_mo, (ao_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num_align,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Diagonal Fock matrix in the MO basis
|
||||
END_DOC
|
||||
|
||||
integer :: i,j, m
|
||||
integer :: i,j
|
||||
integer :: liwork, lwork, n, info
|
||||
integer, allocatable :: iwork(:), isuppz(:)
|
||||
double precision, allocatable :: work(:), F(:,:), F2(:,:)
|
||||
integer :: iorb,jorb
|
||||
integer, allocatable :: iwork(:)
|
||||
double precision, allocatable :: work(:), F(:,:), S(:,:)
|
||||
|
||||
|
||||
allocate( F(mo_tot_num,mo_tot_num),F2(mo_tot_num,mo_tot_num), isuppz(2*mo_tot_num) )
|
||||
allocate( F(mo_tot_num,mo_tot_num) )
|
||||
do j=1,mo_tot_num
|
||||
do i=1,mo_tot_num
|
||||
F(i,j) = Fock_matrix_mo(i,j)
|
||||
enddo
|
||||
enddo
|
||||
if(no_oa_or_av_opt)then
|
||||
integer :: iorb,jorb
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
ASSERT (iorb > 0)
|
||||
ASSERT (iorb <= mo_tot_num)
|
||||
do j = 1, n_inact_orb
|
||||
jorb = list_inact(j)
|
||||
ASSERT (jorb > 0)
|
||||
ASSERT (jorb <= mo_tot_num)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
do j = 1, n_virt_orb
|
||||
jorb = list_virt(j)
|
||||
ASSERT (jorb > 0)
|
||||
ASSERT (jorb <= mo_tot_num)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
do j = 1, n_core_orb
|
||||
jorb = list_core(j)
|
||||
ASSERT (jorb > 0)
|
||||
ASSERT (jorb <= mo_tot_num)
|
||||
F(iorb,jorb) = 0.d0
|
||||
F(jorb,iorb) = 0.d0
|
||||
enddo
|
||||
@ -61,28 +53,50 @@
|
||||
|
||||
n = mo_tot_num
|
||||
lwork = 1+6*n + 2*n*n
|
||||
liwork = 10*n
|
||||
liwork = 3 + 5*n
|
||||
|
||||
allocate(work(lwork))
|
||||
allocate(iwork(liwork) )
|
||||
|
||||
call dsyevr('V', 'A', 'U', mo_tot_num, F, size(F,1), &
|
||||
-100.d0, 100.d0, 1, mo_tot_num, 0.d0, &
|
||||
m, diagonal_Fock_matrix_mo, &
|
||||
F2, size(F2,1), &
|
||||
isuppz, work, lwork, iwork, liwork, info)
|
||||
lwork = -1
|
||||
liwork = -1
|
||||
|
||||
call dsyevd( 'V', 'U', mo_tot_num, F, &
|
||||
size(F,1), diagonal_Fock_matrix_mo, &
|
||||
work, lwork, iwork, liwork, info)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, irp_here//' DSYEVD failed : ', info
|
||||
stop 1
|
||||
endif
|
||||
lwork = int(work(1))
|
||||
liwork = iwork(1)
|
||||
deallocate(iwork)
|
||||
deallocate(work)
|
||||
|
||||
allocate(work(lwork))
|
||||
allocate(iwork(liwork) )
|
||||
call dsyevd( 'V', 'U', mo_tot_num, F, &
|
||||
size(F,1), diagonal_Fock_matrix_mo, &
|
||||
work, lwork, iwork, liwork, info)
|
||||
deallocate(iwork)
|
||||
|
||||
|
||||
if (info /= 0) then
|
||||
call dsyev( 'V', 'L', mo_tot_num, F, &
|
||||
size(F,1), diagonal_Fock_matrix_mo, &
|
||||
work, lwork, info)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, irp_here//' DSYEV failed : ', info
|
||||
stop 1
|
||||
endif
|
||||
endif
|
||||
|
||||
call dgemm('N','N',ao_num,mo_tot_num,mo_tot_num, 1.d0, &
|
||||
mo_coef, size(mo_coef,1), F2, size(F2,1), &
|
||||
mo_coef, size(mo_coef,1), F, size(F,1), &
|
||||
0.d0, eigenvectors_Fock_matrix_mo, size(eigenvectors_Fock_matrix_mo,1))
|
||||
deallocate(work, F2, F)
|
||||
deallocate(iwork, isuppz)
|
||||
|
||||
deallocate(work, F)
|
||||
|
||||
|
||||
|
||||
|
14
plugins/Hartree_Fock_SlaterDressed/EZFIO.cfg
Normal file
14
plugins/Hartree_Fock_SlaterDressed/EZFIO.cfg
Normal file
@ -0,0 +1,14 @@
|
||||
[slater_expo_ezfio]
|
||||
type: double precision
|
||||
doc: Exponents of the additional Slater functions
|
||||
size: (nuclei.nucl_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[slater_coef_ezfio]
|
||||
type: double precision
|
||||
doc: Exponents of the additional Slater functions
|
||||
size: (mo_basis.mo_tot_num,nuclei.nucl_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
|
||||
|
@ -6,21 +6,19 @@ BEGIN_PROVIDER [ double precision, cusp_A, (nucl_num, nucl_num) ]
|
||||
|
||||
integer :: mu, A, B
|
||||
|
||||
do B=1,nucl_num
|
||||
cusp_A = 0.d0
|
||||
do A=1,nucl_num
|
||||
cusp_A(A,B) = 0.d0
|
||||
if (A/=B) then
|
||||
cusp_A(A,B) -= slater_value_at_nucl(A,B)
|
||||
endif
|
||||
cusp_A(A,A) = slater_expo(A)/nucl_charge(A) * slater_value_at_nucl(A,A)
|
||||
do B=1,nucl_num
|
||||
cusp_A(A,B) -= slater_value_at_nucl(B,A)
|
||||
do mu=1,ao_num
|
||||
cusp_A(A,B) += slater_overlap(mu,B) * ao_value_at_nucl(mu,A)
|
||||
cusp_A(A,B) += GauSlaOverlap_matrix(mu,B) * ao_value_at_nucl(mu,A)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cusp_C, (nucl_num, mo_tot_num) ]
|
||||
BEGIN_PROVIDER [ double precision, cusp_B, (nucl_num, mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Equations to solve : A.C = B
|
||||
@ -30,20 +28,25 @@ BEGIN_PROVIDER [ double precision, cusp_C, (nucl_num, mo_tot_num) ]
|
||||
|
||||
do i=1,mo_tot_num
|
||||
do A=1,nucl_num
|
||||
cusp_C(A,i) = mo_value_at_nucl(i,A)
|
||||
cusp_B(A,i) = mo_value_at_nucl(i,A)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
integer, allocatable :: ipiv(:)
|
||||
allocate ( ipiv(nucl_num) )
|
||||
call dgegv(nucl_num, mo_tot_num, cusp_A, size(cusp_A,1), &
|
||||
ipiv, cusp_C, size(cusp_C,1), info)
|
||||
deallocate (ipiv)
|
||||
|
||||
if (info /= 0) then
|
||||
print *, 'Cusp : linear solve failed'
|
||||
stop -1
|
||||
endif
|
||||
BEGIN_PROVIDER [ double precision, cusp_C, (nucl_num, mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Equations to solve : A.C = B
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: AF(:,:)
|
||||
integer :: info
|
||||
allocate ( AF(nucl_num,nucl_num) )
|
||||
|
||||
call get_pseudo_inverse(cusp_A,nucl_num,nucl_num,AF,size(AF,1))
|
||||
call dgemm('N','N',nucl_num,mo_tot_num,nucl_num,1.d0, &
|
||||
AF,size(AF,1), cusp_B, size(cusp_B,1), 0.d0, cusp_C, size(cusp_C,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
69
plugins/Hartree_Fock_SlaterDressed/SCF_dressed.irp.f
Normal file
69
plugins/Hartree_Fock_SlaterDressed/SCF_dressed.irp.f
Normal file
@ -0,0 +1,69 @@
|
||||
program scf
|
||||
BEGIN_DOC
|
||||
! Produce `Hartree_Fock` MO orbital with Slater cusp dressing
|
||||
! output: mo_basis.mo_tot_num mo_basis.mo_label mo_basis.ao_md5 mo_basis.mo_coef mo_basis.mo_occ
|
||||
! output: hartree_fock.energy
|
||||
! optional: mo_basis.mo_coef
|
||||
END_DOC
|
||||
call check_mos
|
||||
call debug
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine check_mos
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Create a MO guess if no MOs are present in the EZFIO directory
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
call ezfio_has_mo_basis_mo_coef(exists)
|
||||
if (.not.exists) then
|
||||
print *, 'Please run SCF first'
|
||||
stop
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine debug
|
||||
implicit none
|
||||
integer :: i
|
||||
print *, 'A'
|
||||
do i=1,nucl_num
|
||||
print *, i, cusp_A(1:nucl_num, i)
|
||||
enddo
|
||||
print *, 'B'
|
||||
do i=1,mo_tot_num
|
||||
print *, i, cusp_B(1:nucl_num, i)
|
||||
enddo
|
||||
print *, 'C'
|
||||
do i=1,mo_tot_num
|
||||
print *, i, cusp_C(1:nucl_num, i)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine run
|
||||
|
||||
BEGIN_DOC
|
||||
! Run SCF calculation
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
double precision :: SCF_energy_before,SCF_energy_after,diag_H_mat_elem
|
||||
double precision :: EHF
|
||||
integer :: i_it, i, j, k
|
||||
|
||||
EHF = HF_energy
|
||||
|
||||
mo_label = "CuspDressed"
|
||||
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(cusp_B)
|
||||
! Choose SCF algorithm
|
||||
|
||||
|
||||
! call Roothaan_Hall_SCF
|
||||
|
||||
end
|
||||
|
||||
|
@ -58,7 +58,7 @@ BEGIN_PROVIDER [ double precision , slater_value_at_nucl, (nucl_num,nucl_num) ]
|
||||
expo = slater_expo(i)*slater_expo(i)*((x*x) + (y*y) + (z*z))
|
||||
if (expo > 160.d0) cycle
|
||||
expo = dsqrt(expo)
|
||||
slater_value_at_nucl(i,k) = dexp(-expo)
|
||||
slater_value_at_nucl(i,k) = dexp(-expo) * slater_normalization(i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -1,15 +1,17 @@
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla)
|
||||
subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla,result)
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the overlap integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
|
||||
implicit none
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
double precision,intent(in) :: cGau(3),cSla(3)
|
||||
integer,intent(in) :: aGau(3)
|
||||
double precision,intent(out) :: result
|
||||
|
||||
! Final value of the integrals
|
||||
double precision :: ss,ps,ds
|
||||
@ -82,13 +84,38 @@ subroutine GauSlaOverlap(expGau,cGau,aGau,expSla,cSla)
|
||||
dxzs = AxBx*AzBz*ds
|
||||
dyzs = AyBy*AzBz*ds
|
||||
|
||||
! Print result
|
||||
write(*,'(A10,F16.10)') &
|
||||
'(s|s) = ',ss
|
||||
write(*,'(A10,F16.10,3X,A10,F16.10,3X,A10,F16.10)') &
|
||||
'(px|s) = ',pxs,'(py|s) = ',pys,'(pz|s) = ',pzs
|
||||
write(*,'(A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10,3X,A10,F16.10)') &
|
||||
'(dx2|s) = ',dxxs,'(dy2|s) = ',dyys,'(dz2|s) = ',dzzs,'(dxy|s) = ',dxys,'(dxz|s) = ',dxzs,'(dyz|s) = ',dyzs
|
||||
select case (sum(aGau))
|
||||
case (0)
|
||||
result = ss
|
||||
|
||||
case (1)
|
||||
if (aGau(1) == 1) then
|
||||
result = pxs
|
||||
else if (aGau(2) == 1) then
|
||||
result = pys
|
||||
else if (aGau(3) == 1) then
|
||||
result = pzs
|
||||
endif
|
||||
|
||||
case (2)
|
||||
if (aGau(1) == 2) then
|
||||
result = dxxs
|
||||
else if (aGau(2) == 2) then
|
||||
result = dyys
|
||||
else if (aGau(3) == 2) then
|
||||
result = dzzs
|
||||
else if (aGau(1)+aGau(2) == 2) then
|
||||
result = dxys
|
||||
else if (aGau(1)+aGau(3) == 2) then
|
||||
result = dxzs
|
||||
else if (aGau(2)+aGau(3) == 2) then
|
||||
result = dyzs
|
||||
endif
|
||||
|
||||
case default
|
||||
stop 'GauSlaOverlap not implemented'
|
||||
|
||||
end select
|
||||
|
||||
end
|
||||
!*****************************************************************************
|
||||
@ -97,10 +124,12 @@ end
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaKinetic(expGau,cGau,aGau,expSla,cSla)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the kinetic energy integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
|
||||
implicit none
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
@ -195,10 +224,12 @@ end
|
||||
!*****************************************************************************
|
||||
subroutine GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the nuclear attraction integral between a Gaussian function
|
||||
! with arbitrary angular momemtum and a s-type Slater function
|
||||
|
||||
implicit none
|
||||
END_DOC
|
||||
|
||||
! Input variables
|
||||
double precision,intent(in) :: expGau,expSla
|
||||
@ -242,7 +273,8 @@ subroutine GauSlaNuclear(expGau,cGau,aGau,expSla,cSla,ZNuc,cNuc)
|
||||
end
|
||||
!*****************************************************************************
|
||||
double precision function BoysF0(t)
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: t
|
||||
double precision :: pi
|
||||
|
||||
pi = 4d0*atan(1d0)
|
||||
@ -257,4 +289,35 @@ end
|
||||
!*****************************************************************************
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, GauSlaOverlap_matrix, (ao_num, nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! <Gaussian | Slater> overlap matrix
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: cGau(3)
|
||||
double precision :: cSla(3)
|
||||
double precision :: expSla, res, expGau
|
||||
integer :: aGau(3)
|
||||
|
||||
do k=1,nucl_num
|
||||
cSla(1:3) = nucl_coord_transp(1:3,k)
|
||||
expSla = slater_expo(k)
|
||||
|
||||
do i=1,ao_num
|
||||
cGau(1:3) = nucl_coord_transp(1:3, ao_nucl(i))
|
||||
aGau(1:3) = ao_power(i,1:3)
|
||||
GauSlaOverlap_matrix(i,k) = 0.d0
|
||||
|
||||
do j=1,ao_prim_num(i)
|
||||
expGau = ao_expo_ordered_transp(j,i)
|
||||
call GauSlaOverlap(expGau,cGau,aGau,expSla,cSla,res)
|
||||
GauSlaOverlap_matrix(i,k) += ao_coef_normalized_ordered_transp(j,i) * res
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
43
plugins/Hartree_Fock_SlaterDressed/slater.irp.f
Normal file
43
plugins/Hartree_Fock_SlaterDressed/slater.irp.f
Normal file
@ -0,0 +1,43 @@
|
||||
BEGIN_PROVIDER [ double precision, slater_expo, (nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Exponents of the Slater functions
|
||||
END_DOC
|
||||
logical :: exists
|
||||
call ezfio_has_Hartree_Fock_SlaterDressed_slater_expo_ezfio(exists)
|
||||
if (exists) then
|
||||
slater_expo(1:nucl_num) = slater_expo_ezfio(1:nucl_num)
|
||||
else
|
||||
slater_expo(1:nucl_num) = nucl_charge(1:nucl_num)
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_expo_ezfio(slater_expo)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, slater_coef, (nucl_num,mo_tot_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Exponents of the Slater functions
|
||||
END_DOC
|
||||
logical :: exists
|
||||
slater_coef = 0.d0
|
||||
call ezfio_has_Hartree_Fock_SlaterDressed_slater_coef_ezfio(exists)
|
||||
if (exists) then
|
||||
slater_coef = slater_coef_ezfio
|
||||
else
|
||||
call ezfio_set_Hartree_Fock_SlaterDressed_slater_coef_ezfio(slater_coef)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, slater_normalization, (nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Normalization of Slater functions : sqrt(expo^3/pi)
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i=1,nucl_num
|
||||
slater_normalization(i) = dsqrt( slater_expo(i)**3/dacos(-1.d0) )
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -252,25 +252,28 @@ subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_gen
|
||||
else if (perturbative_triples) then
|
||||
! Linked
|
||||
|
||||
hka = hij_cache(idx_alpha(k_sd))
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
|
||||
hka = hij_cache(idx_alpha(k_sd))
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
if (perturbative_triples.and. (degree2 == 1) ) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
call i_h_j(psi_ref(1,1,i_I),tmp_det,Nint,hka)
|
||||
hka = hij_cache(idx_alpha(k_sd)) - hka
|
||||
|
||||
if (dabs(hka) > 1.d-12) then
|
||||
call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv)
|
||||
do i_state=1,N_states
|
||||
ASSERT (Delta_E_inv(i_state) < 0.d0)
|
||||
dka(i_state) = hka / Delta_E_inv(i_state)
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user